17 Deep Sea Fishes Noct-Diurn Changeover.Pptx

Total Page:16

File Type:pdf, Size:1020Kb

17 Deep Sea Fishes Noct-Diurn Changeover.Pptx I. Deep Sea Fishes Deep Sea Fishes II. Nocturnal-Diurnal Changeover (Twilight) 19 cm black swallower with 86 cm snake mackerel in its stomach Definition of open ocean habitats Types of Deep Sea Fishes • Mesopelagic Bethopelagic Benthal • • Bathypelagic • Benthic Name Depth Largest habitat type on earth! Epipelagic 0-200 m (75% of ocean) Mesopelagic 200-1000 m Bathypelagic 1000-4000 m Deep Sea Abyssal 4000+ (up to 8000 m!) • Primary production via photosynthesis occurs only in epipelagic (euphotic) zone – where does the base of the food chain come from in the deep sea? 8000 m! Types of Deep Sea Fishes Convergent Evolution: • Mesopelagic (~750 species) • Bathypelagic (~200 species) Organisms exposed to similar selective pressures are • Benthal (Bethopelagic & Benthic) (~1000 species) likely to evolve similar adaptations Taxonomically diverse, but many common features: Selective Pressures in the deep sea: photophores (light emitting organs) large mouths • pressure dagger-like teeth • temperature lures • light • food thin bones • space enlarged, tubular, or reduced eyes Why?? 1 Pressure • every 10 m of depth adds 1 atm of pressure (14.7 lb/in2) surface = 1 atm Pressure (cont.) 10 m = 2 atm • at great pressures, volume of water & protein molecules 200 m = 21 atm decreases 1000 m = 101 atm 8000 m = 801 atm (12,000 lb/in2) -- affects rates of chemical reactions • presents challenges for using gas bladder solutions: solution: – close gas bladder duct (“secondary pysoclistous”) – proteins that are less sensitive to effects of pressure (found – longer rete mirable in deep meso- and bathypelagic species) – use lipids for buoyancy – reduce heavy tissues (bones & muscles) – eliminate gas bladder (benthal & bathypelagic) zone rete length (mm) epipelagic < 1 mm mesopelagic 1-7 mm bathypelagic 15-20 mm Temperature Light – the deep ocean is dim or dark • low & constant in deep areas (2-5º C in bathypelagic region) • up to 20º C difference for vertical migrators Consequences: –species usually found in specific temperatures regardless of latitude (i.e., different depths) –vertical migrators have more DNA per cell, possibly for multiple enzyme systems for different temps. temperature fishes 10-20º C Myctophids; Stomiidae zone 5-10 Sternoptychids; pale Cyclothone epipelagic euphotic 2-4 Ceratioid anglers; dark Cyclothone mesopelagic twilight bathypelagic sunless Adaptations for low-light or no-light Food • Food is scarce, patchy, and unpredictable in the deep sea Mesopelagic Bathypelagic • must be able to… • large eyes • small eyes (for photophore 1. go long periods without food detection • pure rod retinas (max ) 2. obtain any food available sensitivity to blue-green) • free neuromasts fangtooth (Anoplogastridae) • eye elongation • use of other senses (e.g., barrel eye) (e.g., olfaction) Adaptations: • bioluminescence • daggar-like teeth (5 superorders + Squaliformes) • huge mouths • huge stomachs Overall: • pectoral girdle free from -- more sensitive eyes (15-30 x more than humans) skull in some species -- can detect light deeper than human eyes • lures 2 Lures Going long periods without food: adaptations for energy conservation in deep sea fishes illicium esca • low metabolism • bone loss and reduction • loss of scales • reduction in musculature Space female Male Cyclothone have highly • the deep ocean is vast & densities of fishes are extremely low developed olfactory abilities -- hard to find food & mates -- e.g., 1 female ceratioid anglerfish per 800,000 m3 (a football in a darkened stadium) sexual dimorphism related to mate finding… Males: Females: • small • large • large olfactory organs • small olfactory organs • red muscle • white muscle male • highly developed eyes • poorly developed eyes • high lipid reserves • low lipid reserves • also protandrous sex change in Cyclothone • simultaneous hermaphroditism in some groups Mesopelagic (~750 species) (superorders, orders, & families) Elopomorpha – Notacanthiformes (Notacanthidae) – Anguiliformes (Nemichthyidae; Synaphobranchidae) Taxa of Deep Sea Fishes Protacanthopterygii – Argentiformes (Microstomatidae; Opisthoproctidae; Alepocephalidae; Platytroctidae) Stenopterygii – Stomiiformes (Gonostomatidae; Sternoptychidae; Stomiidae) Cyclosquamata – Aulopiformes (Giganturidae; Synodontidae; Paralepididae; Evermannellidae; Alepisauridae) Scopelomorpha – Myctophiformes (Myctophidae; Neoscopelidae) Lampriomorpha – Lampriformes (Stylephoridae) Acanthopterygii – Stephanoberyciformes (Mirapinnidae) – Perciformes (Chiasmodontidae; Gempylidae) 3 Bathypelagic (~200 species) Elopomorpha Benthal (Bethopelagic & Benthic) (~1000 species) –Anguiliformes (Nemichthyidae; Serrivomeridae; Elopomorpha Saccopharyngidae; Eurypharyngidae) – Notacanthiformes (Notacanthidae; Halosauridae) Protacanthopterygii – Anguiliformes (Synaphobranchidae) – Argentiformes (Alepocephalidae) Cyclosquamata Stenopterygii – Aulopiformes (Chloropthalmidae; Ipnopidae) – Stomiiformes (Gonostomatidae) Paracanthopterygii Paracanthopterygii – Gadiformes (Merluccidae; Moridae; Macrouridae) – Gadiformes (Melanonidae; Macrouridae) – Ophidiiformes (Ophididae; Bythitidae; Aphyonidae) – Ophidiiformes (Ophididae; Bythitidae) – Lophiiformes (Ogcocephalidae) – Lophiiformes (Ceratiidae) Acanthopterygii Acanthopterygii – Beryciformes (Caproidae) – Stephanoberyciformes (Melamphaidae; Stephanoberycidae; – Scorpaeniformes (Liparidae) Cetomimidae) – Perciformes (Zoarcidae; Bathydaconidae) – Beryciformes (Anoplogastridae) – Perciformes (Chiasmodontidae) Elopomorpha Anguiliformes, Nemichthyidae (snipe eels) Mesopelagic Fishes PROTACANTHOPTERYGII PROTACANTHOPTERYGII Argentifomres, Opisthoproctidae (barrel eye) Argentiformes, Microstomatidae Bathylagus large eyes Tubular eyes for light sensitivity and depth perception 4 STENOPTERYGII STENOPTERYGII (all deep sea) • Sternoptychidae Stomiiformes (hatchetfishes) Stomiidae (barbeled dragonfishes) Light Production: • symbiotic bacteria • luciferase Bioluminescence has evolved in 5 Superorders & >500 spp. CYCLOSQUAMATA (Protacanthopterygii, Stenopterygii, Scopelomorpha, Paracanthopterygii, (cyclo = cycloid scales) Acanthopterygii + Squaliformes) – Sex recognition • almost entirely deep sea fishes – Species recognition (like fireflies) • up to 2 m loosejaws (Stomiidae) may have their own private communication channel: produce and detect red light SCOPELOMORPHA Superorder Lampriomorpha “Strange Jaws” • all deep sea • ctenoid scales dragonfish larvae Myctophidae (lanternfishes) • diverse group >200 spp. • deep scattering layer (gas bladder reflection) • taxonomy based on photophore patterns • tube eyes • 40 fold expansion of mouth volume during plankton feeding! 5 LAMPRIOMORPHA, Regalecidae 8 m long! little known Bathypelagic Fishes Elopomorpha, Saccopharyngiformes (gulper eel) STENOPTERYGII, Gonostomatidae (bristlemouths) • huge mouth • no opercular bones, branchiostegal rays, scales, pelvic fins, ribs, gas bladder, etc. • most abundant and widely distributed vertebrates on earth! • “Perhaps the most anatomically modified of all vertebrate species” - Joe Nelson • representatives in both mesopelagic and bathypelagic Paracanthopterygii, Gadiformes, Macrouridae (grenadiers/rattails) Paracanthopterygii, Lophiiformes Deep Sea Anglerfishes (Ceratioid Anglerfishes) • Diverse group: 150+ spp. • Lures • What sex? 6 • males are small (males 2-4 cm max, females normally 10x longer than males, up to > 1 m long) • neither sex matures until the male has attached Benthopelagic and Benthic Fishes Squaliformes (to 1000 m) Cyclosquamata, Aulopiformes - tripodfishes (Ipnopidae) (prickly dogfish, Oxynotus bruniensis) Acanthopterygii Paracanthopterygii Scorpaeniformes Ophidiiformes fathead sculpins (Pyschrolutidae) Ophidiidae Deepest fish known is a cusk eel, Abyssobrotula (8370 m) 7 Acanthopterygii Acanthopterygii Scorpaeniformes Perciformes snailfishes (Liparidae) Zoarcidae (eelpouts) Diel Variation in Fish Activity Periods • Diurnal (day-active): 50-66% of fishes II. Light, Vision, & Ecology • Nocturnal (night active): 25-33% • Crepuscular (dawn and dusk): 10% Diel light patterns are strong and predictable Coral reefs have the strongest patterns of & cause strong temporal patterns in fish activity diurnal-nocturnal changes in fish assemblage • family-level patterns – most families are diurnal – key nocturnal families: • Apogonidae • Holocentridae • Muraenidae Light Intensity Time 8 Diurnal families diurnal zooplanktivorous fishes • Brightly colored • huge stationary schools • Schooling or Territorial • visual feeders on small plankton • Herbivorous (all herbivores are diurnal) • predator detection (many eyes) Damselfishes Parrotfishes (Scaridae) (Pomacentridae) anthias (Serranidae) Rabbitfishes (Siganidae) wrasses (Labridae) Surgeonfishes (Acanthuridae) Nocturnal Fishes Zooplanktivores (cont.) • ecological replacement sets for most diurnal groups Zooplanktivores Squirrelfishes (Holocentridae) Why don’t nocturnal fishes form large schools? Bigeyes (Priacanthidae) Zooplanktivores (cont.) Haemulidae (Grunts) • large daytime resting schools Cardinalfishes (Apogonidae) • forage in sand and seagrass at night 9 Nocturnal Predators Diurnal and Nocturnal Fishes-Summary • more schooling in the day (both prey and predators) • diurnal species more colorful • no cleaner fishes or herbivores at night, but ecological replacement sets for other groups mucous cocoon may protect parrotfishes from predators that use olfaction Sequence of events on a coral reef at dusk: 1. migration of diurnal fishes (vertical or horizontal) 2. quiet period 3. shelter seeking (site fidelity) 4. emergence of nocturnal fishes Family-level patterns: related to visual abilities cover seeking/emergence cover seeking/emergence diurnal spp The quiet period (~15-30 min after sunset) nocturnal spp 10 Why is this a dangerous time to be in the water? • Reaction distance of prey is shorter during twilight Diurnal Eyes (many small cones) • high light levels • resolution • Predators have intermediate eyes • motion detection • color vision visual advantage at twilight! Nocturnal Eyes (rod dominated, few large cones) • light capture 11 .
Recommended publications
  • Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
    Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra.
    [Show full text]
  • Acanthopterygii, Bone, Eurypterygii, Osteology, Percomprpha
    Research in Zoology 2014, 4(2): 29-42 DOI: 10.5923/j.zoology.20140402.01 Comparative Osteology of the Jaws in Representatives of the Eurypterygian Fishes Yazdan Keivany Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan, 84156-83111, Iran Abstract The osteology of the jaws in representatives of 49 genera in 40 families of eurypterygian fishes, including: Aulopiformes, Myctophiformes, Lampridiformes, Polymixiiformes, Percopsiformes, Mugiliformes, Atheriniformes, Beloniformes, Cyprinodontiformes, Stephanoberyciformes, Beryciformes, Zeiformes, Gasterosteiformes, Synbranchiformes, Scorpaeniformes (including Dactylopteridae), and Perciformes (including Elassomatidae) were studied. Generally, in this group, the upper jaw consists of the premaxilla, maxilla, and supramaxilla. The lower jaw consists of the dentary, anguloarticular, retroarticular, and sesamoid articular. In higher taxa, the premaxilla bears ascending, articular, and postmaxillary processes. The maxilla usually bears a ventral and a dorsal articular process. The supramaxilla is present only in some taxa. The dentary is usually toothed and bears coronoid and posteroventral processes. The retroarticular is small and located at the posteroventral corner of the anguloarticular. Keywords Acanthopterygii, Bone, Eurypterygii, Osteology, Percomprpha following method for clearing and staining bone and 1. Introduction cartilage provided in reference [18]. A camera lucida attached to a Wild M5 dissecting stereomicroscope was used Despite the introduction of modern techniques such as to prepare the drawings. The bones in the first figure of each DNA sequencing and barcoding, osteology, due to its anatomical section are arbitrarily shaded and labeled and in reliability, still plays an important role in the systematic the others are shaded in a consistent manner (dark, medium, study of fishes and comprises a major percent of today’s and clear) to facilitate comparison among the taxa.
    [Show full text]
  • Larvae and Juveniles of the Deepsea “Whalefishes”
    © Copyright Australian Museum, 2001 Records of the Australian Museum (2001) Vol. 53: 407–425. ISSN 0067-1975 Larvae and Juveniles of the Deepsea “Whalefishes” Barbourisia and Rondeletia (Stephanoberyciformes: Barbourisiidae, Rondeletiidae), with Comments on Family Relationships JOHN R. PAXTON,1 G. DAVID JOHNSON2 AND THOMAS TRNSKI1 1 Fish Section, Australian Museum, 6 College Street, Sydney NSW 2010, Australia [email protected] [email protected] 2 Fish Division, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. [email protected] ABSTRACT. Larvae of the deepsea “whalefishes” Barbourisia rufa (11: 3.7–14.1 mm nl/sl) and Rondeletia spp. (9: 3.5–9.7 mm sl) occur at least in the upper 200 m of the open ocean, with some specimens taken in the upper 20 m. Larvae of both families are highly precocious, with identifiable features in each by 3.7 mm. Larval Barbourisia have an elongate fourth pelvic ray with dark pigment basally, notochord flexion occurs between 6.5 and 7.5 mm sl, and by 7.5 mm sl the body is covered with small, non- imbricate scales with a central spine typical of the adult. In Rondeletia notochord flexion occurs at about 3.5 mm sl and the elongate pelvic rays 2–4 are the most strongly pigmented part of the larvae. Cycloid scales (here reported in the family for the first time) are developing by 7 mm; these scales later migrate to form a layer directly over the muscles underneath the dermis. By 7 mm sl there is a unique organ, here termed Tominaga’s organ, separate from and below the nasal rosette, developing anterior to the eye.
    [Show full text]
  • Huchen (Hucho Hucho) ERSS
    Huchen (Hucho hucho) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, April 2011 Revised, January 2019, February 2019 Web Version, 4/30/2019 Photo: Liquid Art. Licensed under CC-SA 4.0 International. Available: https://commons.wikimedia.org/wiki/File:Danube_Salmon_-_Huchen_(Hucho_hucho).jpg. (January 2019). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2019): “Europe: Danube drainage [Austria, Bosnia and Herzegovina, Bulgaria, Croatia, Germany, Hungary, Italy, Romania, Serbia, Slovakia, Slovenia, Switzerland, and Ukraine].” “Population has declined [in Slovenia] due to pollution and river regulation. Conservation measures include artificial propagation and stocking [Povz 1996]. Status of threat: Regionally extinct [Bianco and Ketmaier 2016].” 1 “Considered locally extinct (extirpated) in 1990 [in Switzerland] [Vilcinskas 1993].” “Extinct in the wild in 2000 [in Czech Republic] [Lusk and Hanel 2000]. This species is a native species in the basin of the Black Sea (the rivers Morava and Dyje). At present, its local and time- limited occurrence depends on the stocking material from artificial culture. Conditions that will facilitate the formation of a permanent population under natural conditions are not available [Lusk et al. 2004]. […] Status of threat: extinct in the wild [Lusk et al. 2011].” From Freyhof and Kottelat (2008): “The species is severely fragmented within the Danube drainage, where most populations exclusively depend on stocking and natural reproduction is very limited due to habitat alterations and flow regime changes.” From Grabowska et al. (2010): “The exceptional case is huchen (or Danubian salmon), Hucho hucho. The huchen’s native range in Poland was restricted to two small rivers (Czarna Orawa and Czadeczka) of the Danube River basin, […]” Status in the United States Froese and Pauly (2019) report an introduction to the United States between 1870 and 1874 that did not result in an established population.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Order GASTEROSTEIFORMES PEGASIDAE Eurypegasus Draconis
    click for previous page 2262 Bony Fishes Order GASTEROSTEIFORMES PEGASIDAE Seamoths (seadragons) by T.W. Pietsch and W.A. Palsson iagnostic characters: Small fishes (to 18 cm total length); body depressed, completely encased in Dfused dermal plates; tail encircled by 8 to 14 laterally articulating, or fused, bony rings. Nasal bones elongate, fused, forming a rostrum; mouth inferior. Gill opening restricted to a small hole on dorsolat- eral surface behind head. Spinous dorsal fin absent; soft dorsal and anal fins each with 5 rays, placed posteriorly on body. Caudal fin with 8 unbranched rays. Pectoral fins large, wing-like, inserted horizon- tally, composed of 9 to 19 unbranched, soft or spinous-soft rays; pectoral-fin rays interconnected by broad, transparent membranes. Pelvic fins thoracic, tentacle-like,withI spine and 2 or 3 unbranched soft rays. Colour: in life highly variable, apparently capable of rapid colour change to match substrata; head and body light to dark brown, olive-brown, reddish brown, or almost black, with dorsal and lateral surfaces usually darker than ventral surface; dorsal and lateral body surface often with fine, dark brown reticulations or mottled lines, sometimes with irregular white or yellow blotches; tail rings often encircled with dark brown bands; pectoral fins with broad white outer margin and small brown spots forming irregular, longitudinal bands; unpaired fins with small brown spots in irregular rows. dorsal view lateral view Habitat, biology, and fisheries: Benthic, found on sand, gravel, shell-rubble, or muddy bottoms. Collected incidentally by seine, trawl, dredge, or shrimp nets; postlarvae have been taken at surface lights at night.
    [Show full text]
  • Distributionoffi00grey.Pdf
    r a I B R.AR.Y OF THE UNIVERSITY Of ILLINOIS cr> 52)0.5 CO FI 3 v.3G BIOLOGY The person charging this material is re- sponsible for its return on or before the Latest Date stamped below. Theft, and mutilation, underlining of books are reasons for disciplinary action and may result ,n dismissal from the University University of Illinois Library M^a^m UM*^V L161 O-1096 36 .2 THE DISTRIBUTION OF FISHES FOUND BELOW A DEPTH OF 2000 METERS MARION GREY FIELDIANA: ZOOLOGY VOLUME 36, NUMBER 2 Published by CHICAGO NATURAL HISTORY MUSEUM JULY 30, 1956 NAT. HIST. r THE DISTRIBUTION OF FISHES FOUND BELOW A DEPTH OF 2000 METERS MARION GREY Associate, Division of Fishes THE LIBRARY OF THE AUG H 1966 FIELDIANA: ZOOLOGY UHWB8I1Y OF ILLINOIS VOLUME 36, NUMBER 2 Published by CHICAGO NATURAL HISTORY MUSEUM JULY 30, 1956 PRINTED IN THE UNITED STATES OF AMERICA BY CHICAGO NATURAL HISTORY MUSEUM PRESS WD X^ CONTENTS PAGE Introduction 77 Terminology 78 Fishes found below 3660 meters 78 Distinctive character of deep-abyssal fauna 82 Endemism in deep-abyssal waters 83 Endemism of species 84 The bathypelagic fishes 88 Conclusion 92 Note 93 Editorial note 93 Acknowledgments 93 Synonymies and Distribution 94 Scylliorhinidae 94 Squalidae 95 Rajidae 98 Chimaeridae 100 Rhinochimaeridae 101 Alepocephalidae 102 Searsiidae 116 Gonostomatidae 119 Bathylaconidae 127 Harpadontidae 128 Chlorophthalmidae 129 Bathypteroidae 130 Ipnopidae 135 Eurypharyngidae 137 Simenchelyidae 139 Nettastomidae 140 Congridae 142 Ilyophidae 142 Synaphobranchidae 143 Serrivomeridae 148 Nemichthyidae 149 Cyemidae 151 75 76 CONTENTS PAGE Halosauridae 152 Notacanthidae 156 Moridae 158 Gadidae 161 Macrouridae 162 Stephanoberycidae 190 Melamphaidae 191 Acropomatidae(?) 192 Parapercidae 193 Chiasmodontidae 193 Bathydraconidae 194 Zoarcidae C .
    [Show full text]
  • Lab 9 - an Introduction to Marine Fishes
    Name ___________________________________ Lab 9 - An introduction to marine fishes NOTE: these taxonomic groups have many more species than those shown today; each specimen is but a representative of its particular family or order. PLEASE HANDLE SPECIMENS CAREFULLY!!!! Superclass Agnatha (jawless fishes; ~80 spp.) Class Myxini Order Myxiniformes Family Myxinidae; Hagfish (Myxine glutinosa) Class Cephalaspidomorphi Order Petromyzontiformes Family Petromyzontidae; Sea lamprey (Petromyzon marinus) 1) What are some key differences between Myxinids and Petromyzontids? Superclass Gnathostomata (jawed fishes) Class Chondrichthyes (cartilaginous fishes) Subclass Elasmobranchii (shark-like fishes; 800 spp) Order Squatiniformes; Angel shark (Squatina dumerili) Order Squaliformes; Spiny dogfish (Squalus acanthias) Order Rajiformes; Clearnose skate (Raja eglanteria), Guitarfish (Rhinobatos sp.) Subclass Holocephali (chimaeras; 30 spp) Order Chimaeriformes; Spotted chimaera (Hydrolagus colliei) 2) What are two features that clearly distinguish the order Rajiformes (skates) from sharks? 3) Where in the water column would you expect to find a chimaera? Why? Class Teleostomi (bony fishes) Superorder Clupeomorpha Order Clupeiformes Family Clupeidae; Atlantic herring (Clupea harengus), Menhaden (Brevoortia tyrannus) Family Engraulidae; Anchovy (Anchoa nasuta) 4) What characteristics most clearly separate these two families? 5) These fishes tend to travel in schools. What purpose might the silvery stripe down their sides serve? (Hint: think about this from
    [Show full text]
  • Current Knowledge on the European Mudminnow, Umbra Krameri Walbaum, 1792 (Pisces: Umbridae)
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 1995 Band/Volume: 97B Autor(en)/Author(s): Wanzenböck Josef Artikel/Article: Current knowledge on the European mudminnow, Umbra krameri Walbaum, 1792 (Pisces: Umbridae). 439-449 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 97 B 439 - 449 Wien, November 1995 Current knowledge on the European mudminnow, Umbra krameri WALBAUM, 1792 (Pisces: Umbridae) J. Wanzenböck* Abstract The present paper summarizes the current knowledge on the European mudminnow {Umbra krameri WALBAUM, 1792) with respect to systematics, taxonomy, and ecology. Key words: Umbridae, Umbra krameri, systematics, taxonomy, ecology. Zusammenfassung Die vorliegende Arbeit faßt den derzeitigen Wissensstand über den Europäischen Hundsfisch {Umbra kra- meri WALBAUM, 1792) unter Berücksichtigung systematischer, taxonomischer und ökologischer Aspekte zusammen. Names, taxonomy, and systematics Scientific name: Umbra krameri WALBAUM, 1792 Common names: Based on BLANC & al. (1971) and LINDBERG & HEARD (1972). Names suggested by the author are given at first, those marked with an asterix (*) are given in BLANC & al. (1971). German: Europäischer Hundsfisch, Hundsfisch*, Ungarischer Hundsfisch Hungarian: Lâpi póc* Czech: Tmavec hnëdy*, Blatnâk tmavy Slovak: Blatniak* Russian: Evdoshka, Umbra* Ukrainian: Boboshka (Dniestr), Evdoshka, Lezheboka
    [Show full text]
  • History of Fishes - Structural Patterns and Trends in Diversification
    History of fishes - Structural Patterns and Trends in Diversification AGNATHANS = Jawless • Class – Pteraspidomorphi • Class – Myxini?? (living) • Class – Cephalaspidomorphi – Osteostraci – Anaspidiformes – Petromyzontiformes (living) Major Groups of Agnathans • 1. Osteostracida 2. Anaspida 3. Pteraspidomorphida • Hagfish and Lamprey = traditionally together in cyclostomata Jaws = GNATHOSTOMES • Gnathostomes: the jawed fishes -good evidence for gnathostome monophyly. • 4 major groups of jawed vertebrates: Extinct Acanthodii and Placodermi (know) Living Chondrichthyes and Osteichthyes • Living Chondrichthyans - usually divided into Selachii or Elasmobranchi (sharks and rays) and Holocephali (chimeroids). • • Living Osteichthyans commonly regarded as forming two major groups ‑ – Actinopterygii – Ray finned fish – Sarcopterygii (coelacanths, lungfish, Tetrapods). • SARCOPTERYGII = Coelacanths + (Dipnoi = Lung-fish) + Rhipidistian (Osteolepimorphi) = Tetrapod Ancestors (Eusthenopteron) Close to tetrapods Lungfish - Dipnoi • Three genera, Africa+Australian+South American ACTINOPTERYGII Bichirs – Cladistia = POLYPTERIFORMES Notable exception = Cladistia – Polypterus (bichirs) - Represented by 10 FW species - tropical Africa and one species - Erpetoichthys calabaricus – reedfish. Highly aberrant Cladistia - numerous uniquely derived features – long, independent evolution: – Strange dorsal finlets, Series spiracular ossicles, Peculiar urohyal bone and parasphenoid • But retain # primitive Actinopterygian features = heavy ganoid scales (external
    [Show full text]
  • Life History Patterns and Biogeography: An
    LIFE HISTORY PATTERNS AND Lynne R. Parenti2 BIOGEOGRAPHY: AN INTERPRETATION OF DIADROMY IN FISHES1 ABSTRACT Diadromy, broadly defined here as the regular movement between freshwater and marine habitats at some time during their lives, characterizes numerous fish and invertebrate taxa. Explanations for the evolution of diadromy have focused on ecological requirements of individual taxa, rarely reflecting a comparative, phylogenetic component. When incorporated into phylogenetic studies, center of origin hypotheses have been used to infer dispersal routes. The occurrence and distribution of diadromy throughout fish (aquatic non-tetrapod vertebrate) phylogeny are used here to interpret the evolution of this life history pattern and demonstrate the relationship between life history and ecology in cladistic biogeography. Cladistic biogeography has been mischaracterized as rejecting ecology. On the contrary, cladistic biogeography has been explicit in interpreting ecology or life history patterns within the broader framework of phylogenetic patterns. Today, in inferred ancient life history patterns, such as diadromy, we see remnants of previously broader distribution patterns, such as antitropicality or bipolarity, that spanned both marine and freshwater habitats. Biogeographic regions that span ocean basins and incorporate ocean margins better explain the relationship among diadromy, its evolution, and its distribution than do biogeographic regions centered on continents. Key words: Antitropical distributions, biogeography, diadromy, eels,
    [Show full text]
  • 18 Special Habitats and Special Adaptations 395
    THE DIVERSITY OF FISHES Dedications: To our parents, for their encouragement of our nascent interest in things biological; To our wives – Judy, Sara, Janice, and RuthEllen – for their patience and understanding during the production of this volume; And to students and lovers of fishes for their efforts toward preserving biodiversity for future generations. Front cover photo: A Leafy Sea Dragon, Phycodurus eques, South Australia. Well camouflaged in their natural, heavily vegetated habitat, Leafy Sea Dragons are closely related to seahorses (Gasterosteiformes: Syngnathidae). “Leafies” are protected by Australian and international law because of their limited distribution, rarity, and popularity in the aquarium trade. Legal collection is highly regulated, limited to one “pregnant” male per year. See Chapters 15, 21, and 26. Photo by D. Hall, www.seaphotos.com. Back cover photos (from top to bottom): A school of Blackfin Barracuda, Sphyraena qenie (Perciformes, Sphyraenidae). Most of the 21 species of barracuda occur in schools, highlighting the observation that predatory as well as prey fishes form aggregations (Chapters 19, 20, 22). Blackfins grow to about 1 m length, display the silvery coloration typical of water column dwellers, and are frequently encountered by divers around Indo-Pacific reefs. Barracudas are fast-start predators (Chapter 8), and the pan-tropical Great Barracuda, Sphyraena barracuda, frequently causes ciguatera fish poisoning among humans (Chapter 25). Longhorn Cowfish, Lactoria cornuta (Tetraodontiformes: Ostraciidae), Papua New Guinea. Slow moving and seemingly awkwardly shaped, the pattern of flattened, curved, and angular trunk areas made possible by the rigid dermal covering provides remarkable lift and stability (Chapter 8). A Silvertip Shark, Carcharhinus albimarginatus (Carcharhiniformes: Carcharhinidae), with a Sharksucker (Echeneis naucrates, Perciformes: Echeneidae) attached.
    [Show full text]