Comparison of the Effects of Zonisamide and Flupirtine On
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Could Mycolactone Inspire New Potent Analgesics? Perspectives and Pitfalls
toxins Review Could Mycolactone Inspire New Potent Analgesics? Perspectives and Pitfalls 1 2 3, 4, , Marie-Line Reynaert , Denis Dupoiron , Edouard Yeramian y, Laurent Marsollier * y and 1, , Priscille Brodin * y 1 France Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France 2 Institut de Cancérologie de l’Ouest Paul Papin, 15 rue André Boquel-49055 Angers, France 3 Unité de Microbiologie Structurale, Institut Pasteur, CNRS, Univ. Paris, F-75015 Paris, France 4 Equipe ATIP AVENIR, CRCINA, INSERM, Univ. Nantes, Univ. Angers, 4 rue Larrey, F-49933 Angers, France * Correspondence: [email protected] (L.M.); [email protected] (P.B.) These three authors contribute equally to this work. y Received: 29 June 2019; Accepted: 3 September 2019; Published: 4 September 2019 Abstract: Pain currently represents the most common symptom for which medical attention is sought by patients. The available treatments have limited effectiveness and significant side-effects. In addition, most often, the duration of analgesia is short. Today, the handling of pain remains a major challenge. One promising alternative for the discovery of novel potent analgesics is to take inspiration from Mother Nature; in this context, the detailed investigation of the intriguing analgesia implemented in Buruli ulcer, an infectious disease caused by the bacterium Mycobacterium ulcerans and characterized by painless ulcerative lesions, seems particularly promising. More precisely, in this disease, the painless skin ulcers are caused by mycolactone, a polyketide lactone exotoxin. In fact, mycolactone exerts a wide range of effects on the host, besides being responsible for analgesia, as it has been shown notably to modulate the immune response or to provoke apoptosis. -
(12) Patent Application Publication (10) Pub. No.: US 2015/0025060A1 Tamarkin Et Al
US 2015.0025060A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0025060A1 Tamarkin et al. (43) Pub. Date: Jan. 22, 2015 (54) FOAMABLE COMPOSITIONS AND KITS (30) Foreign Application Priority Data COMPRISING ONE ORMORE OF A CHANNEL AGENT, ACHOLINERGICAGENT, Oct. 25, 2002 (IL) .......................................... 1524.86 A NITRC OXDE DONOR AND RELATED AGENTS AND THEIR USES Publication Classification (71) Applicant: Foamix Pharmaceuticals Ltd., Rehovot (51) Int. Cl. (IL) A613 L/554 (2006.01) A 6LX3 L/505 (2006.01) (72) Inventors: Dov Tamarkin, Macabim (IL); Meir A647/10 (2006.01) Eini, Ness Ziona (IL); Doron Friedman, A613 L/4422 (2006.01) Karmei Yosef (IL); Tal Berman, Rishon (52) U.S. Cl. Le Ziyyon (IL); Alex Besonov, Rehovot CPC ........... A6 IK3I/554 (2013.01); A61 K3I/4422 (IL) (2013.01); A61 K3I/505 (2013.01); A61 K 47/10 (2013.01) (21) Appl. No.: 14/448,670 USPC ....................... 514/211.03: 514/356; 514/275 (22) Filed: Jul. 31, 2014 (57) ABSTRACT Related U.S. Application Data The present invention relates to a foamable therapeutic com position comprising: (a) a therapeutically effective concen (63) Continuation of application No. 1 1/767,442, filed on tration of at least one active agent selected from the group Jun. 22, 2007, which is a continuation-in-part of appli consisting of a channel agent, a cholinergic agent, and a nitric cation No. 10/911.367, filed on Aug. 4, 2004, said oxide donor; and (b) a foamable carrier comprising: application No. 1 1/767,442 is a continuation-in-part of i. -
Vimpat, INN-Lacosamide
European Medicines Agency Evaluation of Medicines for Human Use Doc.Ref.: EMEA/460925/2008 ASSESSMENT REPORT FOR Vimpat International Nonproprietary Name: lacosamide Procedure No. EMEA/H/C/000863 Assessment Report as adopted by the CHMP with all information of a commercially confidential nature deleted. 7 Westferry Circus, Canary Wharf, London, E14 4HB, UK Tel. (44-20) 74 18 84 00 Fax (44-20) 75 23 70 51 E-mail: [email protected] http://www.emea.europa.eu © European Medicines Agency, 2008. Reproduction is authorised provided the source is acknowledged TABLE OF CONTENTS Page 1. BACKGROUND INFORMATION ON THE PROCEDURE........................................... 3 1.1 Submission of the dossier ........................................................................................................ 3 1.2 Steps taken for the assessment of the product.......................................................................... 3 2 SCIENTIFIC DISCUSSION................................................................................................. 4 2.1 Introduction.............................................................................................................................. 4 2.2 Quality aspects......................................................................................................................... 4 2.3 Non-clinical aspects............................................................................................................... 11 2.4 Clinical aspects ..................................................................................................................... -
Drug and Medication Classification Schedule
KENTUCKY HORSE RACING COMMISSION UNIFORM DRUG, MEDICATION, AND SUBSTANCE CLASSIFICATION SCHEDULE KHRC 8-020-1 (11/2018) Class A drugs, medications, and substances are those (1) that have the highest potential to influence performance in the equine athlete, regardless of their approval by the United States Food and Drug Administration, or (2) that lack approval by the United States Food and Drug Administration but have pharmacologic effects similar to certain Class B drugs, medications, or substances that are approved by the United States Food and Drug Administration. Acecarbromal Bolasterone Cimaterol Divalproex Fluanisone Acetophenazine Boldione Citalopram Dixyrazine Fludiazepam Adinazolam Brimondine Cllibucaine Donepezil Flunitrazepam Alcuronium Bromazepam Clobazam Dopamine Fluopromazine Alfentanil Bromfenac Clocapramine Doxacurium Fluoresone Almotriptan Bromisovalum Clomethiazole Doxapram Fluoxetine Alphaprodine Bromocriptine Clomipramine Doxazosin Flupenthixol Alpidem Bromperidol Clonazepam Doxefazepam Flupirtine Alprazolam Brotizolam Clorazepate Doxepin Flurazepam Alprenolol Bufexamac Clormecaine Droperidol Fluspirilene Althesin Bupivacaine Clostebol Duloxetine Flutoprazepam Aminorex Buprenorphine Clothiapine Eletriptan Fluvoxamine Amisulpride Buspirone Clotiazepam Enalapril Formebolone Amitriptyline Bupropion Cloxazolam Enciprazine Fosinopril Amobarbital Butabartital Clozapine Endorphins Furzabol Amoxapine Butacaine Cobratoxin Enkephalins Galantamine Amperozide Butalbital Cocaine Ephedrine Gallamine Amphetamine Butanilicaine Codeine -
Product Update Price List Winter 2014 / Spring 2015 (£)
Product update Price list winter 2014 / Spring 2015 (£) Say to affordable and trusted life science tools! • Agonists & antagonists • Fluorescent tools • Dyes & stains • Activators & inhibitors • Peptides & proteins • Antibodies hellobio•com Contents G protein coupled receptors 3 Glutamate 3 Group I (mGlu1, mGlu5) receptors 3 Group II (mGlu2, mGlu3) receptors 3 Group I & II receptors 3 Group III (mGlu4, mGlu6, mGlu7, mGlu8) receptors 4 mGlu – non-selective 4 GABAB 4 Adrenoceptors 4 Other receptors 5 Ligand Gated ion channels 5 Ionotropic glutamate receptors 5 NMDA 5 AMPA 6 Kainate 7 Glutamate – non-selective 7 GABAA 7 Voltage-gated ion channels 8 Calcium Channels 8 Potassium Channels 9 Sodium Channels 10 TRP 11 Other Ion channels 12 Transporters 12 GABA 12 Glutamate 12 Other 12 Enzymes 13 Kinase 13 Phosphatase 14 Hydrolase 14 Synthase 14 Other 14 Signaling pathways & processes 15 Proteins 15 Dyes & stains 15 G protein coupled receptors Cat no. Product name Overview Purity Pack sizes and prices Glutamate: Group I (mGlu1, mGlu5) receptors Agonists & activators HB0048 (S)-3-Hydroxyphenylglycine mGlu1 agonist >99% 10mg £112 50mg £447 HB0193 CHPG Sodium salt Water soluble, selective mGlu5 agonist >99% 10mg £59 50mg £237 HB0026 (R,S)-3,5-DHPG Selective mGlu1 / mGlu5 agonist >99% 10mg £70 50mg £282 HB0045 (S)-3,5-DHPG Selective group I mGlu receptor agonist >98% 1mg £42 5mg £83 10mg £124 HB0589 S-Sulfo-L-cysteine sodium salt mGlu1α / mGlu5a agonist 10mg £95 50mg £381 Antagonists HB0049 (S)-4-Carboxyphenylglycine Competitive, selective group 1 -
Package Leaflet: Information for the User
ENR 2186544 ENR 2186545 PACKAGE LEAFLET: INFORMATION FOR THE USER <invented name> 100 mg capsules, hard Active substance: flupirtine maleate Read all of this leaflet carefully before you start taking this medicine because it contains important information for you. - Keep this leaflet. You may need to read it again. - If you have any further questions, ask your doctor or pharmacist. - This medicine has been prescribed for you only. Do not pass it on to others. It may harm them, even if their signs of illness are the same as yours. - If you get any side effects, talk to your doctor or pharmacist. This includes any possible side effects not listed in this leaflet. What is in this leaflet 1. What <invented name> is and what it is used for 2. What you need to know before you take <invented name> 3. How to take <invented name> 4. Possible side effects 5. How to store <invented name> 6. Contents of the pack and other information 1. What <invented name> is and what it is used for <invented name> is a medicine used to treat acute pain of mild to moderate intensity coming from various origins. 2. What you need to know before you take <invented name> Do not take <invented name> - if you are allergic to flupirtine maleate or any of the other ingredients of this medicine (listed in section 6). - if you are at risk of hepatic encephalopathy and patients with cholestasis, <invented name> should not be administered, as onset or deterioration of encephalopathy or ataxia may occur in these patients. -
Neuroscience Products
Neuroscience Products CATALOG CATALOG NUMBER U.S. $ NUMBER U.S. $ -A- 3-(N-ACETYLAMINO)-5-(N-DECYL-N- 1 mg 27.50 159549 METHYLAMINO)BENZYL ALCOHOL 5 mg 89.40 o A23187 0-5 C [103955-90-4] (ADMB) See: Antibiotic A23187 A Protein Kinase C activator. Ref.: Proc. Nat. Acad. Sci. USA, 83, 4214 AA-861 20 mg 72.70 (1986). 159061 Purity: 95% 100 mg 326.40 C20H34N2O2 MW 334.5 0oC Orally active, specific and potent inhibitor of 5-lipoxygenase. N-ACETYL-ASP-GLU 25 mg 45.00 153036 [3106-85-2] 100 mg 156.00 Ref.: 1. Yoshimoto, T., et.al., Biochim. o Biophys. Acta, 713, 470 (1982). 2. Ashida, -20-0 C An endogenous neuropeptide with high 250 mg 303.65 Y., et.al., Prostaglandins, 26, 955 (1983). 3. affinity for a brain "Glutamate" receptor. Ancill, R.J., et.al., J. Int. Med. Res., 18, 75 Ref: Zaczek, R., et al., Proc. Natl. Acad. (1990). Sci. (USA), 80, 1116 (1983). C21H26O3 MW 326.4 C11H16N2O8 MW 304.3 ABL PROTEIN TYROSINE KINASE 250 U 47.25 N-ACETYL-2-BENZYLTRYPTAMINE 195876 (v-abl) 1 KU 162.75 See: Luzindole -70oC Recombinant Expressed in E. coli ACETYL-DL-CARNITINE 250 mg 60.00 A truncated form of the v-abl protein 154690 [2504-11-2] 1 g 214.00 tyrosine kinase which contains the 0oC Hydrochloride minimum region needed for kinase activity Crystalline and fibroblast transformation. Suppresses C9H17NO4 • HCl MW 239.7 apoptosis and induces resistance to anti-cancer compounds. O-ACETYL-L-CARNITINE CHLORIDE 500 mg 11.45 Activity: 100 KU/ml 159062 [5080-50-2] 1 g 20.65 Unit Definition: one unit is the amount of 0-5oC (R-(-)-2-Acetyloxy-3-carboxy-N,N,N-trimethyl 5 g 97.45 enzyme which catalyzes the transfer of 1 -1-propanaminium chloride) pmol of phosphate to EAIYAAPFAKKK per Purity: >88% minute at 30°C, pH 7.5. -
Muscle Relaxants for Pain Management in Rheumatoid Arthritis (Review)
Muscle relaxants for pain management in rheumatoid arthritis (Review) Richards BL, Whittle SL, Buchbinder R This is a reprint of a Cochrane review, prepared and maintained by The Cochrane Collaboration and published in The Cochrane Library 2012, Issue 1 http://www.thecochranelibrary.com Muscle relaxants for pain management in rheumatoid arthritis (Review) Copyright © 2012 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 SUMMARY OF FINDINGS FOR THE MAIN COMPARISON . ..... 3 BACKGROUND .................................... 6 OBJECTIVES ..................................... 7 METHODS ...................................... 7 RESULTS....................................... 10 Figure1. ..................................... 11 Figure2. ..................................... 13 Figure3. ..................................... 15 Figure4. ..................................... 15 Figure5. ..................................... 16 Figure6. ..................................... 17 Figure7. ..................................... 17 Figure8. ..................................... 18 DISCUSSION ..................................... 20 AUTHORS’CONCLUSIONS . 21 ACKNOWLEDGEMENTS . 22 REFERENCES ..................................... 22 CHARACTERISTICSOFSTUDIES . 24 DATAANDANALYSES. 35 Analysis 1.1. Comparison 1 Muscle relaxant versus control, Outcome 1 Pain 24hrs. 37 Analysis 1.2. Comparison 1 Muscle relaxant -
022345Orig1s000
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 022345Orig1s000 OTHER REVIEW(S) SEALD LABELING: PI SIGN-OFF REVIEW APPLICATION NUMBER NDA 022345 APPLICANT Valeant Pharm N.A. PRODUCT NAME Potiga (ezogabine) SUBMISSION DATE 15 April 2011 PDUFA DATE 15 June 2011 SEALD SIGN-OFF DATE 10 June 2011 OND ASSOCIATE DIRECTOR Laurie Burke FOR STUDY ENDPOINTS AND LABELING This memo confirms that no critical prescribing information (PI) deficiencies were noted in the SEALD Labeling Review filed 8 June 2011 and no critical deficiencies have been found in the final agreed-upon PI reviewed today. SEALD has no objection to PI approval at this time. Reference ID: 2959126 --------------------------------------------------------------------------------------------------------- This is a representation of an electronic record that was signed electronically and this page is the manifestation of the electronic signature. --------------------------------------------------------------------------------------------------------- /s/ ---------------------------------------------------- LAURIE B BURKE 06/10/2011 Reference ID: 2959126 NDA 22345 Potiga Potiga PMR/PMC Development Template: PREA Efficacy/Safety Study for Ezogabine PMR # 1 This template should be completed by the PMR/PMC Development Coordinator and included for each PMR/PMC in the Action Package. PMR/PMC Description: Prospective, randomized, placebo-control, double-blinded efficacy/ safety trial of Potiga (ezogabine) in children >12 years old. PMR/PMC Schedule Milestones: Final protocol Submission Date: 11/2012 Study/Clinical trial Completion Date: 01/2018 Final Report Submission Date: 05/2018 Other: MM/DD/YYYY 1. During application review, explain why this issue is appropriate for a PMR/PMC instead of a pre-approval requirement. Check type below and describe. Unmet need Life-threatening condition Long-term data needed Only feasible to conduct post-approval Prior clinical experience indicates safety Small subpopulation affected Theoretical concern Other This is part of a PREA requirement. -
Identifying Nootropic Drug Targets Via Large-Scale Cognitive GWAS and Transcriptomics
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.06.934752; this version posted February 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: Identifying Nootropic Drug Targets via Large-Scale Cognitive GWAS and Transcriptomics Max Lam1, 2, 3,4, Chia-Yen, Chen3,5,6, Xia Yan7,8, W. David Hill9, 10, Joey W. Trampush11, Jin Yu1, Emma Knowles12,13,14, Gail Davies9, 10, Eli Stahl15, 16, Laura Huckins15, 16, David C. Liewald10, Srdjan Djurovic17, 18, Ingrid Melle18, 19, Andrea Christoforou20, Ivar Reinvang21, Pamela DeRosse1, 22, 23, Astri J. Lundervold24, Vidar M. Steen18, 20, Thomas Espeseth19, 21, Katri Räikkönen25, Elisabeth Widen26, Aarno Palotie26, 27, 28, Johan G. Eriksson29, 30, 31, Ina Giegling32, Bettina Konte32, Annette M. Hartmann32, Panos Roussos15, 16, 33, Stella Giakoumaki34, Katherine E. Burdick15, 33, 35, Antony Payton36, William Ollier37, 38, Ornit Chiba- Falek39, Deborah K. Koltai39, 40 , Anna C. Need41, Elizabeth T. Cirulli42, Aristotle N. Voineskos43, Nikos C. Stefanis44, 45, 46, Dimitrios Avramopoulos47, 48, Alex Hatzimanolis44, 45, 46, Nikolaos Smyrnis44, 45, Robert M. Bilder49, Nelson A. Freimer49, Tyrone D. Cannon50, 51, Edythe London49, Russell A. Poldrack52, Fred W. Sabb53, Eliza Congdon49, Emily Drabant Conley54, Matthew A. Scult55, Dwight Dickinson56, Richard E. Straub57, Gary Donohoe58, Derek Morris58, Aiden Corvin59, Michael Gill59, Ahmad R. Hariri55, Daniel R. Weinberger57, Neil Pendleton60, Panos Bitsios61, Dan Rujescu32, Jari Lahti25, 62, Stephanie Le Hellard18, 20, Matthew C. -
Chembridge Focused Ion Channel Core Plate 3408
Smal Molecule Library: ChemBridge Focused Ion Channel Core Plate 3408 Vendor Reagent Plate Well Targets Active Compound Scheme# ID 3408 A03 26558344 Potassium Channel Opener COC(=O)c1ccc(=O)n(CCNC(=O)c2ccccn2)c1 2225 3408 A04 74210071 Potassium Channel Opener Clc1ncc(cn1)NC(=O)c1ccc(Cl)c(F)c1 2218 3408 A05 38190270 Potassium Channel Modulator CC(=O)Nc1ccc2nc([nH]c2c1)c1ccccc1c1nc2ccccc2[nH]1 3512 3408 A06 41995970 Potassium Channel Opener Clc1ncc(cn1)NC(=O)c1ccc(Cl)c(F)c1 2218 3408 A07 54490250 Calcium Channel Blocker P-Type and L-Type COc1nsnc1c1cccc(c1)n1c(N)nc2ccccc12 2213 3408 A08 18950151 Potassium Channel Inhibitor CN(C)c1nc(NCc2ccccn2)c2c(occ2c2ccccc2)n1 3504 3408 A09 96447557 Calcium Channel Blocker COc1ccc2c(ncn2c2cccc(c2)c2ccccc2)c1 3507 3408 A10 62301407 Potassium Channel Opener Clc1ncc(cn1)NC(=O)c1ccc(Cl)c(F)c1 2225 3408 A11 27997194 Calcium Channel Blocker N-type O=C(NC1CCN(CC1)Cc1ccccc1)[C@H](CSCC1CCCCC1)NC(=O)[C@@H]1CSCN1C(=O)CC(C)(C)C 2225 3408 A12 21908544 Potassium Channel Activator O=c1ccccn1C1=CC(C)(C)Oc2cc3nonc3cc12 3232 3408 A13 44857539 Potassium Channel Activator CC(=O)Nc1ccc(cn1)NC(=S)NC(C)C(C)(C)C 2225 3408 A14 72294470 Potassium Channel Inhibitor COCCOc1nc(NCc2ccccn2)c2c(occ2c2ccccc2)n1 3504 3408 A15 61280668 Calcium and Sodium Channel Blocker 2202 3408 A16 62460131 Potassium Channel Activator COc1ccc[n+]([O-])c1C1=NC(C)(C)Oc2ccc(cc12)C(F)(F)F 3512 3408 A17 67807991 Potassium Channel Modulator Clc1ccc(cn1)NC(=O)c1ccc(Cl)c(c1)C(F)(F)F 3505 3408 A18 35932100 Potassium Channel Blocker CCCN1C(=O)C(NC(=O)Cc2cccc3ccccc23)N=C(N2CCCCC2)c2ccccc12 -
Activation of Axonal Kv7 Channels In
Fleckenstein et al. Journal of Translational Medicine 2013, 11:34 http://www.translational-medicine.com/content/11/1/34 RESEARCH Open Access Activation of axonal Kv7 channels in human peripheral nerve by flupirtine but not placebo - therapeutic potential for peripheral neuropathies: results of a randomised controlled trial Johannes Fleckenstein1*, Ruth Sittl1,2, Beate Averbeck2, Philip M Lang1, Dominik Irnich1 and Richard W Carr2,3 Abstract Background: Flupirtine is an analgesic with muscle-relaxing properties that activates Kv7 potassium channels. Kv7 channels are expressed along myelinated and unmyelinated peripheral axons where their activation is expected to reduce axonal excitability and potentially contribute to flupirtine’s clinical profile. Trial design: To investigate the electrical excitability of peripheral myelinated axons following orally administered flupirtine, in-vitro experiments on isolated peripheral nerve segments were combined with a randomised, double-blind, placebo-controlled, phase I clinical trial (RCT). Methods: Threshold tracking was used to assess the electrical excitability of myelinated axons in isolated segments of human sural nerve in vitro and motoneurones to abductor pollicis brevis (APB) in situ in healthy subjects. In addition, the effect of flupirtine on ectopic action potential generation in myelinated axons was examined using ischemia of the lower arm. Results: Flupirtine (3-30 μM) shortened the relative refractory period and increased post-conditioned superexcitability in human myelinated axons in vitro. Similarly, in healthy subjects the relative refractory period of motoneurones to APB was reduced 2 hours after oral flupirtine but not following placebo. Whether this effect was due to a direct action of flupirtine on peripheral axons or temperature could not be resolved.