3F3 – Digital Signal Processing (DSP)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Effects of High Frequency Current Ripple on Electric Vehicle Battery Performance
Original citation: Uddin, Kotub , Moore, Andrew D. , Barai, Anup and Marco, James. (2016) The effects of high frequency current ripple on electric vehicle battery performance. Applied Energy, 178 . pp. 142-154. Permanent WRAP URL: http://wrap.warwick.ac.uk/80006 Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. This article is made available under the Creative Commons Attribution 4.0 International license (CC BY 4.0) and may be reused according to the conditions of the license. For more details see: http://creativecommons.org/licenses/by/4.0/ A note on versions: The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Applied Energy 178 (2016) 142–154 Contents lists available at ScienceDirect Applied Energy journal homepage: www.elsevier.com/locate/apenergy The effects of high frequency current ripple on electric vehicle battery performance ⇑ Kotub Uddin , Andrew D. Moore, Anup Barai, James Marco WMG, International Digital Laboratory, The University of Warwick, Coventry CV4 7AL, UK highlights Experimental study into the impact of current ripple on li-ion battery degradation. 15 cells exercised with 1200 cycles coupled AC–DC signals, at 5 frequencies. Results highlight a greater spread of degradation for cells exposed to AC excitation. Implications for BMS control, thermal management and system integration. article info abstract Article history: The power electronic subsystems within electric vehicle (EV) powertrains are required to manage both Received 8 April 2016 the energy flows within the vehicle and the delivery of torque by the electrical machine. -
Closed Loop Transfer Function
Lecture 4 Transfer Function and Block Diagram Approach to Modeling Dynamic Systems System Analysis Spring 2015 1 The Concept of Transfer Function Consider the linear time-invariant system defined by the following differential equation : ()nn ( 1) ay01 ay ann 1 y ay ()mm ( 1) bu01 bu bmm 1 u b u() n m Where y is the output of the system, and x is the input. And the Laplace transform of the equation is, nn1 ()()aS01 aS ann 1 S a Y s mm1 ()()bS01 bS bmm 1 S b U s System Analysis Spring 2015 2 The Concept of Transfer Function The ratio of the Laplace transform of the output (response function) to the Laplace Transform of the input (driving function) under the assumption that all initial conditions are Zero. mm1 Ys() bS01 bS bmm 1 S b Transfer Function G() s nn1 Us() aS01 aS ann 1 S a Ps() ()nm Qs() System Analysis Spring 2015 3 Comments on Transfer Function 1. A mathematical model. 2. Property of system itself. - Independent of the input function and initial condition - Denominator of the transfer function is the characteristic polynomial, - TF tells us something about the intrinsic behavior of the model. 3. ODE equivalence - TF is equivalent to the ODE. We can reconstruct ODE from TF. 4. One TF for one input-output pair. : Single Input Single Output system. - If multiple inputs affect Obtain TF for each input x 6207()3()xx f t g t -If multiple outputs xxy 32 yy xut 3() System Analysis Spring 2015 4 Comments on Transfer Function 5. -
Moving Average Filters
CHAPTER 15 Moving Average Filters The moving average is the most common filter in DSP, mainly because it is the easiest digital filter to understand and use. In spite of its simplicity, the moving average filter is optimal for a common task: reducing random noise while retaining a sharp step response. This makes it the premier filter for time domain encoded signals. However, the moving average is the worst filter for frequency domain encoded signals, with little ability to separate one band of frequencies from another. Relatives of the moving average filter include the Gaussian, Blackman, and multiple- pass moving average. These have slightly better performance in the frequency domain, at the expense of increased computation time. Implementation by Convolution As the name implies, the moving average filter operates by averaging a number of points from the input signal to produce each point in the output signal. In equation form, this is written: EQUATION 15-1 Equation of the moving average filter. In M &1 this equation, x[ ] is the input signal, y[ ] is ' 1 % y[i] j x [i j ] the output signal, and M is the number of M j'0 points used in the moving average. This equation only uses points on one side of the output sample being calculated. Where x[ ] is the input signal, y[ ] is the output signal, and M is the number of points in the average. For example, in a 5 point moving average filter, point 80 in the output signal is given by: x [80] % x [81] % x [82] % x [83] % x [84] y [80] ' 5 277 278 The Scientist and Engineer's Guide to Digital Signal Processing As an alternative, the group of points from the input signal can be chosen symmetrically around the output point: x[78] % x[79] % x[80] % x[81] % x[82] y[80] ' 5 This corresponds to changing the summation in Eq. -
Active Control of Loudspeakers: an Investigation of Practical Applications
Downloaded from orbit.dtu.dk on: Dec 18, 2017 Active control of loudspeakers: An investigation of practical applications Bright, Andrew Paddock; Jacobsen, Finn; Polack, Jean-Dominique; Rasmussen, Karsten Bo Publication date: 2002 Document Version Early version, also known as pre-print Link back to DTU Orbit Citation (APA): Bright, A. P., Jacobsen, F., Polack, J-D., & Rasmussen, K. B. (2002). Active control of loudspeakers: An investigation of practical applications. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Active Control of Loudspeakers: An Investigation of Practical Applications Andrew Bright Ørsted·DTU – Acoustic Technology Technical University of Denmark Published by: Ørsted·DTU, Acoustic Technology, Technical University of Denmark, Building 352, DK-2800 Kgs. Lyngby, Denmark, 2002 3 This work is dedicated to the memory of Betty Taliaferro Lawton Paddock Hunt (1916-1999) and to Samuel Raymond Bright, Jr. (1936-2001) 4 5 Table of Contents Preface 9 Summary 11 Resumé 13 Conventions, notation, and abbreviations 15 Conventions...................................................................................................................................... -
Switching-Ripple-Based Current Sharing for Paralleled Power Converters
Switching-ripple-based current sharing for paralleled power converters The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Perreault, D.J., K. Sato, R.L. Selders, and J.G. Kassakian. “Switching-Ripple-Based Current Sharing for Paralleled Power Converters.” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 46, no. 10 (1999): 1264–1274. © 1999 IEEE As Published http://dx.doi.org/10.1109/81.795839 Publisher Institute of Electrical and Electronics Engineers (IEEE) Version Final published version Citable link http://hdl.handle.net/1721.1/86985 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. 1264 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 10, OCTOBER 1999 Switching-Ripple-Based Current Sharing for Paralleled Power Converters David J. Perreault, Member, IEEE, Kenji Sato, Member, IEEE, Robert L. Selders, Jr., and John G. Kassakian, Fellow, IEEE Abstract— This paper presents the implementation and ex- perimental evaluation of a new current-sharing technique for paralleled power converters. This technique uses information naturally encoded in the switching ripple to achieve current sharing and requires no intercell connections for communicating this information. Practical implementation of the approach is addressed and an experimental evaluation, based on a three-cell prototype system, is also presented. It is shown that accurate and stable load sharing is obtained over a wide load range. Finally, an alternate implementation of this current-sharing technique is described and evaluated. -
Lecture 3: Transfer Function and Dynamic Response Analysis
Transfer function approach Dynamic response Summary Basics of Automation and Control I Lecture 3: Transfer function and dynamic response analysis Paweł Malczyk Division of Theory of Machines and Robots Institute of Aeronautics and Applied Mechanics Faculty of Power and Aeronautical Engineering Warsaw University of Technology October 17, 2019 © Paweł Malczyk. Basics of Automation and Control I Lecture 3: Transfer function and dynamic response analysis 1 / 31 Transfer function approach Dynamic response Summary Outline 1 Transfer function approach 2 Dynamic response 3 Summary © Paweł Malczyk. Basics of Automation and Control I Lecture 3: Transfer function and dynamic response analysis 2 / 31 Transfer function approach Dynamic response Summary Transfer function approach 1 Transfer function approach SISO system Definition Poles and zeros Transfer function for multivariable system Properties 2 Dynamic response 3 Summary © Paweł Malczyk. Basics of Automation and Control I Lecture 3: Transfer function and dynamic response analysis 3 / 31 Transfer function approach Dynamic response Summary SISO system Fig. 1: Block diagram of a single input single output (SISO) system Consider the continuous, linear time-invariant (LTI) system defined by linear constant coefficient ordinary differential equation (LCCODE): dny dn−1y + − + ··· + _ + = an n an 1 n−1 a1y a0y dt dt (1) dmu dm−1u = b + b − + ··· + b u_ + b u m dtm m 1 dtm−1 1 0 initial conditions y(0), y_(0),..., y(n−1)(0), and u(0),..., u(m−1)(0) given, u(t) – input signal, y(t) – output signal, ai – real constants for i = 1, ··· , n, and bj – real constants for j = 1, ··· , m. How do I find the LCCODE (1)? . -
Simple Simple Digital Filter Design for Analogue Engineers
Simple Digital Filter Design for Analogue Engineers 1 C Vout Vin R = 1/(1 + sCR) Vin R The negative sign is the only difference between this circuit 2 and the simple RC C R circuit above - Vin Vout 0V = -1/(1 + sCR) + Vin 3 Exactly the same formula used above C Vin R - Vout 0V = -1/(1 + sCR) + Vin 4 IN -T/(CR) Delay (T) OUT T = delay time Digital Filters for Analogue Engineers by Andy Britton, June 2008 Page 1 of 14 Introduction If I’d read this document years ago it would have saved me countless hours of agony and confusion understanding what should be conceptually very simple. My biggest discontent with topical literature is that they never cleanly relate digital filters to “real world” analogue filters. This article/document sets out to: - • Describe the function of a very basic RC low pass analogue filter • Convert this filter to an analogue circuit that is digitally realizable • Explain how analogue functions are converted to digital functions • Develop a basic 1st order digital low-pass filter • Develop a 2nd order filter with independent Q and frequency control parameters • Show how digital filters can be proven/designed using a spreadsheet such as excel • Demonstrate digital filters by showing excel graphs of signals • Explain the limitations of use of digital filters i.e. when they become unstable • Show how these filters fit in to the general theory (yawn!) Before the end of this article you should hopefully find something useful to guide you on future designs and allow you to successfully implement a digital filter. -
Simulating the Directivity Behavior of Loudspeakers with Crossover Filters
Audio Engineering Society Convention Paper Presented at the 123rd Convention 2007 October 5–8 New York, NY, USA The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have been peer reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the Journal of the Audio Engineering Society. Simulating the Directivity Behavior of Loudspeakers with Crossover Filters Stefan Feistel1, Wolfgang Ahnert2, and Charles Hughes3, and Bruce Olson4 1 Ahnert Feistel Media Group, Arkonastr.45-49, 13189 Berlin, Germany [email protected] 2 Ahnert Feistel Media Group, Arkonastr.45-49, 13189 Berlin, Germany [email protected] 3 Excelsior Audio Design & Services, LLC, Gastonia, NC, USA [email protected] 4 Olson Sound Design, Brooklyn Park, MN, USA [email protected] ABSTRACT In previous publications the description of loudspeakers was introduced based on high-resolution data, comprising most importantly of complex directivity data for individual drivers as well as of crossover filters. In this work it is presented how this concept can be exploited to predict the directivity balloon of multi-way loudspeakers depending on the chosen crossover filters. -
Designing Filters Using the Digital Filter Design Toolkit Rahman Jamal, Mike Cerna, John Hanks
NATIONAL Application Note 097 INSTRUMENTS® The Software is the Instrument ® Designing Filters Using the Digital Filter Design Toolkit Rahman Jamal, Mike Cerna, John Hanks Introduction The importance of digital filters is well established. Digital filters, and more generally digital signal processing algorithms, are classified as discrete-time systems. They are commonly implemented on a general purpose computer or on a dedicated digital signal processing (DSP) chip. Due to their well-known advantages, digital filters are often replacing classical analog filters. In this application note, we introduce a new digital filter design and analysis tool implemented in LabVIEW with which developers can graphically design classical IIR and FIR filters, interactively review filter responses, and save filter coefficients. In addition, real-world filter testing can be performed within the digital filter design application using a plug-in data acquisition board. Digital Filter Design Process Digital filters are used in a wide variety of signal processing applications, such as spectrum analysis, digital image processing, and pattern recognition. Digital filters eliminate a number of problems associated with their classical analog counterparts and thus are preferably used in place of analog filters. Digital filters belong to the class of discrete-time LTI (linear time invariant) systems, which are characterized by the properties of causality, recursibility, and stability. They can be characterized in the time domain by their unit-impulse response, and in the transform domain by their transfer function. Obviously, the unit-impulse response sequence of a causal LTI system could be of either finite or infinite duration and this property determines their classification into either finite impulse response (FIR) or infinite impulse response (IIR) system. -
Control Theory
Control theory S. Simrock DESY, Hamburg, Germany Abstract In engineering and mathematics, control theory deals with the behaviour of dynamical systems. The desired output of a system is called the reference. When one or more output variables of a system need to follow a certain ref- erence over time, a controller manipulates the inputs to a system to obtain the desired effect on the output of the system. Rapid advances in digital system technology have radically altered the control design options. It has become routinely practicable to design very complicated digital controllers and to carry out the extensive calculations required for their design. These advances in im- plementation and design capability can be obtained at low cost because of the widespread availability of inexpensive and powerful digital processing plat- forms and high-speed analog IO devices. 1 Introduction The emphasis of this tutorial on control theory is on the design of digital controls to achieve good dy- namic response and small errors while using signals that are sampled in time and quantized in amplitude. Both transform (classical control) and state-space (modern control) methods are described and applied to illustrative examples. The transform methods emphasized are the root-locus method of Evans and fre- quency response. The state-space methods developed are the technique of pole assignment augmented by an estimator (observer) and optimal quadratic-loss control. The optimal control problems use the steady-state constant gain solution. Other topics covered are system identification and non-linear control. System identification is a general term to describe mathematical tools and algorithms that build dynamical models from measured data. -
Finite Impulse Response (FIR) Digital Filters (II) Ideal Impulse Response Design Examples Yogananda Isukapalli
Finite Impulse Response (FIR) Digital Filters (II) Ideal Impulse Response Design Examples Yogananda Isukapalli 1 • FIR Filter Design Problem Given H(z) or H(ejw), find filter coefficients {b0, b1, b2, ….. bN-1} which are equal to {h0, h1, h2, ….hN-1} in the case of FIR filters. 1 z-1 z-1 z-1 z-1 x[n] h0 h1 h2 h3 hN-2 hN-1 1 1 1 1 1 y[n] Consider a general (infinite impulse response) definition: ¥ H (z) = å h[n] z-n n=-¥ 2 From complex variable theory, the inverse transform is: 1 n -1 h[n] = ò H (z)z dz 2pj C Where C is a counterclockwise closed contour in the region of convergence of H(z) and encircling the origin of the z-plane • Evaluating H(z) on the unit circle ( z = ejw ) : ¥ H (e jw ) = åh[n]e- jnw n=-¥ 1 p h[n] = ò H (e jw )e jnwdw where dz = jejw dw 2p -p 3 • Design of an ideal low pass FIR digital filter H(ejw) K -2p -p -wc 0 wc p 2p w Find ideal low pass impulse response {h[n]} 1 p h [n] = H (e jw )e jnwdw LP ò 2p -p 1 wc = Ke jnwdw 2p ò -wc Hence K h [n] = sin(nw ) n = 0, ±1, ±2, …. ±¥ LP np c 4 Let K = 1, wc = p/4, n = 0, ±1, …, ±10 The impulse response coefficients are n = 0, h[n] = 0.25 n = ±4, h[n] = 0 = ±1, = 0.225 = ±5, = -0.043 = ±2, = 0.159 = ±6, = -0.053 = ±3, = 0.075 = ±7, = -0.032 n = ±8, h[n] = 0 = ±9, = 0.025 = ±10, = 0.032 5 Non Causal FIR Impulse Response We can make it causal if we shift hLP[n] by 10 units to the right: K h [n] = sin((n -10)w ) LP (n -10)p c n = 0, 1, 2, …. -
Digital Signal Processing Module 3 Z-Transforms Objective
Digital Signal Processing Module 3 Z-Transforms Objective: 1. To have a review of z-transforms. 2. Solving LCCDE using Z-transforms. Introduction: The z-transform is a useful tool in the analysis of discrete-time signals and systems and is the discrete-time counterpart of the Laplace transform for continuous-time signals and systems. The z-transform may be used to solve constant coefficient difference equations, evaluate the response of a linear time-invariant system to a given input, and design linear filters. Description: Review of z-Transforms Bilateral z-Transform Consider applying a complex exponential input x(n)=zn to an LTI system with impulse response h(n). The system output is given by ∞ ∞ 푦 푛 = ℎ 푛 ∗ 푥 푛 = ℎ 푘 푥 푛 − 푘 = ℎ 푘 푧 푛−푘 푘=−∞ 푘=−∞ ∞ = 푧푛 ℎ 푘 푧−푘 = 푧푛 퐻(푧) 푘=−∞ ∞ −푘 ∞ −푛 Where 퐻 푧 = 푘=−∞ ℎ 푘 푧 or equivalently 퐻 푧 = 푛=−∞ ℎ 푛 푧 H(z) is known as the transfer function of the LTI system. We know that a signal for which the system output is a constant times, the input is referred to as an eigen function of the system and the amplitude factor is referred to as the system’s eigen value. Hence, we identify zn as an eigen function of the LTI system and H(z) is referred to as the Bilateral z-transform or simply z-transform of the impulse response h(n). 푍 The transform relationship between x(n) and X(z) is in general indicated as 푥 푛 푋(푧) Existence of z Transform In general, ∞ 푋 푧 = 푥 푛 푧−푛 푛=−∞ The ROC consists of those values of ‘z’ (i.e., those points in the z-plane) for which X(z) converges i.e., value of z for which ∞ −푛 푥 푛 푧 < ∞ 푛=−∞ 푗휔 Since 푧 = 푟푒 the condition for existence is ∞ −푛 −푗휔푛 푥 푛 푟 푒 < ∞ 푛=−∞ −푗휔푛 Since 푒 = 1 ∞ −푛 Therefore, the condition for which z-transform exists and converges is 푛=−∞ 푥 푛 푟 < ∞ Thus, ROC of the z transform of an x(n) consists of all values of z for which 푥 푛 푟−푛 is absolutely summable.