<<

Lecture 4 and Block Diagram Approach to Modeling Dynamic Systems

System Analysis Spring 2015 1 The Concept of Transfer Function

Consider the linear time-invariant system defined by the following differential

equation : ()nn ( 1) ay01 ay ann 1 y ay ()mm ( 1) bu01 bu  bmm 1 u b u() n  m

Where y is the output of the system, and x is the input. And the of the equation is,

nn1 ()()aS01 aS ann 1 S a Y s mm1 ()()bS01 bS bmm 1 S b U s

System Analysis Spring 2015 2 The Concept of Transfer Function

The ratio of the Laplace transform of the output (response function) to the Laplace Transform of the input (driving function) under the assumption that all initial conditions are Zero.

mm1 Ys() bS01 bS  bmm 1 S  b Transfer Function G() s nn1 Us() aS01 aS  ann 1 S  a

Ps() ()nm Qs()

System Analysis Spring 2015 3 Comments on Transfer Function

1. A mathematical model.

2. Property of system itself. - Independent of the input function and initial condition - Denominator of the transfer function is the characteristic polynomial, - TF tells us something about the intrinsic behavior of the model.

3. ODE equivalence - TF is equivalent to the ODE. We can reconstruct ODE from TF.

4. One TF for one input-output pair. : Single Input Single Output system.

- If multiple inputs affect Obtain TF for each input x  6207()3()xx  f t g t

-If multiple outputs xxy  32 yy  xut 3()

System Analysis Spring 2015 4 Comments on Transfer Function

5. Analytic method and Experimental method

u(t) y(t) Y(s) system G(s)  U(s) U(s) Y(s) L.T.I

6. Different systems may have identical T.F

ex) uT J y   Y  1 J  b  T    U T Js  b

Y R 1 Electrical System   U Ls  R L (if b=1, J=L/R) s  1 R

System Analysis Spring 2015 5 Comments on Transfer Function

A Ys() Gsus () ()

Impulse Input t t

The Strength of an impulsive input : At

The Dirac Delta function  () t : An Impulsive function with a strength aquals to unity 0   ()tdt 1 0 [()]1 t  ut() () t Ys() Gs () Transfer Function = unit us() 1

System Analysis Spring 2015 6 Collision, Impulse Response and Transfer Function

Impulse: large force in a very short time

Newton’s law of motion dv d F ma m () mv  F dt d () mv dt dt

The impulse-momentum principle dv d F ma m () mv  F dt d () mv dt dt

tv22 Fdt d() mv mv mv  21 tv11

System Analysis Spring 2015 7 The law of conservation of momentum

And if There is no input force, then we get

d()0, mv mv const . The law of conservation of momentum

And also,

I  const. The law of conservation of angular momentum

System Analysis Spring 2015 8 Inelastic collision

xt() m1 k m1 Becomes embedded in mass m 2 after collision m2 v1 No external force, conservation of momentum

t 2 m vv(0 ) 1 Fdt()(0)(0)0, m12 m v  mv 11  1  mm12 t1

The equation of motion for the combined mass

m1 ()0,(0)(0)mmxkxv12 x  v 1 mm12 1 k xt() v (0) sin( wtnn ), w  wmm12

System Analysis Spring 2015 9 Elastic collision

xt() Perfectly elastic collision m 1 k m1 f ()t k m m2 2 v1 v v v2  0 3 4

No external force : conservation of momentum

mv11 m 2 v 2 mv13 mv 24

Perfectly elastic collision : No energy loss, kinetic energy is conserved 111 mv22 mv mv 2 22211 13 2 4

mm12 2 m 1 vvvv3141,  mm12 mm 12

System Analysis Spring 2015 10 The law of conservation of momentum

0 mm m f ()tdt mv mv m v  v m12  1 v Mass 1 :  13 11 1 3 1 1 1 0 mm12

2m2  mv11 mm12 0 2mm ftdt()  mv mv 12v Mass m 2 :  24 2 2 1 0 mm12 0  At () A Linear impulse 0 2m x(0 ) 0,vx (0  ) (0  ) 1 v xt() mxt2() kx 0  1 We can solve mm12

2 Or LT: msXs2 ( ( ) sx (0) x (0)) kXs ( )  0 2mm 12 xx(0 ) (0 ) 0 mxt21() kx A () t  v () t mm12

2 2mm12 msXs21(())() kXs v mm12

System Analysis Spring 2015 11 Block Diagram

Input Output Signal

Transfer Function

Summing Point Pick Off Point

System Analysis Spring 2015 12 Series(Cascade) Connection

Parallel Connection

System Analysis Spring 2015 13 Associative Rule

Commutative Rule

System Analysis Spring 2015 14 Closed Loop Transfer Function

Ys() GsEs () () Gs ()[() Rs HsYs () ()] mx bx   kx h

[1GsHs () ()]() Ys GsRs () ()

Ys() Gs() Transfer Function  1 Rs() 1 G1 () sHs ()

System Analysis Spring 2015 15 Closed Loop Transfer Function

ex) Fs() 1 1 1 Xs()  m  s s

b   m

k m

1 kb Fs() Xs () sXs ()  sXs2 () mmm Fs() kXs () bsXs ()  msXs2 () (ms22 bsXs ) () Fs () kXs (), ( ms  bskXs ) () Fs ()

Xs() 1   Transfer Function Fs() ms2  bsk

System Analysis Spring 2015 16 System  Schematic  Block Diagram Transfer Functions

C(s) G(s) U(s) Y(s)

C(s)G(s)H (s) H1(s) Y(s)= 1 U(s) 1+C(s)G(s)H2(s)

H2(s)

System Analysis Spring 2015 17 Example

2 ex) d y dy du mb2    kyu()  dt dt dt d2 y dy du or m b ky b  ku dt2 dt dt

Assume the initial condition is 0,

(ms2  bs k ) Y () s  ( bs  k ) U () s Ys() bsk Transfer Function  Us() ms2  bsk

If, m=10kg, b=20N-s/m, k=100N/m

Ys( ) 20 s 100 2 s 10 1 ,()Us  Us( ) 10 s22 20 s 100 s  2 s 10 s 2101ss 210 Ys() ss232210 sss  2  10 s

System Analysis Spring 2015 18 Impulse response

>>num=[8]; >>den=[50 100 2500]; >>sys=tf(num, den) >> impulse(sys) >> grid >>title(‘ ‘) >>xlabel(‘ ‘) >>ylabel(‘ ‘)

System Analysis Spring 2015 19 Transient Response Analysis with MATLAB

Ys( ) 20 s 100 2 s 10 1  ,()Us Us( ) 10 s22 20 s 100 s  2 s 10 s 2101ss 210 Ys() ss232210 sss  2  10 s Unit Step Response 1.5

t=0:0.01:8; num=[2 10]; den=[1 2 10]; 1 sys=tf(num,den); step(sys,t) grid

title('Unit Step Response','Fontsize',15') Output 0.5 xlabel('t(sec)','Fontsize',15') ylabel('Output','Fontsize',15')

0 0 1 2 3 4 5 6 7 8

t (sec) System Analysis Spring 2015 20 Impulse Input ex) M  50kg ,mk 0.01g ,bNsmkNmv 100 / ,  2500 / , (0  ) 800 ms /

1 50.01 0.01 800 7.9984 Xs() 50.01ss22 100 2500 50.02 50.01 ss  100 2500

Impulse Response of System 0.02 num=[7.9984]; 0.015 den=[50.01 100 2500]; 0.01 sys=tf(num,den); impulse(sys) 0.005 grid 0

title('Impulse Response of System','Fontsize',15') x(t)Response -0.005 xlabel('t(sec)','Fontsize',15') ylabel('Response x(t)','Fontsize',15') -0.01

-0.015 0 1 2 3 4 5 6

t (sec)

System Analysis Spring 2015 21 Ramp Response

Ys() 2 s 10  M=10kg, b=20Ns/m, k=100N/m Us() s2  2 s 10 u(): t Unit ramp input , u  t ,  1

Unit-Ramp Response num=[2 10]; 4.5 den=[1 2 10]; 4 sys=tf(num,den); t=0:0.01:4; 3.5 u=t; 3 lsim(sys,u,t) 2.5 grid title('Unit-Ramp Response','Fontsize',15) 2 xlabel('t') 1.5 ylabel('Output y(t) and Input u(t)=t','Fontsize',15) 1 text(0.8,0.4,'y','Fontsize',12) u y Output y(t) and Input u(t)=t text(0.4,0.8,'u','Fontsize',12) 0.5 y legend('y') 0 0 0.5 1 1.5 2 2.5 3 3.5 4 t (sec)

System Analysis Spring 2015 22 Partial Fraction Expansion with MATLAB

Bs() num b (0) Smm b (2) S1  bm ( )  As() den a (0) Snn a (2) S1  an () num[ b (0) b (1) b ( m )], den [ a (0) a (1) a ( n )]

[r, p, k] = residue (num, den)

>>num=[1 8 16 9 6]; B()srrrn (1) (2) () ks()   >>den=[1 6 11 6]; A()sspspspn (1) (2)  () >>[r,p,k]=residue(num,den) r= Bs() s43 8 s 16 s 2 9 s 6 -6.0000 ex)  As() s32 6 s 11 s 6 -4.0000 3.0000 p= -3.0000 643 -2.0000 s 2   -1.0000 sss 321 k= 1 2

System Analysis Spring 2015 23 End of lecture 4

System Analysis Spring 2015 24