Domain Theory for Modeling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Directed Sets and Topological Spaces Definable in O-Minimal Structures
Directed sets and topological spaces definable in o-minimal structures. Pablo And´ujarGuerrero∗ Margaret E. M. Thomas ∗ Erik Walsbergy 2010 Mathematics Subject Classification. 03C64 (Primary), 54A20, 54A05, 54D30 (Secondary). Key words. o-minimality, directed sets, definable topological spaces. Abstract We study directed sets definable in o-minimal structures, show- ing that in expansions of ordered fields these admit cofinal definable curves, as well as a suitable analogue in expansions of ordered groups, and furthermore that no analogue holds in full generality. We use the theory of tame pairs to extend the results in the field case to definable families of sets with the finite intersection property. We then apply our results to the study of definable topologies. We prove that all de- finable topological spaces display properties akin to first countability, and give several characterizations of a notion of definable compactness due to Peterzil and Steinhorn [PS99] generalized to this setting. 1 Introduction The study of objects definable in o-minimal structures is motivated by the notion that o-minimality provides a rich but \tame" setting for the theories of said objects. In this paper we study directed sets definable in o-minimal structures, focusing on expansions of groups and fields. By \directed set" we mean a preordered set in which every finite subset has a lower (if downward ∗Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, U.S.A. E-mail addresses: [email protected] (And´ujarGuer- rero), [email protected] (Thomas) yDepartment of Mathematics, Statistics, and Computer Science, Department of Math- ematics, University of California, Irvine, 340 Rowland Hall (Bldg.# 400), Irvine, CA 92697-3875, U.S.A. -
Scott Spaces and the Dcpo Category
SCOTT SPACES AND THE DCPO CATEGORY JORDAN BROWN Abstract. Directed-complete partial orders (dcpo’s) arise often in the study of λ-calculus. Here we investigate certain properties of dcpo’s and the Scott spaces they induce. We introduce a new construction which allows for the canonical extension of a partial order to a dcpo and give a proof that the dcpo introduced by Zhao, Xi, and Chen is well-filtered. Contents 1. Introduction 1 2. General Definitions and the Finite Case 2 3. Connectedness of Scott Spaces 5 4. The Categorical Structure of DCPO 6 5. Suprema and the Waybelow Relation 7 6. Hofmann-Mislove Theorem 9 7. Ordinal-Based DCPOs 11 8. Acknowledgments 13 References 13 1. Introduction Directed-complete partially ordered sets (dcpo’s) often arise in the study of λ-calculus. Namely, they are often used to construct models for λ theories. There are several versions of the λ-calculus, all of which attempt to describe the ‘computable’ functions. The first robust descriptions of λ-calculus appeared around the same time as the definition of Turing machines, and Turing’s paper introducing computing machines includes a proof that his computable functions are precisely the λ-definable ones [5] [8]. Though we do not address the λ-calculus directly here, an exposition of certain λ theories and the construction of Scott space models for them can be found in [1]. In these models, computable functions correspond to continuous functions with respect to the Scott topology. It is thus with an eye to the application of topological tools in the study of computability that we investigate the Scott topology. -
A Guide to Topology
i i “topguide” — 2010/12/8 — 17:36 — page i — #1 i i A Guide to Topology i i i i i i “topguide” — 2011/2/15 — 16:42 — page ii — #2 i i c 2009 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 2009929077 Print Edition ISBN 978-0-88385-346-7 Electronic Edition ISBN 978-0-88385-917-9 Printed in the United States of America Current Printing (last digit): 10987654321 i i i i i i “topguide” — 2010/12/8 — 17:36 — page iii — #3 i i The Dolciani Mathematical Expositions NUMBER FORTY MAA Guides # 4 A Guide to Topology Steven G. Krantz Washington University, St. Louis ® Published and Distributed by The Mathematical Association of America i i i i i i “topguide” — 2010/12/8 — 17:36 — page iv — #4 i i DOLCIANI MATHEMATICAL EXPOSITIONS Committee on Books Paul Zorn, Chair Dolciani Mathematical Expositions Editorial Board Underwood Dudley, Editor Jeremy S. Case Rosalie A. Dance Tevian Dray Patricia B. Humphrey Virginia E. Knight Mark A. Peterson Jonathan Rogness Thomas Q. Sibley Joe Alyn Stickles i i i i i i “topguide” — 2010/12/8 — 17:36 — page v — #5 i i The DOLCIANI MATHEMATICAL EXPOSITIONS series of the Mathematical Association of America was established through a generous gift to the Association from Mary P. Dolciani, Professor of Mathematics at Hunter College of the City Uni- versity of New York. In making the gift, Professor Dolciani, herself an exceptionally talented and successfulexpositor of mathematics, had the purpose of furthering the ideal of excellence in mathematical exposition. -
Categories and Types for Axiomatic Domain Theory Adam Eppendahl
Department of Computer Science Research Report No. RR-03-05 ISSN 1470-5559 December 2003 Categories and Types for Axiomatic Domain Theory Adam Eppendahl 1 Categories and Types for Axiomatic Domain Theory Adam Eppendahl Submitted for the degree of Doctor of Philosophy University of London 2003 2 3 Categories and Types for Axiomatic Domain Theory Adam Eppendahl Abstract Domain Theory provides a denotational semantics for programming languages and calculi con- taining fixed point combinators and other so-called paradoxical combinators. This dissertation presents results in the category theory and type theory of Axiomatic Domain Theory. Prompted by the adjunctions of Domain Theory, we extend Benton’s linear/nonlinear dual- sequent calculus to include recursive linear types and define a class of models by adding Freyd’s notion of algebraic compactness to the monoidal adjunctions that model Benton’s calculus. We observe that algebraic compactness is better behaved in the context of categories with structural actions than in the usual context of enriched categories. We establish a theory of structural algebraic compactness that allows us to describe our models without reference to en- richment. We develop a 2-categorical perspective on structural actions, including a presentation of monoidal categories that leads directly to Kelly’s reduced coherence conditions. We observe that Benton’s adjoint type constructors can be treated individually, semantically as well as syntactically, using free representations of distributors. We type various of fixed point combinators using recursive types and function types, which we consider the core types of such calculi, together with the adjoint types. We use the idioms of these typings, which include oblique function spaces, to give a translation of the core of Levy’s Call-By-Push-Value. -
Slides by Akihisa
Complete non-orders and fixed points Akihisa Yamada1, Jérémy Dubut1,2 1 National Institute of Informatics, Tokyo, Japan 2 Japanese-French Laboratory for Informatics, Tokyo, Japan Supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST Introduction • Interactive Theorem Proving is appreciated for reliability • But it's also engineering tool for mathematics (esp. Isabelle/jEdit) • refactoring proofs and claims • sledgehammer • quickcheck/nitpick(/nunchaku) • We develop an Isabelle library of order theory (as a case study) ⇒ we could generalize many known results, like: • completeness conditions: duality and relationships • Knaster-Tarski fixed-point theorem • Kleene's fixed-point theorem Order A binary relation ⊑ • reflexive ⟺ � ⊑ � • transitive ⟺ � ⊑ � and � ⊑ � implies � ⊑ � • antisymmetric ⟺ � ⊑ � and � ⊑ � implies � = � • partial order ⟺ reflexive + transitive + antisymmetric Order A binary relation ⊑ locale less_eq_syntax = fixes less_eq :: 'a ⇒ 'a ⇒ bool (infix "⊑" 50) • reflexive ⟺ � ⊑ � locale reflexive = ... assumes "x ⊑ x" • transitive ⟺ � ⊑ � and � ⊑ � implies � ⊑ � locale transitive = ... assumes "x ⊑ y ⟹ y ⊑ z ⟹ x ⊑ z" • antisymmetric ⟺ � ⊑ � and � ⊑ � implies � = � locale antisymmetric = ... assumes "x ⊑ y ⟹ y ⊑ x ⟹ x = y" • partial order ⟺ reflexive + transitive + antisymmetric locale partial_order = reflexive + transitive + antisymmetric Quasi-order A binary relation ⊑ locale less_eq_syntax = fixes less_eq :: 'a ⇒ 'a ⇒ bool (infix "⊑" 50) • reflexive ⟺ � ⊑ � locale reflexive = ... assumes -
Topology, Domain Theory and Theoretical Computer Science
Draft URL httpwwwmathtulaneedumwmtopandcspsgz pages Top ology Domain Theory and Theoretical Computer Science Michael W Mislove Department of Mathematics Tulane University New Orleans LA Abstract In this pap er we survey the use of ordertheoretic top ology in theoretical computer science with an emphasis on applications of domain theory Our fo cus is on the uses of ordertheoretic top ology in programming language semantics and on problems of p otential interest to top ologists that stem from concerns that semantics generates Keywords Domain theory Scott top ology p ower domains untyp ed lamb da calculus Subject Classication BFBNQ Intro duction Top ology has proved to b e an essential to ol for certain asp ects of theoretical computer science Conversely the problems that arise in the computational setting have provided new and interesting stimuli for top ology These prob lems also have increased the interaction b etween top ology and related areas of mathematics such as order theory and top ological algebra In this pap er we outline some of these interactions b etween top ology and theoretical computer science fo cusing on those asp ects that have b een most useful to one particular area of theoretical computation denotational semantics This pap er b egan with the goal of highlighting how the interaction of order and top ology plays a fundamental role in programming semantics and related areas It also started with the viewp oint that there are many purely top o logical notions that are useful in theoretical computer science that -
Limits Commutative Algebra May 11 2020 1. Direct Limits Definition 1
Limits Commutative Algebra May 11 2020 1. Direct Limits Definition 1: A directed set I is a set with a partial order ≤ such that for every i; j 2 I there is k 2 I such that i ≤ k and j ≤ k. Let R be a ring. A directed system of R-modules indexed by I is a collection of R modules fMi j i 2 Ig with a R module homomorphisms µi;j : Mi ! Mj for each pair i; j 2 I where i ≤ j, such that (i) for any i 2 I, µi;i = IdMi and (ii) for any i ≤ j ≤ k in I, µi;j ◦ µj;k = µi;k. We shall denote a directed system by a tuple (Mi; µi;j). The direct limit of a directed system is defined using a universal property. It exists and is unique up to a unique isomorphism. Theorem 2 (Direct limits). Let fMi j i 2 Ig be a directed system of R modules then there exists an R module M with the following properties: (i) There are R module homomorphisms µi : Mi ! M for each i 2 I, satisfying µi = µj ◦ µi;j whenever i < j. (ii) If there is an R module N such that there are R module homomorphisms νi : Mi ! N for each i and νi = νj ◦µi;j whenever i < j; then there exists a unique R module homomorphism ν : M ! N, such that νi = ν ◦ µi. The module M is unique in the sense that if there is any other R module M 0 satisfying properties (i) and (ii) then there is a unique R module isomorphism µ0 : M ! M 0. -
Right Ideals of a Ring and Sublanguages of Science
RIGHT IDEALS OF A RING AND SUBLANGUAGES OF SCIENCE Javier Arias Navarro Ph.D. In General Linguistics and Spanish Language http://www.javierarias.info/ Abstract Among Zellig Harris’s numerous contributions to linguistics his theory of the sublanguages of science probably ranks among the most underrated. However, not only has this theory led to some exhaustive and meaningful applications in the study of the grammar of immunology language and its changes over time, but it also illustrates the nature of mathematical relations between chunks or subsets of a grammar and the language as a whole. This becomes most clear when dealing with the connection between metalanguage and language, as well as when reflecting on operators. This paper tries to justify the claim that the sublanguages of science stand in a particular algebraic relation to the rest of the language they are embedded in, namely, that of right ideals in a ring. Keywords: Zellig Sabbetai Harris, Information Structure of Language, Sublanguages of Science, Ideal Numbers, Ernst Kummer, Ideals, Richard Dedekind, Ring Theory, Right Ideals, Emmy Noether, Order Theory, Marshall Harvey Stone. §1. Preliminary Word In recent work (Arias 2015)1 a line of research has been outlined in which the basic tenets underpinning the algebraic treatment of language are explored. The claim was there made that the concept of ideal in a ring could account for the structure of so- called sublanguages of science in a very precise way. The present text is based on that work, by exploring in some detail the consequences of such statement. §2. Introduction Zellig Harris (1909-1992) contributions to the field of linguistics were manifold and in many respects of utmost significance. -
Directed Sets and Cofinal Types by Stevo Todorcevic
transactions of the american mathematical society Volume 290, Number 2, August 1985 DIRECTED SETS AND COFINAL TYPES BY STEVO TODORCEVIC Abstract. We show that 1, w, ax, u x ux and ["iF" are the only cofinal types of directed sets of size S,, but that there exist many cofinal types of directed sets of size continuum. A partially ordered set D is directed if every two elements of D have an upper bound in D. In this note we consider some basic problems concerning directed sets which have their origin in the theory of Moore-Smith convergence in topology [12, 3, 19, 9]. One such problem is to determine "all essential kind of directed sets" needed for defining the closure operator in a given class of spaces [3, p. 47]. Concerning this problem, the following important notion was introduced by J. Tukey [19]. Two directed sets D and E are cofinally similar if there is a partially ordered set C in which both can be embedded as cofinal subsets. He showed that this is an equivalence relation and that D and E are cofinally similar iff there is a convergent map from D into E and also a convergent map from E into D. The equivalence classes of this relation are called cofinal types. This concept has been extensively studied since then by various authors [4, 13, 7, 8]. Already, from the first introduc- tion of this concept, it has been known that 1, w, ccx, w X cox and [w1]<" represent different cofinal types of directed sets of size < Kls but no more than five such types were known. -
Mathematical Tools MPRI 2–6: Abstract Interpretation, Application to Verification and Static Analysis
Mathematical Tools MPRI 2{6: Abstract Interpretation, application to verification and static analysis Antoine Min´e CNRS, Ecole´ normale sup´erieure course 1, 2012{2013 course 1, 2012{2013 Mathematical Tools Antoine Min´e p. 1 / 44 Order theory course 1, 2012{2013 Mathematical Tools Antoine Min´e p. 2 / 44 Partial orders Partial orders course 1, 2012{2013 Mathematical Tools Antoine Min´e p. 3 / 44 Partial orders Partial orders Given a set X , a relation v2 X × X is a partial order if it is: 1 reflexive: 8x 2 X ; x v x 2 antisymmetric: 8x; y 2 X ; x v y ^ y v x =) x = y 3 transitive: 8x; y; z 2 X ; x v y ^ y v z =) x v z. (X ; v) is a poset (partially ordered set). If we drop antisymmetry, we have a preorder instead. course 1, 2012{2013 Mathematical Tools Antoine Min´e p. 4 / 44 Partial orders Examples of posets (Z; ≤) is a poset (in fact, completely ordered) (P(X ); ⊆) is a poset (not completely ordered) (S; =) is a poset for any S course 1, 2012{2013 Mathematical Tools Antoine Min´e p. 5 / 44 Partial orders Examples of posets (cont.) Given by a Hasse diagram, e.g.: g e f g v g c d f v f ; g e v e; g b d v d; f ; g c v c; e; f ; g b v b; c; d; e; f ; g a a v a; b; c; d; e; f ; g course 1, 2012{2013 Mathematical Tools Antoine Min´e p. -
The Poset of Closure Systems on an Infinite Poset: Detachability and Semimodularity Christian Ronse
The poset of closure systems on an infinite poset: Detachability and semimodularity Christian Ronse To cite this version: Christian Ronse. The poset of closure systems on an infinite poset: Detachability and semimodularity. Portugaliae Mathematica, European Mathematical Society Publishing House, 2010, 67 (4), pp.437-452. 10.4171/PM/1872. hal-02882874 HAL Id: hal-02882874 https://hal.archives-ouvertes.fr/hal-02882874 Submitted on 31 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Portugal. Math. (N.S.) Portugaliae Mathematica Vol. xx, Fasc. , 200x, xxx–xxx c European Mathematical Society The poset of closure systems on an infinite poset: detachability and semimodularity Christian Ronse Abstract. Closure operators on a poset can be characterized by the corresponding clo- sure systems. It is known that in a directed complete partial order (DCPO), in particular in any finite poset, the collection of all closure systems is closed under arbitrary inter- section and has a “detachability” or “anti-matroid” property, which implies that the collection of all closure systems is a lower semimodular complete lattice (and dually, the closure operators form an upper semimodular complete lattice). After reviewing the history of the problem, we generalize these results to the case of an infinite poset where closure systems do not necessarily constitute a complete lattice; thus the notions of lower semimodularity and detachability are extended accordingly. -
Programming Language Semantics a Rewriting Approach
Programming Language Semantics A Rewriting Approach Grigore Ros, u University of Illinois at Urbana-Champaign Chapter 2 Background and Preliminaries 15 2.6 Complete Partial Orders and the Fixed-Point Theorem This section introduces a fixed-point theorem for complete partial orders. Our main use of this theorem is to give denotational semantics to iterative (in Section 3.4) and to recursive (in Section 4.8) language constructs. Complete partial orders with bottom elements are at the core of both domain theory and denotational semantics, often identified with the notion of “domain” itself. 2.6.1 Posets, Upper Bounds and Least Upper Bounds Here we recall basic notions of partial and total orders, such as upper bounds and least upper bounds, and discuss several examples and counter-examples. Definition 14. A partial order, or a poset (from partial order set) (D, ) consists of a set D and a binary v relation on D, written as an infix operation, which is v reflexive, that is, x x for any x D; • v ∈ transitive, that is, for any x, y, z D, x y and y z imply x z; and • ∈ v v v anti-symmetric, that is, if x y and y x for some x, y D then x = y. • v v ∈ A partial order (D, ) is called a total order when x y or y x for any x, y D. v v v ∈ Here are some examples of partial or total orders: ( (S ), ) is a partial order, where (S ) is the powerset of a set S , that is, the set of subsets of S .