Topology, Domain Theory and Theoretical Computer Science

Total Page:16

File Type:pdf, Size:1020Kb

Topology, Domain Theory and Theoretical Computer Science Draft URL httpwwwmathtulaneedumwmtopandcspsgz pages Top ology Domain Theory and Theoretical Computer Science Michael W Mislove Department of Mathematics Tulane University New Orleans LA Abstract In this pap er we survey the use of ordertheoretic top ology in theoretical computer science with an emphasis on applications of domain theory Our fo cus is on the uses of ordertheoretic top ology in programming language semantics and on problems of p otential interest to top ologists that stem from concerns that semantics generates Keywords Domain theory Scott top ology p ower domains untyp ed lamb da calculus Subject Classication BFBNQ Intro duction Top ology has proved to b e an essential to ol for certain asp ects of theoretical computer science Conversely the problems that arise in the computational setting have provided new and interesting stimuli for top ology These prob lems also have increased the interaction b etween top ology and related areas of mathematics such as order theory and top ological algebra In this pap er we outline some of these interactions b etween top ology and theoretical computer science fo cusing on those asp ects that have b een most useful to one particular area of theoretical computation denotational semantics This pap er b egan with the goal of highlighting how the interaction of order and top ology plays a fundamental role in programming semantics and related areas It also started with the viewp oint that there are many purely top o logical notions that are useful in theoretical computer science that could b e highlighted and which could attract the attention of top ologists to this area And to b e sure there are many interesting and app ealing applications of pure top ology certainly in the form of metric space arguments that have b een made to theoretical computer science But as the work evolved it b e came clear that the main applications of top ology to the area of programming 1 This work is partially supp orted by the US Oce of Naval Research Preprint submitted to Elsevier Preprint May Mislove semantics involve not just top ology alone but also involve order in an essen tial way And this approach places domain theory at center stage since it is the area that has combined order and top ology for application to theoretical computation most eectively The goal now is to show why this is so and why it is ordertheoretic top ology that has had such a large impact on theoretical computer science In particular we highlight those asp ects of domain theory and its relationship to top ology that have proved to b e of greatest utility and imp ortance At the same time we do cument the advantages domain theory enjoys in this area of application and the standard that domain theory has set in providing solutions to the problems this area of application p oses Top ology versus Order Lets b egin with a simple but illustrative example Example Let N f g denote the natural numb ers and let N N denote the set of partial functions from N to itself Consider the family of partial functions f N N dened by n n m if m n f m n undened otherwise We would like to assert that the functions ff g converge to the function n nN FAC N N by FACm m m N To nd a suitable top ology on N N to express this convergence we rst identify N N with a space of total functions Let b e an element not in N and dene N N fg We interpret as undened and we dene an injection n f x if f x is dened f f N N N N by f x otherwise Then it is clear that ff j f N N g is precisely the set of selfmaps of N that are strict ie those that take to itself If we endow N with the discrete top ology then all the functions in N N are continuous Prop osition In the compactopen topology on N N the sequence ff g converges to FAC n nN Pro of Since N is discrete the compactop en top ology on N N is the same as the top ology of p ointwise convergence so the result is clear 2 We also note that by endowing N with the discrete metric and giving N N the Frechet metric the Prop osition remains true for the metric top ology on N N But even though we have convergence of ff g to FAC after suitable n nN identication with ff g something is lost in this assertion Namely the n nN functions ff g represent increasing approximations to FAC indeed as n n nN increases so do es the amount of information we have ab out the limit function FAC In fact there is a natural order on N N that makes this idea precise Mislove Denition Dene the extensional order on the space N N by f v g i domf domg g j f domf where domf f N Clearly in this order any increasing family of partial functions has a supre mum the union Moreover the function FAC is the supremum of the family ff g Our next goal is to capture this as a convergence in order This n nN leads us to the Scott topology Denition Let P b e a partially ordered set A subset D P is directed if F D nitex D y v x y F P is a complete partial order cpo for short if P has a least element usually denoted and if every directed subset of P has a least upp er b ound in P Note that a directed set must b e nonempty since the empty set is a nite subset of every set For example the family N N is a cp o the nowheredened function is the least element and the supremum of a directed family of functions is just their union Similarly we can give N the at order whereby x v y if and only if x or x y for all x y N This corresp onds to the p ointwise order on the space N N of monotone selfmaps of N and in this order the supremum of a directed family of functions is the p ointwise supremum and the constant function with value is the least element Denition Let P b e a partially ordered set A subset U P is Scott open if U U fy P j x U u v y g is an upp er set and F D P directed D U D U Prop osition Let P be a partial ly ordered set i The family of Scott open sets is a T topology on P ii If x y P and there is some open set containing x but not containing y then x y iii The fol lowing are equivalent a The Scott topology is T b P has the discrete order c The Scott topology is T d The Scott topology is discrete Pro of Let P b e a partially ordered set Clearly the union of upp er sets from F S U with U op en P is an upp er set And if D P is directed and D i i i F for each i I then D U for some i I Since U is Scott op en it follows i i S U that D U and so the same is true of D i i i If x v y P then the denition of Scott op en implies that y fz P j z v y g is Scott closed Since x y we have x P n y which is Scott op en Hence the Scott top ology is T this proves i Mislove For ii if x y P and x U then x y and U U imply y U as well Thus y U must imply x y Finally iii follows easily from ii 2 In our example N N it is not hard to show that f is Scott op en if domf is nite a directed union of functions extends a nite function if and only if one of the functions in the directed family extends the nite function and as it happ ens this family of principal upp er sets forms a basis for the Scott top ology on N N There are a numb er of imp ortant results that are true of the Scott top ology Below we summarize some of them they all can b e found for dcp os cp os without least elements as well as cp os in eg Prop osition Let P be a cpo and endow P with the Scott topology F i If D P is directed then D is a limit point of D and it is the greatest limit point of D ii Let I and J be directed sets and let i j x I J P be monotone ij Then F F F F x x a ij ij j J iI iI j J F F F x x b If I J then ii ij iI iI j J iii If Q also is a dcpo then f P Q is continuous i f is monotone and preserves sups of directed sets 2 As we shall see the second part of this result is a very useful to ol in proving results ab out continuous functions b etween dcp os One of the most celebrated results ab out cp os is the following We at tribute it to Tarski who rst proved it for complete lattices However a numb er of others among them Scott and Knaster have contributed to this result Theorem Tarski If P is a cpo and f P P is monotone then f has a least xed point F F n f f If f is continuous then xf xf nN Ord Pro of We conne ourselves to an outline For the rst part the monotonicity n of f and the fact that v x x P implies v f and so ff g is nN a chain Since P is a cp o this chain has a least upp er b ound which we use to F n f A transnite induction then shows that f dene f nN is welldened for all ordinals and that implies f v f Since this holds for all ordinals there must b e one where the increasing chain stops growing and the rst place this happ ens is easily seen to b e a xed p oint of f The fact that v x x P implies f v f y y for all xed p oints y of f and all ordinals showing that the rst ordinal where f f f is the least xed p oint of f If f is continuous then it follows that G G G n n n f f f f f n n n 2 Mislove Example Returning to our example we recall that the natural order on N N makes the empty function the least element this corresp onds to the p ointwise order on the family N N of monotone selfmaps of N and the constant function with value is the least element Now let N N N N b e the family of Scottcontinuous selfmaps of N N Dene if n if n F N N N N by F f n n f n otherwise where we dene n n for all n N Then F is Scott continuous indeed as the domain of the function f increases then the domain of F f
Recommended publications
  • Categories and Types for Axiomatic Domain Theory Adam Eppendahl
    Department of Computer Science Research Report No. RR-03-05 ISSN 1470-5559 December 2003 Categories and Types for Axiomatic Domain Theory Adam Eppendahl 1 Categories and Types for Axiomatic Domain Theory Adam Eppendahl Submitted for the degree of Doctor of Philosophy University of London 2003 2 3 Categories and Types for Axiomatic Domain Theory Adam Eppendahl Abstract Domain Theory provides a denotational semantics for programming languages and calculi con- taining fixed point combinators and other so-called paradoxical combinators. This dissertation presents results in the category theory and type theory of Axiomatic Domain Theory. Prompted by the adjunctions of Domain Theory, we extend Benton’s linear/nonlinear dual- sequent calculus to include recursive linear types and define a class of models by adding Freyd’s notion of algebraic compactness to the monoidal adjunctions that model Benton’s calculus. We observe that algebraic compactness is better behaved in the context of categories with structural actions than in the usual context of enriched categories. We establish a theory of structural algebraic compactness that allows us to describe our models without reference to en- richment. We develop a 2-categorical perspective on structural actions, including a presentation of monoidal categories that leads directly to Kelly’s reduced coherence conditions. We observe that Benton’s adjoint type constructors can be treated individually, semantically as well as syntactically, using free representations of distributors. We type various of fixed point combinators using recursive types and function types, which we consider the core types of such calculi, together with the adjoint types. We use the idioms of these typings, which include oblique function spaces, to give a translation of the core of Levy’s Call-By-Push-Value.
    [Show full text]
  • Domain Theory: an Introduction
    Domain Theory: An Introduction Robert Cartwright Rebecca Parsons Rice University This monograph is an unauthorized revision of “Lectures On A Mathematical Theory of Computation” by Dana Scott [3]. Scott’s monograph uses a formulation of domains called neighborhood systems in which finite elements are selected subsets of a master set of objects called “tokens”. Since tokens have little intuitive significance, Scott has discarded neighborhood systems in favor of an equivalent formulation of domains called information systems [4]. Unfortunately, he has not rewritten his monograph to reflect this change. We have rewritten Scott’s monograph in terms of finitary bases (see Cartwright [2]) instead of information systems. A finitary basis is an information system that is closed under least upper bounds on finite consistent subsets. This convention ensures that every finite answer is represented by a single basis object instead of a set of objects. 1 The Rudiments of Domain Theory Motivation Programs perform computations by repeatedly applying primitive operations to data values. The set of primitive operations and data values depends on the particular programming language. Nearly all languages support a rich collection of data values including atomic objects, such as booleans, integers, characters, and floating point numbers, and composite objects, such as arrays, records, sequences, tuples, and infinite streams. More advanced languages also support functions and procedures as data values. To define the meaning of programs in a given language, we must first define the building blocks—the primitive data values and operations—from which computations in the language are constructed. Domain theory is a comprehensive mathematical framework for defining the data values and primitive operations of a programming language.
    [Show full text]
  • Spectral Sets
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF PURE AND APPLIED ALGEBRA ELSE&R Journal of Pure and Applied Algebra 94 (1994) lOlL114 Spectral sets H.A. Priestley Mathematical Institute, 24129 St. Giles, Oxford OXI 3LB, United Kingdom Communicated by P.T. Johnstone; received 17 September 1993; revised 13 April 1993 Abstract The purpose of this expository note is to draw together and to interrelate a variety of characterisations and examples of spectral sets (alias representable posets or profinite posets) from ring theory, lattice theory and domain theory. 1. Introduction Thanks to their threefold incarnation-in ring theory, in lattice theory and in computer science-the structures we wish to consider have been approached from a variety of perspectives, with rather little overlap. We shall seek to show how the results of these independent studies are related, and add some new results en route. We begin with the definitions which will allow us to present, as Theorem 1.1, the amalgam of known results which form the starting point for our later discussion. The theorem collects together ways of describing the prime spectra of commutative rings with identity or, equivalently, of distributive lattices with 0 and 1. A topology z on a set X is defined to be spectral (and (X; s) called a spectral space) if the following conditions hold: (i) ? is sober (that is, every non-empty irreducible closed set is the closure of a unique point), (ii) z is quasicompact, (iii) the quasicompact open sets form a basis for z, (iv) the family of quasicompact open subsets of X is closed under finite intersections.
    [Show full text]
  • Domain Theory Corrected and Expanded Version Samson Abramsky1 and Achim Jung2
    Domain Theory Corrected and expanded version Samson Abramsky1 and Achim Jung2 This text is based on the chapter Domain Theory in the Handbook for Logic in Computer Science, volume 3, edited by S. Abramsky, Dov M. Gabbay, and T. S. E. Maibaum, published by Clarendon Press, Oxford in 1994. While the numbering of all theorems and definitions has been kept the same, we have included comments and corrections which we have received over the years. For ease of reading, small typo- graphical errors have simply been corrected. Where we felt the original text gave a misleading impression, we have included additional explanations, clearly marked as such. If you wish to refer to this text, then please cite the published original version where possible, or otherwise this on-line version which we try to keep available from the page http://www.cs.bham.ac.uk/∼axj/papers.html We will be grateful to receive further comments or suggestions. Please send them to [email protected] So far, we have received comments and/or corrections from Francesco Consentino, Joseph D. Darcy, Mohamed El-Zawawy, Weng Kin Ho, Klaus Keimel, Olaf Klinke, Xuhui Li, Homeira Pajoohesh, Dieter Spreen, and Dominic van der Zypen. 1Computing Laboratory, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, Eng- land. 2School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, England. Contents 1 Introduction and Overview 5 1.1 Origins ................................. 5 1.2 Ourapproach .............................. 7 1.3 Overview ................................ 7 2 Domains individually 10 2.1 Convergence .............................. 10 2.1.1 Posetsandpreorders .. .... .... ... .... .... 10 2.1.2 Notation from order theory .
    [Show full text]
  • Domain Theory Corrected and Expanded Version Samson Abramsky1 and Achim Jung2
    Domain Theory Corrected and expanded version Samson Abramsky1 and Achim Jung2 This text is based on the chapter Domain Theory in the Handbook of Logic in Com- puter Science, volume 3, edited by S. Abramsky, Dov M. Gabbay, and T. S. E. Maibaum, published by Clarendon Press, Oxford in 1994. While the numbering of all theorems and definitions has been kept the same, we have included comments and corrections which we have received over the years. For ease of reading, small typo- graphical errors have simply been corrected. Where we felt the original text gave a misleading impression, we have included additional explanations, clearly marked as such. If you wish to refer to this text, then please cite the published original version where possible, or otherwise this on-line version which we try to keep available from the page http://www.cs.bham.ac.uk/˜axj/papers.html We will be grateful to receive further comments or suggestions. Please send them to [email protected] So far, we have received comments and/or corrections from Liang-Ting Chen, Francesco Consentino, Joseph D. Darcy, Mohamed El-Zawawy, Miroslav Haviar, Weng Kin Ho, Klaus Keimel, Olaf Klinke, Xuhui Li, Homeira Pajoohesh, Dieter Spreen, and Dominic van der Zypen. 1Computing Laboratory, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, Eng- land. 2School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, England. Contents 1 Introduction and Overview 5 1.1 Origins ................................. 5 1.2 Ourapproach .............................. 7 1.3 Overview ................................ 7 2 Domains individually 10 2.1 Convergence .............................
    [Show full text]
  • Domain Theory I: Semantic Algebras
    Domain Theory I: Semantic Algebras Before we can study the semantics of programming languages, we must establish a suitable collection of meanings for programs. We employ a framework called domain theory: the study of ``structured sets'' and their operations. A programmer might view domain theory as ``data structures for semantics.'' Nonetheless, domain theory is a formal branch of (computing-related) mathematics and can be studied on its own. The fundamental concept in domain theory is a semantic domain, a set of elements grouped together because they share some common property or use. The set of natural numbers is a useful semantic domain; its elements are structurally similar and share common use in arithmetic. Other examples are the Greek alphabet and the diatonic (musical) scale. Domains may be nothing more than sets, but there are situations in which other structures such as lattices or topologies are used instead. We can use domains without worrying too much about the underlying mathematics. Sets make good domains, and you may safely assume that the structures de®ned in this chapter are nothing more than the sets discussed in Chapter 2. Chapter 6 presents reasons why domains other than sets might be necessary. Accompanying a domain is a set of operations. The operations are functions that need arguments from the domain to produce answers. Operations are de®ned in two parts. First, the operation's domain and codomain are given by an expression called the operation's func- . → tionality. For an operation f, its functionality f: D1× D2× × Dn A says that f needs an argument from domain D1 and one from D2, .
    [Show full text]
  • Domain Theory for Concurrency
    Domain Theory for Concurrency Mikkel Nygaard Glynn Winskel BRICS∗ Computer Laboratory University of Aarhus University of Cambridge Abstract A simple domain theory for concurrency is presented. Based on a categorical model of linear logic and associated comonads, it highlights the role of linear- ity in concurrent computation. Two choices of comonad yield two expressive metalanguages for higher-order processes, both arising from canonical construc- tions in the model. Their denotational semantics are fully abstract with respect to contextual equivalence. One language derives from an exponential of linear logic; it supports a straightforward operational semantics with simple proofs of soundness and adequacy. The other choice of comonad yields a model of affine-linear logic, and a process language with a tensor operation to be under- stood as a parallel composition of independent processes. The domain theory can be generalised to presheaf models, providing a more refined treatment of nondeterministic branching. The article concludes with a discussion of a broader programme of research, towards a fully fledged domain theory for concurrency. 1 Introduction Denotational semantics and domain theory of Scott and Strachey provide a global mathematical setting for sequential computation, and thereby place programming languages in connection with each other; connect with the mathematical worlds of algebra, topology and logic; and inspire programming languages, type disciplines and methods of reasoning. In concurrent/distributed/interactive computation that global mathematical gui- dance is missing, and domain theory has had little direct influence on theories of concurrent computation. One reason is that classical domain theory has not scaled up to the more intricate models used there.
    [Show full text]
  • Notes on Domain Theory and Topology
    Notes on domain theory and topology Fr´ed´ericBlanqui 17 August 2012 These notes have been written to complement the study of the very nice book of Gilles Dowek on \Proofs and Algorithms - An Introduction to Logic and Computability" [2] by Ying Jiang's group of students at the Institute of Software of the Chinese Academy of Sciences (ISCAS) that met more or less every Tuesday from May to August 2012. It introduces the notion of directed-complete partial order (dCPO) that is the basis of domain theory [1] and topology. 1 Directed-complete partial orders Let ≤ be an ordering relation on a set E. The first chapter of Dowek's book starts by introducing the following notions: Definition 1 (Limit, complete ordering, continuity) An element l 2 E is the limit of an increasing sequence u0 ≤ u1 ≤ ::: if l is the least upper bound (lub) of the set fu0; u1;:::g. The ordering ≤ is weakly complete if every increasing sequence has a limit. It is strongly complete if every subset of E has a least upper bound. A function f : E ! E is increasing if for all x; y 2 E, x ≤ y ) f(x) ≤ f(y). In a weakly complete ordering ≤, a function f : E ! E is continuous if it is increasing and if, for every increasing sequence (ui)i≥0, lubff(ui)gi≥0 = f(lubfuigi≥0). A set E equipped with an ordering relation ≤ is also called a partially ordered set or poset. In a totally ordered set, every two elements are comparable. An increasing function is more usually called monotone, monotonic or iso- tone (it is a morphism in the category of posets).
    [Show full text]
  • A Categorical View on Algebraic Lattices in Formal Concept Analysis
    Wright State University CORE Scholar Computer Science and Engineering Faculty Publications Computer Science & Engineering 2006 A Categorical View on Algebraic Lattices in Formal Concept Analysis Pascal Hitzler [email protected] Markus Krotzsch Guo-Qiang Zhang Follow this and additional works at: https://corescholar.libraries.wright.edu/cse Part of the Computer Sciences Commons, and the Engineering Commons Repository Citation Hitzler, P., Krotzsch, M., & Zhang, G. (2006). A Categorical View on Algebraic Lattices in Formal Concept Analysis. Fundamenta Informaticae, 74 (2/3), 301-328. https://corescholar.libraries.wright.edu/cse/165 This Article is brought to you for free and open access by Wright State University’s CORE Scholar. It has been accepted for inclusion in Computer Science and Engineering Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Fundamenta Informaticae XX (2006) 1–28 1 IOS Press A Categorical View on Algebraic Lattices in Formal Concept Analysis Pascal Hitzler, Markus Krötzsch Institut AIFB Universität Karlsruhe Karlsruhe, Germany Guo-Qiang Zhang Department of Electrical Engineering and Computer Science Case Western Reserve University Cleveland, Ohio, U.S.A. Abstract. Formal concept analysis has grown from a new branch of the mathematical field of lattice theory to a widely recognized tool in Computer Science and elsewhere. In order to fully benefit from this theory, we believe that it can be enriched with notions such as approximation by computation or representability. The latter are commonly studied in denotational semantics and domain theory and captured most prominently by the notion of algebraicity, e.g. of lattices.
    [Show full text]
  • An Introduction to Domain Theory Notes for a Short Course
    Draft (26 May 2003) 33 pages An Introduction to Domain Theory Notes for a Short Course Michael Mislove 1 Department of Mathematics, Tulane University, New Orleans, LA 70118 Abstract This set of notes arises from a short course given at the Universit¶a Degli Studi Udine, given in May, 2003. The aim of the short course is to introduce both undergraduate and PhD students to domain theory, providing some of its history, as well as some of its most recent advances. 1 Outline of the Course The aim of this course is to present some of the basic results about domain theory. This will include the historically most signi¯cant contribution of the theory { the use of domains to provide a model of the untyped ¸-calculus of Church and Curry. The course will proceed with the following sections: (i) Some aspects of the ¸-calculus, for motivation. (ii) Some results from universal algebra and category theory for background. (iii) !-complete partial orders. (iv) Solving domain equations, and, in particular, building a model of the untyped ¸-calculus. The last part of the course will include lectures that survey additional portions of domain theory, including: ² Continuous domains and topology, where we discover alternative views of domains. ² Measurements, in which we see how to generalize some of the fundamental results of domain theory, and ² Probabilistic models, where we discover the domain-theoretic approach to probabilistic computation. 1 The author gratefully acknowledges the support of the National Science Foundation and the US O±ce of Naval Research. Domain Theory Notes This outline is being set down at the beginning of the course, and it isn't clear how much of this program we actually will accomplish.
    [Show full text]
  • Chapter 10 DOMAIN THEORY and FIXED-POINT SEMANTICS
    Chapter 10 DOMAIN THEORY AND FIXED-POINT SEMANTICS lthough we did not stress the point in Chapter 9, the notation of denotational semantics is built upon that of the lambda calculus. The A purpose of denotational semantics is to provide mathematical descrip- tions of programming languages independent of their operational behavior. The extended lambda calculus serves as a mathematical formalism, a metalanguage, for denotational definitions. As with all mathematical formal- isms, we need to know that the lambda calculus has a model to ensure that the definitions are not meaningless. Furthermore, denotational definitions, as well as programming languages in general, rely heavily on recursion, a mechanism whose description we de- ferred in the discussion of the lambda calculus in Chapter 5. Normally a user of a programming language does not care about the logical foundations of declarations, but we maintain that serious questions can be raised concern- ing the validity of recursion. In this chapter we justify recursive definitions to guarantee that they actually define meaningful objects. 10.1 CONCEPTS AND EXAMPLES Programmers use recursion to define functions and procedures as subpro- grams that call themselves and also to define recursive data structures. Most imperative programming languages require the use of pointers to declare recursive data types such as (linked) lists and trees. In contrast, many func- tional programming languages allow the direct declaration of recursive types. Rather than investigating recursive types in an actual programming language, we study recursive data declarations in a wider context. In this introductory section we consider the problems inherent in recursively defined functions and data and the related issue of nontermination.
    [Show full text]
  • Prime Algebraicity
    Prime Algebraicity Glynn Winskel, University of Cambridge Computer Laboratory, England April 27, 2009 Abstract A prime algebraic lattice can be characterised as isomorphic to the downwards-closed subsets, ordered by inclusion, of its complete primes. It is easily seen that the downwards-closed subsets of a par- tial order form a completely distributive algebraic lattice when ordered by inclusion. The converse also holds; any completely distributive al- gebraic lattice is isomorphic to such a set of downwards-closed subsets of a partial order. The partial order can be recovered from the lattice as the order of the lattice restricted to its complete primes. Conse- quently prime algebraic lattices are precisely the completely distribu- tive algebraic lattices. The result extends to Scott domains. Several consequences are explored briefly: the representation of Berry's dI- domains by event structures; a simplified form of information systems for completely distributive Scott domains; and a simple domain theory for concurrency. Introduction It is 30 years since Mogens Nielsen, Gordon Plotkin and I introduced prime algebraic lattices, and the more general prime algebraic domains, as an inter- mediary in relating Petri nets and Scott domains [19]. The recognition that prime algebraic lattices were well-known in another guise, that of completely distributive algebraic lattices, came a little later, partly while I was a postdoc visiting Mogens in Aarhus, with the final pieces falling into place early after my move to CMU in 1982. The first part of this article is essentially based 1 on a CMU research report [25] from my time there.1 Since their introduction prime algebraic domains have come to play a significant role in several other areas and have broader relevance today.
    [Show full text]