A Categorical View on Algebraic Lattices in Formal Concept Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scott Spaces and the Dcpo Category
SCOTT SPACES AND THE DCPO CATEGORY JORDAN BROWN Abstract. Directed-complete partial orders (dcpo’s) arise often in the study of λ-calculus. Here we investigate certain properties of dcpo’s and the Scott spaces they induce. We introduce a new construction which allows for the canonical extension of a partial order to a dcpo and give a proof that the dcpo introduced by Zhao, Xi, and Chen is well-filtered. Contents 1. Introduction 1 2. General Definitions and the Finite Case 2 3. Connectedness of Scott Spaces 5 4. The Categorical Structure of DCPO 6 5. Suprema and the Waybelow Relation 7 6. Hofmann-Mislove Theorem 9 7. Ordinal-Based DCPOs 11 8. Acknowledgments 13 References 13 1. Introduction Directed-complete partially ordered sets (dcpo’s) often arise in the study of λ-calculus. Namely, they are often used to construct models for λ theories. There are several versions of the λ-calculus, all of which attempt to describe the ‘computable’ functions. The first robust descriptions of λ-calculus appeared around the same time as the definition of Turing machines, and Turing’s paper introducing computing machines includes a proof that his computable functions are precisely the λ-definable ones [5] [8]. Though we do not address the λ-calculus directly here, an exposition of certain λ theories and the construction of Scott space models for them can be found in [1]. In these models, computable functions correspond to continuous functions with respect to the Scott topology. It is thus with an eye to the application of topological tools in the study of computability that we investigate the Scott topology. -
Topological Duality and Lattice Expansions Part I: a Topological Construction of Canonical Extensions
TOPOLOGICAL DUALITY AND LATTICE EXPANSIONS PART I: A TOPOLOGICAL CONSTRUCTION OF CANONICAL EXTENSIONS M. ANDREW MOSHIER AND PETER JIPSEN 1. INTRODUCTION The two main objectives of this paper are (a) to prove topological duality theorems for semilattices and bounded lattices, and (b) to show that the topological duality from (a) provides a construction of canonical extensions of bounded lattices. The paper is first of two parts. The main objective of the sequel is to establish a characterization of lattice expansions, i.e., lattices with additional operations, in the topological setting built in this paper. Regarding objective (a), consider the following simple question: Is there a subcategory of Top that is dually equivalent to Lat? Here, Top is the category of topological spaces and continuous maps and Lat is the category of bounded lattices and lattice homomorphisms. To date, the question has been answered positively either by specializing Lat or by generalizing Top. The earliest examples are of the former sort. Tarski [Tar29] (treated in English, e.g., in [BD74]) showed that every complete atomic Boolean lattice is represented by a powerset. Taking some historical license, we can say this result shows that the category of complete atomic Boolean lattices with complete lat- tice homomorphisms is dually equivalent to the category of discrete topological spaces. Birkhoff [Bir37] showed that every finite distributive lattice is represented by the lower sets of a finite partial order. Again, we can now say that this shows that the category of finite distributive lattices is dually equivalent to the category of finite T0 spaces and con- tinuous maps. -
Categories and Types for Axiomatic Domain Theory Adam Eppendahl
Department of Computer Science Research Report No. RR-03-05 ISSN 1470-5559 December 2003 Categories and Types for Axiomatic Domain Theory Adam Eppendahl 1 Categories and Types for Axiomatic Domain Theory Adam Eppendahl Submitted for the degree of Doctor of Philosophy University of London 2003 2 3 Categories and Types for Axiomatic Domain Theory Adam Eppendahl Abstract Domain Theory provides a denotational semantics for programming languages and calculi con- taining fixed point combinators and other so-called paradoxical combinators. This dissertation presents results in the category theory and type theory of Axiomatic Domain Theory. Prompted by the adjunctions of Domain Theory, we extend Benton’s linear/nonlinear dual- sequent calculus to include recursive linear types and define a class of models by adding Freyd’s notion of algebraic compactness to the monoidal adjunctions that model Benton’s calculus. We observe that algebraic compactness is better behaved in the context of categories with structural actions than in the usual context of enriched categories. We establish a theory of structural algebraic compactness that allows us to describe our models without reference to en- richment. We develop a 2-categorical perspective on structural actions, including a presentation of monoidal categories that leads directly to Kelly’s reduced coherence conditions. We observe that Benton’s adjoint type constructors can be treated individually, semantically as well as syntactically, using free representations of distributors. We type various of fixed point combinators using recursive types and function types, which we consider the core types of such calculi, together with the adjoint types. We use the idioms of these typings, which include oblique function spaces, to give a translation of the core of Levy’s Call-By-Push-Value. -
CCC 2017 Continuity, Computability, Constructivity - from Logic to Algorithms
CCC 2017 Continuity, Computability, Constructivity - From Logic to Algorithms Inria { LORIA, Nancy 26-30 June 2017 Abstracts On the commutativity of the powerspace monads .......... 3 Matthew de Brecht Hybrid Semantics for Higher-Order Store ............... 4 Bernhard Reus Point-free Descriptive Set Theory and Algorithmic Randomness5 Alex Simpson Sequentially locally convex QCB-spaces and Complexity Theory6 Matthias Schr¨oder Concurrent program extraction ..................... 7 Ulrich Berger and Hideki Tsuiki ERA: Applications, Analysis and Improvements .......... 9 Franz Brauße, Margarita Korovina and Norbert Th. Mller σ-locales and Booleanization in Formal Topology .......... 11 Francesco Ciraulo Rigorous Function Calculi ......................... 13 Pieter Collins Ramsey actions and Gelfand duality .................. 15 Willem Fouch´e Geometric Lorenz attractors are computable ............. 17 Daniel Gra¸ca,Cristobal Rojas and Ning Zhong A Variant of EQU in which Open and Closed Subspaces are Complementary without Excluded Middle ............ 19 Reinhold Heckmann Duality of upper and lower powerlocales on locally compact locales 22 Tatsuji Kawai 1 Average case complexity for Hamiltonian dynamical systems .. 23 Akitoshi Kawamura, Holger Thies and Martin Ziegler The Perfect Tree Theorem and Open Determinacy ......... 26 Takayuki Kihara and Arno Pauly Towards Certified Algorithms for Exact Real Arithmetic ..... 28 Sunyoung Kim, Sewon Park, Gyesik Lee and Martin Ziegler Decidability in Symbolic-Heap System with Arithmetic and Ar- rays -
Compact Topologically Torsion Elements of Topological Abelian Groups Peter Loth Sacred Heart University, [email protected]
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sacred Heart University: DigitalCommons@SHU Sacred Heart University DigitalCommons@SHU Mathematics Faculty Publications Mathematics 2005 Compact Topologically Torsion Elements of Topological Abelian Groups Peter Loth Sacred Heart University, [email protected] Follow this and additional works at: http://digitalcommons.sacredheart.edu/math_fac Part of the Algebra Commons, and the Set Theory Commons Recommended Citation Loth, P. (2005). Compact topologically torsion elements of topological abelian groups. Rendiconti del Seminario Matematico della Università di Padova, 113, 117-123. This Peer-Reviewed Article is brought to you for free and open access by the Mathematics at DigitalCommons@SHU. It has been accepted for inclusion in Mathematics Faculty Publications by an authorized administrator of DigitalCommons@SHU. For more information, please contact [email protected], [email protected]. REND. SEM. MAT. UNIV. PADOVA, Vol. 113 (2005) Compact Topologically Torsion Elements of Topological Abelian Groups. PETER LOTH (*) ABSTRACT - In this note, we prove that in a Hausdorff topological abelian group, the closed subgroup generated by all compact elements is equal to the closed sub group generated by all compact elements which are topologically p-torsion for some prime p. In particular, this yields a new, short solution to a question raised by Armacost [A]. Using Pontrjagin duality, we obtain new descriptions of the identity component of a locally compact abelian group. 1. Introduction. All considered groups in this paper are Hausdorff topological abelian groups and will be written additively. Let us establish notation and ter minology. The set of all natural numbers is denoted by N, and P is the set of all primes. -
Slides by Akihisa
Complete non-orders and fixed points Akihisa Yamada1, Jérémy Dubut1,2 1 National Institute of Informatics, Tokyo, Japan 2 Japanese-French Laboratory for Informatics, Tokyo, Japan Supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST Introduction • Interactive Theorem Proving is appreciated for reliability • But it's also engineering tool for mathematics (esp. Isabelle/jEdit) • refactoring proofs and claims • sledgehammer • quickcheck/nitpick(/nunchaku) • We develop an Isabelle library of order theory (as a case study) ⇒ we could generalize many known results, like: • completeness conditions: duality and relationships • Knaster-Tarski fixed-point theorem • Kleene's fixed-point theorem Order A binary relation ⊑ • reflexive ⟺ � ⊑ � • transitive ⟺ � ⊑ � and � ⊑ � implies � ⊑ � • antisymmetric ⟺ � ⊑ � and � ⊑ � implies � = � • partial order ⟺ reflexive + transitive + antisymmetric Order A binary relation ⊑ locale less_eq_syntax = fixes less_eq :: 'a ⇒ 'a ⇒ bool (infix "⊑" 50) • reflexive ⟺ � ⊑ � locale reflexive = ... assumes "x ⊑ x" • transitive ⟺ � ⊑ � and � ⊑ � implies � ⊑ � locale transitive = ... assumes "x ⊑ y ⟹ y ⊑ z ⟹ x ⊑ z" • antisymmetric ⟺ � ⊑ � and � ⊑ � implies � = � locale antisymmetric = ... assumes "x ⊑ y ⟹ y ⊑ x ⟹ x = y" • partial order ⟺ reflexive + transitive + antisymmetric locale partial_order = reflexive + transitive + antisymmetric Quasi-order A binary relation ⊑ locale less_eq_syntax = fixes less_eq :: 'a ⇒ 'a ⇒ bool (infix "⊑" 50) • reflexive ⟺ � ⊑ � locale reflexive = ... assumes -
T0 Topological Spaces and T0 Posets in the Topos of M-Sets
Theory and Applications of Categories, Vol. 33, No. 34, 2018, pp. 1059{1071. T0 TOPOLOGICAL SPACES AND T0 POSETS IN THE TOPOS OF M-SETS M.M. EBRAHIMI, M. MAHMOUDI, AND A.H. NEJAH Abstract. In this paper, we introduce the concept of a topological space in the topos M-Set of M-sets, for a monoid M. We do this by replacing the notion of open \subset" by open \subobject" in the definition of a topology. We prove that the resulting category has an open subobject classifier, which is the counterpart of the Sierpinski space in this topos. We also study the relation between the given notion of topology and the notion of a poset in this universe. In fact, the counterpart of the specialization pre-order is given for topological spaces in M-Set, and it is shown that, similar to the classic case, for a special kind of topological spaces in M-Set, namely T0 ones, it is a partial order. Furthermore, we obtain the universal T0 space, and give the adjunction between topological spaces and T0 posets, in M-Set. 1. Introduction Topoi are categories which behave like the category Set, of sets and functions between them. Naturally one tries to reconstruct the classical mathematics in such categories. The difference between classical mathematics and topos base mathematics is that the latter is in some sense constructive. In fact, the internal logic of a topos is intuitionistic, and so topoi provide a convenient set up for constructive mathematics. One of the most important features of constructive mathematics is in computer science and semantic of programing languages. -
Z-Continuous Posets
DISCRETE MATHEMATICS ELSEVIERI Discrete Mathematics 152 (1996) 33-45 Z-continuous posets Andrei Baranga Department ofMathematics, University ofBucharest, Str. Academiei 14, 70109, Bucharest, Romania Received 19 July 1994 Abstract The concept of 'subset system on the category Po of posets (Z-sets) was defined by Wright, Wagner and Thatcher in 1978. The term Z-set becomes meaningful if we replace Z by 'directed', 'chain', 'finite'. At the end of the paper (Wright et al. 1978), the authors suggested an attempt to study the generalized counterpart of the term 'continuous poset (lattice)' obtained by replacing directed sets by Z-sets, Z being an arbitary subset system on Po. We present here some results concerning this investigation. These results are generalized counterparts of some purely order theoretical facts about continuous posets. Keywords: Poset; Subset system; Z-set; Continuous poset; Continuous lattice; Algebraic poset; Algebraic lattice; Moore family; Closure operator; Ideal; Z-inductive poset Introduction The concept of 'subset system on the category Po of posets' (Z-sets) was defined by Wright et al. in [12]. The term Z-set becomes meaningful if we replace Z by 'directed', 'chain', 'finite', etc. On the other hand, the concept of continuous lattice was defined by Scott in [9] in a topological manner as a mathematical tool in computation theory (see [10, 11]) although it has appeared in other fields of mathematics as well, such as general topology, analysis, algebra, category theory, logic and topological algebra (see [4]), This concept was defined later in purely order theoretical terms (see [8]) and now this definition has became the one used in almost all references. -
Topology, Domain Theory and Theoretical Computer Science
Draft URL httpwwwmathtulaneedumwmtopandcspsgz pages Top ology Domain Theory and Theoretical Computer Science Michael W Mislove Department of Mathematics Tulane University New Orleans LA Abstract In this pap er we survey the use of ordertheoretic top ology in theoretical computer science with an emphasis on applications of domain theory Our fo cus is on the uses of ordertheoretic top ology in programming language semantics and on problems of p otential interest to top ologists that stem from concerns that semantics generates Keywords Domain theory Scott top ology p ower domains untyp ed lamb da calculus Subject Classication BFBNQ Intro duction Top ology has proved to b e an essential to ol for certain asp ects of theoretical computer science Conversely the problems that arise in the computational setting have provided new and interesting stimuli for top ology These prob lems also have increased the interaction b etween top ology and related areas of mathematics such as order theory and top ological algebra In this pap er we outline some of these interactions b etween top ology and theoretical computer science fo cusing on those asp ects that have b een most useful to one particular area of theoretical computation denotational semantics This pap er b egan with the goal of highlighting how the interaction of order and top ology plays a fundamental role in programming semantics and related areas It also started with the viewp oint that there are many purely top o logical notions that are useful in theoretical computer science that -
Completeness and Compact Generation in Partially Ordered Sets
Available online at www.isr-publications.com/jmcs J. Math. Computer Sci. 16 (2016), 69{76 Research Article Completeness and compact generation in partially ordered sets A. Vaezia, V. Kharatb aDepartment of Mathematics, University of Mazandaran, P. O. Box 95447, Babolsar, Iran. bDepartment of Mathematics, University of Pune, Pune 411007, India. Abstract In this paper we introduce a notion of density in posets in a more general fashion. We also introduce completeness in posets and study compact generation in posets based on such completeness and density. c 2016 All rights reserved. Keywords: U-density, U-complete poset, U-compactly generated poset, U-regular interval. 1. Introduction We begin with the necessary definitions and terminologies in a poset P . An element x of a poset P is an upper bound of A ⊆ P if a ≤ x for all a 2 A. A lower bound is defined dually. The set of all upper bounds of A is denoted by Au (read as, A upper cone), where Au = fx 2 P : x ≤ a for every a 2 Ag and dually, we have the concept of a lower cone Al of A. If P contains a finite number of elements, it is called a finite poset. A subset A of a poset P is called a chain if all the elements of A are comparable. A poset P is said to be of length n, where n is a natural number, if there is a chain in P of length n and all chains in P are of length n. A poset P is of finite length if it is of length n for some natural number n. -
Mathematical Tools MPRI 2–6: Abstract Interpretation, Application to Verification and Static Analysis
Mathematical Tools MPRI 2{6: Abstract Interpretation, application to verification and static analysis Antoine Min´e CNRS, Ecole´ normale sup´erieure course 1, 2012{2013 course 1, 2012{2013 Mathematical Tools Antoine Min´e p. 1 / 44 Order theory course 1, 2012{2013 Mathematical Tools Antoine Min´e p. 2 / 44 Partial orders Partial orders course 1, 2012{2013 Mathematical Tools Antoine Min´e p. 3 / 44 Partial orders Partial orders Given a set X , a relation v2 X × X is a partial order if it is: 1 reflexive: 8x 2 X ; x v x 2 antisymmetric: 8x; y 2 X ; x v y ^ y v x =) x = y 3 transitive: 8x; y; z 2 X ; x v y ^ y v z =) x v z. (X ; v) is a poset (partially ordered set). If we drop antisymmetry, we have a preorder instead. course 1, 2012{2013 Mathematical Tools Antoine Min´e p. 4 / 44 Partial orders Examples of posets (Z; ≤) is a poset (in fact, completely ordered) (P(X ); ⊆) is a poset (not completely ordered) (S; =) is a poset for any S course 1, 2012{2013 Mathematical Tools Antoine Min´e p. 5 / 44 Partial orders Examples of posets (cont.) Given by a Hasse diagram, e.g.: g e f g v g c d f v f ; g e v e; g b d v d; f ; g c v c; e; f ; g b v b; c; d; e; f ; g a a v a; b; c; d; e; f ; g course 1, 2012{2013 Mathematical Tools Antoine Min´e p. -
ORDER-TOPOLOGICAL LATTICES ' by MARCEL ERNE
ORDER-TOPOLOGICAL LATTICES ' by MARCEL ERNE (Received 31 October, 1978) 1. Introduction and basic concepts. The observation that convergence of real sequ- ences may be defined in terms of limits inferior and limits superior as by means of neighbourhoods in the Euclidean topology leads to the question: for which lattices does order convergence coincide with convergence in the order topology? This problem has been attacked by D. C. Kent [10], A. Gingras [7] and others. We hope to present a satisfactory solution in this paper. Although there are known several characterizations of lattices, with topological order convergence (cf. Propositions 1, 2), an evaluation of these criteria already requires some knowledge of the order topology of the given lattice. In the i present paper, we establish a purely lattice-theoretical description of those lattices for which order convergence is not only topological, but moreover, the lattice operations are continuous. Henceforth, such lattices will be referred to as order-topological lattices. All convergence statements will be formulated in terms of filters rather than nets. For an introduction to convergence functions, the reader may consult D. C. Kents's paper [9]. Let L be any lattice, partially ordered by an order relation <. For a subset Y of L, let Yl and YT denote the set of all lower and upper bounds for Y, respectively. If x is the join (i.e. the least upper bound) of Y then we indicate this by the symbol x = V Y. Similarly, we write x = A, Y if x is the meet (i.e. the greatest lower bound) of Y.