A Remark About Algebraicity in Complete Partial Orders

Total Page:16

File Type:pdf, Size:1020Kb

A Remark About Algebraicity in Complete Partial Orders A remark ab out algebraicity in complete partial orders Draft Leonid Libkin Department of Computer and Information Science University of Pennsylvania Philadelphia PA USA Email libkinsaulcisupennedu Abstract I prove a characterization theorem for algebraic b ounded complete cp os similar to that for algebraic lattices It is wellknown that a lattice is algebraic i it isomorphic to a lattice of subalgebras of an algebra Algebraicity plays the central role in denotational semantics for programming languages but the structures used there are not exactly algebraic lattices they are complete algebraic partial orders In this note I shall characterize such p osets as p osets of certain subalgebras of partial algebras Let me recall the denitions A p oset is called complete and is usually abbreviated as a cpo if it contains least upp er b ounds or suprema of directed subsets I shall use t for supremum An element x of D is called compact if x tX where X D is directed implies x x for some x X A cp o is called algebraic if for any x D the set of compact elements b elow x is directed and its supremum equals x A cp o D is bounded complete if supremum of X D denoted by tX as well exists whenever X is b ounded ab ove in D ie there is a D such that a x for all x X I shall use a more convenient notation a a instead of tfa a g An element x of a b ounded complete cp o D is compact 1 n 1 n if whenever tX exists and x tX x tX where X X is nite In a b ounded complete cp o the set of compact elements b elow any element is always directed therefore a b ounded complete cp o is algebraic if any element is the supremum of all compact elements b elow it Algebraic b ounded complete cp os are also called Scottdomain Equivalently a Scottdomain is an algebraic cp o which is 1 a complete meetsemilattice Algebraic lattices are a particular example of Scottdomains namely they are Scottdomains with top element The wellknown characterization of algebraic lattices as lattices of subalgebras gives rise to a natural question can a similar characterization b e obtained for Scottdomains The answer is yes and a couple of denitions is needed b efore we formulate the result of this pap er Partially supp orted by NSF Grants IRI and CCR and ONR Grant NOOOK 1 I must notice that program semantics p eople usually require that the set of compact elements b e countable and this requirement is forced if we need certain computability conditions No cardinality restriction on Scottdomains is imp osed in this pap er Let hA i b e a partial algebra with carrier A and signature and let denote the set of nary n op erations in A partial subalgebra of hA i is B A such that for any n and n x x B x x B if it is dened It is also known that partial subalgebras of a partial 1 n 1 n algebra form an algebraic lattice I shall call B A a total subalgebra if for any n and x x B x x exists and n 1 n 1 n x x B The set of all total subalgebras of hA i under inclusion ordering is denoted by 1 n TSubA Theorem Let D be a poset Then D is a Scottdomain i there is a partial algebra hA i such that D is isomorphic to TSubA Pro of Prove that TSubA is a Scottdomain rst Obviously TSubA is closed under arbitrary in tersections and therefore it is a complete meetsemilattice If A is a directed family of total i iI S A Then it is easy to check that A is a total subalgebra again subalgebras of A let A i iI Hence TSubA is a cp o Let suppA fx A j a total subalgebra B A such that x B g Let A b e the minimal total subalgebra containing x suppA which exists since TSubA is a complete x S S A and therefore there A then x meetsemilattice If for a directed family A A i i i iI x iI iI is j I such that x A Then by the denition of A A A Therefore each A is compact j x x j x in TSubA Since for any B TSubA B suppA B is the supremum of all A where x B in x TSubA Hence compact elements form a basis of TSubA and TSubA is algebraic Conversely let D b e a Scottdomain Denote the set of its compact elements by KD We are going to dene an algebra whose carrier is A KD and partial op erations are dened as follows An op eration is given by for any a a KD if fa a g is not b ounded ab ove then a a n 1 n 1 n 1 n is undened if this set is b ounded ab ove ie a a exists then a a b where 1 n 1 n b a a and b KD We dene just enough op erations so that for any n b a a 1 n 1 n b a a KD there exists such that b a a 1 n n 1 n To nish the pro of we must show that B TSubA i there exists x D such that B x KD where x is the principal ideal of x The if part follows immediately from the denition of To prove the only if part let B TSubA Then for any a a B a a exists otherwise there 1 n 1 n would b e an nary op eration undened on a a Therefore M fa a j a a B g 1 n 1 n 1 n is a directed set and we can dene x as tM tB By the way x was dened B x KD If b x KD then b tB and since b is compact b a a for some a a B Then 1 n 1 n there is an op eration such that b a a ie b B This proves the reverse inclusion n 1 n and nishes the pro of of the theorem 2 A similar characterization theorem can b e proven if partiality is removed from the signature to the subsets which are allowed to play the role of subalgebras To b e more precise let me dene F as a family of subsets of a set A which is downward closed ie B F and C B imply C F and complete as a partial order under inclusion Such a family is sometimes called a qualitative domain Given a signature dene Sub A as the p oset of subalgebras of hA i which happ en to b e in F F Corollary A poset D is a Scottdomain i there exist an algebra hA i and a qualitative domain F of subsets of A such that D is isomorphic to Sub A F Pro of is essentially the same as the one given ab ove A is taken to b e KD and F is the family of subsets of KD b ounded ab ove 2 Arbitrary cp os can also b e viewed as p osets of certain subalgebras of nondeterministic algebras ie algebras with op erations whose results are not uniquely dened even if they are dened More precisely dene a partial nondeterministic algebra as hA i where each is partial function n n A from A to We say that B A is a total subalgebra of A if for any a a B and 1 n n a a is dened and a a B The p oset of total subalgebras under inclusion 1 n 1 n ordering will b e denoted by TSubA again An example can b e given showing that TSubA is not necessarily algebraic if A has nondeterministic op erations However Prop osition Let D be an algebraic cpo Then there is a partial nondeterministic algebra hA i such that D is isomorphic to TSubA Pro of A bunch of deterministic op erations are dened as in the pro of of the theorem with only one exception instead of saying b a a we say that b is less than any upp er b ound of fa a g 1 n 1 n The only nary nondeterministic op eration is undened for ntuples of compact elements which are unb ounded if fa a g is b ounded ab ove then a a fb KD j b a a g Notice 1 n 1 n 1 n that a a is nonempty It can b e easily shown that for such a signature TSubhKD i is 1 n isomorphic to D 2 This construction sheds some light on wellknown condition M The condition M says that for any nite b ounded set X of compact elements the set of its minimal upp er b ounds if nite and each A upp er b ound of X is greater than some minimal upp er b ound Let stand for the family of all f in nite subsets of A Prop osition Let D be an algebraic cpo satisfying M Then there is a partial nondeterministic n A algebra hA i in which any nary operation is of form A such that D is isomorphic to TSubA f in Pro of is the same as ab ove but we take a a to b e the set of minimal upp er b ounds if it 1 n exists and undened otherwise 2 References Gratzer Universal Algebra Qualitative domains Condition M .
Recommended publications
  • Scott Spaces and the Dcpo Category
    SCOTT SPACES AND THE DCPO CATEGORY JORDAN BROWN Abstract. Directed-complete partial orders (dcpo’s) arise often in the study of λ-calculus. Here we investigate certain properties of dcpo’s and the Scott spaces they induce. We introduce a new construction which allows for the canonical extension of a partial order to a dcpo and give a proof that the dcpo introduced by Zhao, Xi, and Chen is well-filtered. Contents 1. Introduction 1 2. General Definitions and the Finite Case 2 3. Connectedness of Scott Spaces 5 4. The Categorical Structure of DCPO 6 5. Suprema and the Waybelow Relation 7 6. Hofmann-Mislove Theorem 9 7. Ordinal-Based DCPOs 11 8. Acknowledgments 13 References 13 1. Introduction Directed-complete partially ordered sets (dcpo’s) often arise in the study of λ-calculus. Namely, they are often used to construct models for λ theories. There are several versions of the λ-calculus, all of which attempt to describe the ‘computable’ functions. The first robust descriptions of λ-calculus appeared around the same time as the definition of Turing machines, and Turing’s paper introducing computing machines includes a proof that his computable functions are precisely the λ-definable ones [5] [8]. Though we do not address the λ-calculus directly here, an exposition of certain λ theories and the construction of Scott space models for them can be found in [1]. In these models, computable functions correspond to continuous functions with respect to the Scott topology. It is thus with an eye to the application of topological tools in the study of computability that we investigate the Scott topology.
    [Show full text]
  • Right Ideals of a Ring and Sublanguages of Science
    RIGHT IDEALS OF A RING AND SUBLANGUAGES OF SCIENCE Javier Arias Navarro Ph.D. In General Linguistics and Spanish Language http://www.javierarias.info/ Abstract Among Zellig Harris’s numerous contributions to linguistics his theory of the sublanguages of science probably ranks among the most underrated. However, not only has this theory led to some exhaustive and meaningful applications in the study of the grammar of immunology language and its changes over time, but it also illustrates the nature of mathematical relations between chunks or subsets of a grammar and the language as a whole. This becomes most clear when dealing with the connection between metalanguage and language, as well as when reflecting on operators. This paper tries to justify the claim that the sublanguages of science stand in a particular algebraic relation to the rest of the language they are embedded in, namely, that of right ideals in a ring. Keywords: Zellig Sabbetai Harris, Information Structure of Language, Sublanguages of Science, Ideal Numbers, Ernst Kummer, Ideals, Richard Dedekind, Ring Theory, Right Ideals, Emmy Noether, Order Theory, Marshall Harvey Stone. §1. Preliminary Word In recent work (Arias 2015)1 a line of research has been outlined in which the basic tenets underpinning the algebraic treatment of language are explored. The claim was there made that the concept of ideal in a ring could account for the structure of so- called sublanguages of science in a very precise way. The present text is based on that work, by exploring in some detail the consequences of such statement. §2. Introduction Zellig Harris (1909-1992) contributions to the field of linguistics were manifold and in many respects of utmost significance.
    [Show full text]
  • Contents 3 Homomorphisms, Ideals, and Quotients
    Ring Theory (part 3): Homomorphisms, Ideals, and Quotients (by Evan Dummit, 2018, v. 1.01) Contents 3 Homomorphisms, Ideals, and Quotients 1 3.1 Ring Isomorphisms and Homomorphisms . 1 3.1.1 Ring Isomorphisms . 1 3.1.2 Ring Homomorphisms . 4 3.2 Ideals and Quotient Rings . 7 3.2.1 Ideals . 8 3.2.2 Quotient Rings . 9 3.2.3 Homomorphisms and Quotient Rings . 11 3.3 Properties of Ideals . 13 3.3.1 The Isomorphism Theorems . 13 3.3.2 Generation of Ideals . 14 3.3.3 Maximal and Prime Ideals . 17 3.3.4 The Chinese Remainder Theorem . 20 3.4 Rings of Fractions . 21 3 Homomorphisms, Ideals, and Quotients In this chapter, we will examine some more intricate properties of general rings. We begin with a discussion of isomorphisms, which provide a way of identifying two rings whose structures are identical, and then examine the broader class of ring homomorphisms, which are the structure-preserving functions from one ring to another. Next, we study ideals and quotient rings, which provide the most general version of modular arithmetic in a ring, and which are fundamentally connected with ring homomorphisms. We close with a detailed study of the structure of ideals and quotients in commutative rings with 1. 3.1 Ring Isomorphisms and Homomorphisms • We begin our study with a discussion of structure-preserving maps between rings. 3.1.1 Ring Isomorphisms • We have encountered several examples of rings with very similar structures. • For example, consider the two rings R = Z=6Z and S = (Z=2Z) × (Z=3Z).
    [Show full text]
  • An Outline of Algebraic Set Theory
    An Outline of Algebraic Set Theory Steve Awodey Dedicated to Saunders Mac Lane, 1909–2005 Abstract This survey article is intended to introduce the reader to the field of Algebraic Set Theory, in which models of set theory of a new and fascinating kind are determined algebraically. The method is quite robust, admitting adjustment in several respects to model different theories including classical, intuitionistic, bounded, and predicative ones. Under this scheme some familiar set theoretic properties are related to algebraic ones, like freeness, while others result from logical constraints, like definability. The overall theory is complete in two important respects: conventional elementary set theory axiomatizes the class of algebraic models, and the axioms provided for the abstract algebraic framework itself are also complete with respect to a range of natural models consisting of “ideals” of sets, suitably defined. Some previous results involving realizability, forcing, and sheaf models are subsumed, and the prospects for further such unification seem bright. 1 Contents 1 Introduction 3 2 The category of classes 10 2.1 Smallmaps ............................ 12 2.2 Powerclasses............................ 14 2.3 UniversesandInfinity . 15 2.4 Classcategories .......................... 16 2.5 Thetoposofsets ......................... 17 3 Algebraic models of set theory 18 3.1 ThesettheoryBIST ....................... 18 3.2 Algebraic soundness of BIST . 20 3.3 Algebraic completeness of BIST . 21 4 Classes as ideals of sets 23 4.1 Smallmapsandideals . .. .. 24 4.2 Powerclasses and universes . 26 4.3 Conservativity........................... 29 5 Ideal models 29 5.1 Freealgebras ........................... 29 5.2 Collection ............................. 30 5.3 Idealcompleteness . .. .. 32 6 Variations 33 References 36 2 1 Introduction Algebraic set theory (AST) is a new approach to the construction of models of set theory, invented by Andr´eJoyal and Ieke Moerdijk and first presented in [16].
    [Show full text]
  • A New Proof of the Completeness of the Lukasiewicz Axioms^)
    A NEW PROOF OF THE COMPLETENESS OF THE LUKASIEWICZ AXIOMS^) BY C. C. CHANG The purpose of this note is to provide a new proof for the completeness of the Lukasiewicz axioms for infinite valued propositional logic. For the existing proof of completeness and a history of the problem in general we refer the readers to [l; 2; 3; 4]. The proof as was given in [4] was essentially metamathematical in nature; the proof we offer here is essentially algebraic in nature, which, to some extent, justifies the program initiated by the author in [2]. In what follows we assume thorough familiarity with the contents of [2] and adopt the notation and terminology of [2]. The crux of this proof is con- tained in the following two observations: Instead of using locally finite MV- algebras as the basic building blocks in the structure theory of MV-algebras, we shall use linearly ordered ones. The one-to-one correspondence between linearly ordered MV-algebras and segments of ordered abelian groups enables us to make use of some known results in the first-order theory of ordered abelian groups(2). We say that P is a prime ideal of an MV-algebra A if, and only if, (i) P is an ideal of A, and (ii) for each x, yEA, either xyEP or xyEP- Lemma 1. If P is a prime ideal of A, then A/P is a linearly ordered MV- algebra. Proof. By 3.11 of [2], we have to prove that given x/P and y/P, either x/P^y/P or y/P^x/P.
    [Show full text]
  • Lattice Theory Lecture 2 Distributive Lattices
    Lattice Theory Lecture 2 Distributive lattices John Harding New Mexico State University www.math.nmsu.edu/∼JohnHarding.html [email protected] Toulouse, July 2017 Distributive lattices Distributive law for all x; y; z x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) Modular law if x ≤ z then x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) Definition The lattices M5 and N5 are as follows: z x y z y x M5 N5 Note M5 is Modular, not distributive, and N5 is Non-modular. Both have 5 elements. 2 / 44 Recognizing distributive lattices Theorem Let L be a lattice. 1. L is modular iff N5 is not a sublattice of L 2. L is distributive iff neither M5; N5 is a sublattice of L Proof The \⇒" direction of each is obvious. For 1 \⇐" if L is not modular, there are x < z with x ∨ (y ∧ z) < (x ∨ y) ∧ (x ∨ z) (why?) Then the following is a sublattice of L. x ∨ y x y z y ( ∨ ) ∧ x ∨ (y ∧ z) y ∧ z 3 / 44 Exercise Give the details that the figure on the previous page is a sublattice. Do the 2 \⇐" direction. The lattice N5 is \projective" in lattices, meaning that if L is a lattice and f ∶ L → N5 is an onto lattice homomorphism, then there is a one-one lattice homomorphism g ∶ N5 → L with f ○ g = id. 4 / 44 Complements Definition Elements x; y of a bounded lattice L are complements if x ∧ y = 0 and x ∨ y = 1. In general, an element might have no complements, or many. 5 / 44 Complements Theorem In a bounded distributive lattice, an element has at most one complement.
    [Show full text]
  • Maximal Orders
    MAXIMAL ORDERS BY MAURICE AUSLANDER AND OSCAR GOLDMAN(') Introduction. This paper is about the structure theory of maximal orders in two situations: over Dedekind rings in arbitrary simple algebras and over regular domains in full matrix algebras. By an order over an integrally closed noetherian domain R we mean a subring A of a central simple algebra 2 over the quotient field K of R such that A is a finitely generated i?-module which spans 2 over K. An order A in the simple algebra 2 is said to be maximal if A if not properly contained in any order of 2. The classical argument which shows that over a Dedekind ring every order is contained in a maximal one [6, p. 70 ] is equally valid for arbitrary integrally closed noetherian domains. After a preliminary study of maximal orders in general, we concentrate on maximal orders over discrete rank one valuation rings. The main results in this situation are as follows: all the maximal orders in a fixed simple algebra are conjugate, each is a principal ideal ring and is a full matrix alge- bra over a maximal order in a division algebra. Thus the theory of maximal orders over an arbitrary discrete rank one valuation ring is almost identical with the classical theory in which the valuation ring is assumed complete [6, Chapter VI]. A standard localization argument enables one to conclude that a maximal order over a Dedekind ring is the ring of endomorphisms of a finitely generated projective module over a maximal order in a division alge- bra.
    [Show full text]
  • Introducing Boolean Semilattices Clifford Bergman Iowa State University, [email protected]
    Mathematics Publications Mathematics 3-21-2018 Introducing Boolean Semilattices Clifford Bergman Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/math_pubs Part of the Algebra Commons, and the Logic and Foundations Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ math_pubs/195. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Book Chapter is brought to you for free and open access by the Mathematics at Iowa State University Digital Repository. It has been accepted for inclusion in Mathematics Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Introducing Boolean Semilattices Abstract We present and discuss a variety of Boolean algebras with operators that is closely related to the variety generated by all complex algebras of semilattices. We consider the problem of finding a generating set for the variety, representation questions, and axiomatizability. Several interesting subvarieties are presented. We contrast our results with those obtained for a number of other varieties generated by complex algebras of groupoids. Keywords Boolean algebra, BAO, semilattice, Boolean semilattice, Boolean groupoid, canonical extension, equationally definable principal congruence Disciplines Algebra | Logic and Foundations | Mathematics Comments This is a manuscript of a chapter from Bergman C. (2018) Introducing Boolean Semilattices. In: Czelakowski J. (eds) Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science. Outstanding Contributions to Logic, vol 16. Springer, Cham. doi: 10.1007/978-3-319-74772-9_4.
    [Show full text]
  • The Different Ideal
    THE DIFFERENT IDEAL KEITH CONRAD 1. Introduction The discriminant of a number field K tells us which primes p in Z ramify in OK : the prime factors of the discriminant. However, the way we have seen how to compute the discriminant doesn't address the following themes: (a) determine which prime ideals in OK ramify (that is, which p in OK have e(pjp) > 1 rather than which p have e(pjp) > 1 for some p), (b) determine the multiplicity of a prime in the discriminant. (We only know the mul- tiplicity is positive for the ramified primes.) Example 1.1. Let K = Q(α), where α3 − α − 1 = 0. The polynomial T 3 − T − 1 has discriminant −23, which is squarefree, so OK = Z[α] and we can detect how a prime p 3 factors in OK by seeing how T − T − 1 factors in Fp[T ]. Since disc(OK ) = −23, only the prime 23 ramifies. Since T 3−T −1 ≡ (T −3)(T −10)2 mod 23, (23) = pq2. One prime over 23 has multiplicity 1 and the other has multiplicity 2. The discriminant tells us some prime over 23 ramifies, but not which ones ramify. Only q does. The discriminant of K is, by definition, the determinant of the matrix (TrK=Q(eiej)), where e1; : : : ; en is an arbitrary Z-basis of OK . By a finer analysis of the trace, we will construct an ideal in OK which is divisible precisely by the ramified primes in OK . This ideal is called the different ideal. (It is related to differentiation, hence the name I think.) In the case of Example 1.1, for instance, we will see that the different ideal is q, so the different singles out the particular prime over 23 that ramifies.
    [Show full text]
  • Ultrafilters on Ω—Their Ideals and Their Cardinal Characteristics
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 351, Number 7, Pages 2643{2674 S 0002-9947(99)02257-6 Article electronically published on March 8, 1999 ULTRAFILTERS ON ω|THEIR IDEALS AND THEIR CARDINAL CHARACTERISTICS JORG¨ BRENDLE AND SAHARON SHELAH Abstract. For a free ultrafilter on ! we study several cardinal character- istics which describe part of theU combinatorial structure of . We provide various consistency results; e.g. we show how to force simultaneouslyU many characters and many π–characters. We also investigate two ideals on the Baire space !! naturally related to and calculate cardinal coefficients of these ideals in terms of cardinal characteristicsU of the underlying ultrafilter. Introduction Let be a non–principal ultrafilter on the natural numbers ω. Recall that is a P {pointU iff for all countable there is U with U A being finite forU all A . is said to be rapid iffA⊆U for all f ωω there∈U is U \ with U f(n) n ∈A U ∈ ∈U | ∩ |≤ for all n ω. is called Ramsey iff given any partition An; n ω of ω,there ∈ U h ∈ i is either n ω with An or U with An U 1 for all n ω.Itis well–known∈ (and easily seen)∈U that Ramsey∈U ultrafilters| ∩ are|≤ both rapid and∈P –point. With we can associate ideals on the real numbers (more exactly, on the Baire space ωωU) in various ways. One way of doing this results in the well–known ideal r0 of Ramsey null sets with respect to (see 2 for the definition). Another, lessU known, ideal related to was introducedU by§ Louveau in [Lo] and shown to coincide with both the meagerU and the nowhere dense ideals on ωω with respect to a topology somewhat finer than the standard topology (see 3 for details).
    [Show full text]
  • Arxiv:1805.07000V1 [Math.LO] 18 May 2018 Mlettosddideal, Sided Two Smallest { Endby Defined Scniuu.Given Continuous
    FACTORING A MINIMAL ULTRAFILTER INTO A THICK PART AND A SYNDETIC PART WILL BRIAN AND NEIL HINDMAN Abstract. Let S be an infinite discrete semigroup. The operation on S extends uniquely to the Stone-Cechˇ compactification βS making βS a compact right topological semigroup with S contained in its topological center. As such, βS has a smallest two sided ideal, K(βS). An ultrafilter p on S is minimal if and only if p ∈ K(βS). We show that any minimal ultrafilter p factors into a thick part and a syndetic part. That is, there exist filters F and G such that F consists only of thick sets, G consists only of syndetic sets, and p is the unique ultrafilter containing F∪G. b b Letting L = F and C = G, the sets of ultrafilters containing F and G respectively, we have that L is a minimal left ideal of βS, C meets every minimal left ideal of βS in exactly one point, and L ∩ C = {p}. We show further that K(βS) can be partitioned into relatively closed sets, each of which meets each minimal left ideal in exactly one point. With some weak cancellation assumptions on S, one has also that ∗ for each minimal ultrafilter p, S \ {p} is not normal. In particular, if p is a member of either of the disjoint sets K(βN, +) or K(βN, ·), then ∗ N \ {p} is not normal. 1. Introduction Throughout this paper S will denote an infinite discrete semigroup with operation ·. The Stone-Cechˇ compactification βS of S is the set of ultrafilters on S, with the principal ultrafilters being identified with the points of S.
    [Show full text]
  • Ideal Lattices and the Structure of Rings(J)
    IDEAL LATTICES AND THE STRUCTURE OF RINGS(J) BY ROBERT L. BLAIR It is well known that the set of all ideals(2) of a ring forms a complete modular lattice with respect to set inclusion. The same is true of the set of all right ideals. Our purpose in this paper is to consider the consequences of imposing certain additional restrictions on these ideal lattices. In particular, we discuss the case in which one or both of these lattices is complemented, and the case in which one or both is distributive. In §1 two strictly lattice- theoretic results are noted for the sake of their application to the comple- mented case. In §2 rings which have a complemented ideal lattice are con- sidered. Such rings are characterized as discrete direct sums of simple rings. The structure space of primitive ideals of such rings is also discussed. In §3 corresponding results are obtained for rings whose lattice of right ideals is complemented. In particular, it is shown that a ring has a complemented right ideal lattice if and only if it is isomorphic with a discrete direct sum of quasi-simple rings. The socle [7](3) and the maximal regular ideal [5] are discussed in connection with such rings. The effect of an identity element is considered in §4. In §5 rings with distributive ideal lattices are considered and still another variant of regularity [20] is introduced. It is shown that a semi-simple ring with a distributive right ideal lattice is isomorphic with a subdirect sum of division rings.
    [Show full text]