Local Translation in Nuclear Condensate Amyloid Bodies

Total Page:16

File Type:pdf, Size:1020Kb

Local Translation in Nuclear Condensate Amyloid Bodies Local translation in nuclear condensate amyloid bodies Phaedra R. Theodoridisa,b,1, Michael Bokrosa,b,1, Dane Marijanc, Nathan C. Balukoffa,b, Dazhi Wanga,b, Chloe C. Kirka,b, Taylor D. Budinea,b, Harris D. Goldsmitha,b, Miling Wanga,b, Timothy E. Audasc, and Stephen Leea,b,2 aDepartment of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136; bSylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136; and cDepartment of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6 Edited by Peter Cresswell, Yale University, New Haven, CT, and approved January 11, 2021 (received for review July 9, 2020) Biomolecular condensates concentrate molecules to facilitate basic similar to Balbiani bodies in Xenopus oocytes (31). In contrast to biochemical processes, including transcription and DNA replica- liquid-like condensates that concentrate molecules to facilitate tion. While liquid-like condensates have been ascribed various biochemical reactions, amyloid bodies and Balbiani bodies are functions, solid-like condensates are generally thought of as amor- believed to store proteins and induce cellular dormancy (19, 27, phous sites of protein storage. Here, we show that solid-like am- 31). Since amyloid bodies also comprise an array of mobile yloid bodies coordinate local nuclear protein synthesis (LNPS) proteins (e.g., ribosomal proteins) (23), it remains unknown if during stress. On stimulus, translationally active ribosomes accu- these nuclear condensates have other cellular functions in ad- mulate along fiber-like assemblies that characterize amyloid bod- dition to protein retention and metabolic depression. ies. Mass spectrometry analysis identified regulatory ribosomal Here, we report that nuclear amyloid bodies are sites of stress- proteins and translation factors that relocalize from the cytoplasm resistant local nuclear protein synthesis (LNPS). Mass spec- to amyloid bodies to sustain LNPS. These amyloidogenic compart- trometry with stable isotope labeling by amino acids in cell culture ments are enriched in newly transcribed messenger RNA by Heat (MS-SILAC) cytoplasmic ribosomal proteins and translation fac- Shock Factor 1 (HSF1). Depletion of stress-induced ribosomal inter- tors that relocalize to amyloid bodies in cells responding to an- genic spacer noncoding RNA (rIGSRNA) that constructs amyloid aerobic fermentation or heat shock. In vitro puromycylation and bodies prevents recruitment of the nuclear protein synthesis ma- proximity ligase assays uncovered ribosomal acceptor sites orga- chinery, abolishes LNPS, and impairs the nuclear HSF1 response. nized along fiber-like assemblies that characterize these solid-like We propose that amyloid bodies support local nuclear translation condensates. Amyloid bodies anchor HSF1 target mRNAs that during stress and that solid-like condensates can facilitate complex CELL BIOLOGY biochemical reactions as their liquid counterparts can. recruit the LNPS machinery to sustain nuclear protein synthesis. We discuss how amyloid-body protein synthesis can be compared long noncoding RNA | hypoxia | acidosis | HSR | Hsp70 to local translation machineries that synthesize proteins at specific cellular coordinates (32–40) during periods of inhibition of nu- clear/cytoplasmic trafficking. These results identify amyloid bodies ells are remarkable in their ability to sustain viability under as nuclear, solid-like condensates that sustain stress-induced local Cadverse environmental conditions (1). Hypoxia-induced ex- tracellular acidosis is a common stimulus observed in an array of translation. physiological and pathological settings including development, Results cancer, and ischemic episodes (2, 3). Cells acclimatize to the acidotic state by suppressing global protein synthesis among Physiological Stressors Induce LNPS in Amyloid Bodies. Cells were other pathways (4–6) while activating the heat shock response incubated in low-oxygen tension to induce the natural acidifi- (HSR) involved in protein homeostasis (7–9). The master regulator cation of their extracellular milieu as a consequence of lactic of the HSR is heat shock factor 1 (HSF1) that transcribes genes encoding a wide array of chaperones, including the canonical heat Significance shock protein 70 (Hsp70) (10). Activation of the HSR through HSF1 is believed to sustain cellular viability during periods of intense stress, The central dogma of eukaryotic biology is clear: DNA replica- such as extracellular acidosis and heat shock (9). tion and RNA transcription occur in the nucleus while protein In addition to activating the HSR, extracellular acidosis and synthesis takes place in the cytoplasm. While this fundamental heat shock induce the formation of several membraneless bodies tenet of biology is entrenched in textbooks, it has undergone (e.g., stress granules) that have been implicated in a wide range recurring challenges over the decades, most notably the exis- of cellular functions, such as storage of cytoplasmic messenger tence of nuclear translation. We report that solid-like conden- RNAs (mRNAs) and nuclear splicing factors. These organelles sate amyloid bodies are hubs of stress-resistant local nuclear have been described as liquid-like biomolecular condensates and translation in cells engaging in hypoxic fermentation or are formed by a phenomenon called “phase separation” (11–14). responding to high temperature. Conceptually, this paper Liquid-like biomolecular condensates are typically dynamic as provides a physiological context for nuclear protein synthesis their constituent proteins are highly mobile and can exchange while highlighting a role for solid-like condensates in coordi- between the phase-separated bodies and the extracellular milieu nating complex biochemical reactions. (15–18). Fermentation-induced acidosis and heat shock also stimulate the formation of amyloid bodies: nuclear organelles Author contributions: P.R.T., M.B., T.E.A., and S.L. designed research; P.R.T., M.B., D.M., that can be readily distinguished from other compartments by N.C.B., D.W., C.C.K., T.D.B., H.D.G., and M.W. performed research; P.R.T., M.B., N.C.B., their large electron-dense fibers that stain with various amyloi- T.E.A., and S.L. analyzed data; and P.R.T., T.E.A., and S.L. wrote the paper. dophylic dyes (19). Amyloid bodies are constructed by a class of The authors declare no competing interest. inducible long noncoding RNA (lncRNA) derived from stimuli- This article is a PNAS Direct Submission. specific loci of the ribosomal intergenic spacer (rIGSRNA) (20–22). Published under the PNAS license. Mass spectrometry and photobleaching analyses revealed that 1P.R.T. and M.B. contributed equally to this work. amyloid bodies are enriched in a heterogeneous population of 2To whom correspondence may be addressed. Email: [email protected]. full-length proteins, many of which are immobile (23–26). As This article contains supporting information online at https://www.pnas.org/lookup/suppl/ such, amyloid bodies have been described as nondynamic, or doi:10.1073/pnas.2014457118/-/DCSupplemental. solid-like, condensates with amyloidogenic properties (27–30) Published February 10, 2021. PNAS 2021 Vol. 118 No. 7 e2014457118 https://doi.org/10.1073/pnas.2014457118 | 1of9 Downloaded by guest on September 24, 2021 fermentation, recapitulating various in vivo conditions including ribosomes (51, 53, 54). Consistent with previous reports (47), a ischemia (41) and microenvironments of aggressive tumors (42). slightly over background nuclear 6′FAM-puromycin signal was Under such anaerobic acidosis conditions (37 °C, 1% O2, pH observed in permeabilized cells that were maintained at basal 6.0), cells remain viable while displaying a marked decrease in conditions (Fig. 1C: first panel and fourth panel for low magni- global translation compared to their basal (37 °C, 21% O2, pH fication). In sharp contrast, intense nuclear 6′FAM-puromycin 7.4) or anaerobic neutral (37°, 1% O2, pH 7.4) counterparts (SI signal was detected in acidotic or thermal-stressed cells (Fig. 1C: Appendix, Fig. S1 A and B). To corroborate these results, we second and third panels and fifth panel for low magnification; performed immunofluorescence analysis on cells incubated with Fig. 1D). Anisomycin competes with puromycin for ribosomal puromycin (SI Appendix, Fig. S1C). Cells were treated with A-site binding although these molecules are structurally different emetine to prevent the synthesis of new proteins and fixed with and thus unlikely to bind to the same nonspecific sites (47, 55, the denaturant methanol to enable the detection of free and 56). Addition of anisomycin abolished in vitro 6′FAM- residual translating, ribosome-associated, puromycylated pep- puromycin incorporation (Fig. 1 C and D and SI Appendix, Fig. tides (43, 44). Under these experimental conditions, we observed S1 F and G), demonstrating that the puromycylation reactions abundant puromycin signal in the cytoplasm of cells maintained occur at bona fide ribosomal A-sites in the nucleus. Likewise, at basal (37 °C, 21% O2, pH 7.4) or hypoxic neutral (37°, 1% O2, addition of anisomycin abolished puromycin signal in intact cells pH 7.4) conditions (Fig. 1A). Surprisingly, puromycin signal was (Fig. 1A). The presence of nuclear ribosomes actively synthe- detected in nuclear foci, in addition to the cytoplasm, in cells sizing proteins was further demonstrated by the detection of engaging in anaerobic
Recommended publications
  • Translational Resistance of Late Alphavirus Mrna to Eif2␣ Phosphorylation: a Strategy to Overcome the Antiviral Effect of Protein Kinase PKR
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Translational resistance of late alphavirus mRNA to eIF2␣ phosphorylation: a strategy to overcome the antiviral effect of protein kinase PKR Iván Ventoso,1,3 Miguel Angel Sanz,2 Susana Molina,2 Juan José Berlanga,2 Luis Carrasco,2 and Mariano Esteban1 1Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología/CSIC, Cantoblanco, E-28049 Madrid, Spain; 2Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Facultad de Ciencias, Cantoblanco, E-28049 Madrid, Spain The double-stranded RNA-dependent protein kinase (PKR) is one of the four mammalian kinases that phosphorylates the translation initiation factor 2␣ in response to virus infection. This kinase is induced by interferon and activated by double-stranded RNA (dsRNA). Phosphorylation of eukaryotic initiation factor 2␣ (eIF2␣) blocks translation initiation of both cellular and viral mRNA, inhibiting virus replication. To counteract this effect, most viruses express inhibitors that prevent PKR activation in infected cells. Here we report that PKR is highly activated following infection with alphaviruses Sindbis (SV) and Semliki Forest virus (SFV), leading to the almost complete phosphorylation of eIF2␣. Notably, subgenomic SV 26S mRNA is translated efficiently in the presence of phosphorylated eIF2␣. This modification of eIF2 does not restrict viral replication; SV 26S mRNA initiates translation with canonical methionine in the presence of high levels of phosphorylated eIF2␣. Genetic and biochemical data showed a highly stable RNA hairpin loop located downstream of the AUG initiator codon that is necessary to provide translational resistance to eIF2␣ phosphorylation. This structure can stall the ribosomes on the correct site to initiate translation of SV 26S mRNA, thus bypassing the requirement for a functional eIF2.
    [Show full text]
  • Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
    Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10.
    [Show full text]
  • Composition of Herpesvirus Ribonucleoprotein Complexes †
    Abstract Composition of Herpesvirus Ribonucleoprotein Complexes † Eric S. Pringle 1,2,* and Craig McCormick 1,2 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada; [email protected] 2 Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada * Correspondence: [email protected] † Presented at Viruses 2020—Novel Concepts in Virology, Barcelona, Spain, 5–7 February 2020. Published: 4 July 2020 Abstract: Herpesvirus genomes are decoded by host RNA polymerase enzymes, generating messenger ribonucleotides (mRNA) that are post-transcriptionally modified and exported to the cytoplasm through the combined work of host and viral factors. These viral mRNA bear 5′-m7GTP caps and poly(A) tails that should permit the assembly of canonical host eIF4F cap-binding complexes to initiate protein synthesis. However, the precise mechanisms of translation initiation remain to be investigated for Kaposi’s sarcoma-associated herpesvirus (KSHV) and other herpesviruses. During KSHV lytic replication in lymphoid cells, the activation of caspases leads to the cleavage of eIF4G and depletion of eIF4F. Translating mRNPs depleted of eIF4F retain viral mRNA, suggesting that non-eIF4F translation initiation is sufficient to support viral protein synthesis. To identify proteins required to support viral protein synthesis, we isolated and characterized actively translating messenger ribonucleoprotein (mRNP) complexes by ultracentrifugation and sucrose-gradient fractionation followed by quantitative mass spectrometry. The abundance of host translation initiation factors available to initiate viral protein synthesis were comparable between cells undergoing KSHV lytic or latent replication. The translation initiation factors eIF4E2, NCBP1, eIF4G2, and eIF3d were detected in association with actively translating mRNP complexes during KSHV lytic replication, but their depletion by RNA silencing did not affect virion production.
    [Show full text]
  • Structural Characterization of the Human Eukaryotic Initiation Factor 3 Protein Complex by Mass Spectrometry*□S
    Supplemental Material can be found at: http://www.mcponline.org/cgi/content/full/M600399-MCP200 /DC1 Research Structural Characterization of the Human Eukaryotic Initiation Factor 3 Protein Complex by Mass Spectrometry*□S Eugen Damoc‡, Christopher S. Fraser§, Min Zhou¶, Hortense Videler¶, Greg L. Mayeurʈ, John W. B. Hersheyʈ, Jennifer A. Doudna§, Carol V. Robinson¶**, and Julie A. Leary‡ ‡‡ Protein synthesis in mammalian cells requires initiation The initiation phase of eukaryotic protein synthesis involves factor eIF3, an ϳ800-kDa protein complex that plays a formation of an 80 S ribosomal complex containing the initi- Downloaded from central role in binding of initiator methionyl-tRNA and ator methionyl-tRNAi bound to the initiation codon in the mRNA to the 40 S ribosomal subunit to form the 48 S mRNA. This is a multistep process promoted by proteins initiation complex. The eIF3 complex also prevents pre- called eukaryotic initiation factors (eIFs).1 Currently at least 12 mature association of the 40 and 60 S ribosomal subunits eIFs, composed of at least 29 distinct subunits, have been and interacts with other initiation factors involved in start identified (1). Mammalian eIF3, the largest initiation factor, is a codon selection. The molecular mechanisms by which multisubunit complex with an apparent molecular mass of www.mcponline.org eIF3 exerts these functions are poorly understood. Since ϳ800 kDa. This protein complex plays an essential role in its initial characterization in the 1970s, the exact size, translation by binding directly to the 40 S ribosomal subunit composition, and post-translational modifications of and promoting formation of the 43 S preinitiation complex ⅐ ⅐ mammalian eIF3 have not been rigorously determined.
    [Show full text]
  • Molecular Dynamics and Evolutionary Aspects of the Transition from the Fully Grown Oocyte to Embryo
    Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo Alexei V. Evsikov,1,5 Joel H. Graber,1 J. Michael Brockman,1,2 Aleš Hampl,3 Andrea E. Holbrook,1 Priyam Singh,1,2 John J. Eppig,1 Davor Solter,1,4 and Barbara B. Knowles1 1The Jackson Laboratory, Bar Harbor, Maine 04609, USA; 2 Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA; 3Masaryk University Brno and Institute of Experimental Medicine, 625 00 Brno, Czech Republic; 4Max Planck Institute of Immunobiology, 79108 Freiburg, Germany Fully grown oocytes (FGOs) contain all the necessary transcripts to activate molecular pathways underlying the oocyte-to-embryo transition (OET). To elucidate this critical period of development, an extensive survey of the FGO transcriptome was performed by analyzing 19,000 expressed sequence tags of the Mus musculus FGO cDNA library. Expression of 5400 genes and transposable elements is reported. For a majority of genes expressed in mouse FGOs, homologs transcribed in eggs of Xenopus laevis or Ciona intestinalis were found, pinpointing evolutionary conservation of most regulatory cascades underlying the OET in chordates. A large proportion of identified genes belongs to several gene families with oocyte-restricted expression, a likely result of lineage-specific genomic duplications. Gene loss by mutation and expression in female germline of retrotransposed genes specific to M. musculus is documented. These findings indicate rapid diversification of genes involved in female reproduction. Comparison of the FGO and two-cell embryo transcriptomes demarcated the processes important for oogenesis from those involved in OET and identified novel motifs in maternal mRNAs associated with transcript stability.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • CHARACTERIZING the INTERACTION BETWEEN PDCD4 and Eif3 with RESPECT to TRANSLATION REGULATION
    CHARACTERIZING THE INTERACTION BETWEEN PDCD4 AND eIF3 WITH RESPECT TO TRANSLATION REGULATION DIVYA SHARMA KHANDIGA Master of Science, Bangalore University, India 2009 A Thesis/Project Submitted to the School of Graduate Studies of the University of Lethbridge in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE Department of Chemistry and Biochemistry University of Lethbridge LETHBRIDGE, ALBERTA, CANADA © Divya Sharma Khandiga, 2017 CHARACTERIZING THE INTERACTION BETWEEN PDCD4 AND eIF3 WITH RESPECT TO TRANSLATION REGULATION DIVYA SHARMA KHANDIGA Date of Defense: December 12, 2017 Dr. N. Thakor Assistant Professor Ph.D. Thesis Supervisor Dr. M. Roussel Professor Ph.D. Thesis Co-supervisor Dr. U. Kothe Associate Professor Ph.D. Thesis Examination Committee Member Dr. R. Golsteyn Associate Professor Ph.D. Thesis Examination Committee Member Dr. R. Fahlman Professor Ph.D. External Examiner University of Alberta Edmonton, Alberta Dr. M. Gerken Professor Ph.D. Chair, Thesis Examination Committee Dedication To my beloved family and friends, My inspiration, my parents Subraya Sharma and Kamala Sharma My dearly loved husband Samarth, sister Dr. Lakshmi and brother-in-law Dr. Pradeep My cute little niece Mithali and nephew Aathreya My adorable brother Dr. Ganesh, sister Dr. Sharadha, Silly Vidya and little angels My loving cousins and in-laws I am grateful to have them in my life, it is their well wishes, teachings, support and love that have enabled me to achieve success and happiness in life. iii Abstract Programmed cell death protein 4 (PDCD4) inhibits IRES-mediated translation of anti- apoptotic proteins such as XIAP. PDCD4 was shown to directly interact with the XIAP IRES element and inhibit translation initiation.
    [Show full text]
  • Genes with 5' Terminal Oligopyrimidine Tracts Preferentially Escape Global Suppression of Translation by the SARS-Cov-2 NSP1 Protein
    Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Genes with 5′ terminal oligopyrimidine tracts preferentially escape global suppression of translation by the SARS-CoV-2 Nsp1 protein Shilpa Raoa, Ian Hoskinsa, Tori Tonna, P. Daniela Garciaa, Hakan Ozadama, Elif Sarinay Cenika, Can Cenika,1 a Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA 1Corresponding author: [email protected] Key words: SARS-CoV-2, Nsp1, MeTAFlow, translation, ribosome profiling, RNA-Seq, 5′ TOP, Ribo-Seq, gene expression 1 Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Viruses rely on the host translation machinery to synthesize their own proteins. Consequently, they have evolved varied mechanisms to co-opt host translation for their survival. SARS-CoV-2 relies on a non-structural protein, Nsp1, for shutting down host translation. However, it is currently unknown how viral proteins and host factors critical for viral replication can escape a global shutdown of host translation. Here, using a novel FACS-based assay called MeTAFlow, we report a dose-dependent reduction in both nascent protein synthesis and mRNA abundance in cells expressing Nsp1. We perform RNA-Seq and matched ribosome profiling experiments to identify gene-specific changes both at the mRNA expression and translation level. We discover that a functionally-coherent subset of human genes are preferentially translated in the context of Nsp1 expression. These genes include the translation machinery components, RNA binding proteins, and others important for viral pathogenicity. Importantly, we uncovered a remarkable enrichment of 5′ terminal oligo-pyrimidine (TOP) tracts among preferentially translated genes.
    [Show full text]
  • Early Alterations of RNA Metabolism and Splicing from Adult Corticospinal Neurons In
    bioRxiv preprint doi: https://doi.org/10.1101/667733; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Early alterations of RNA metabolism and splicing from adult corticospinal neurons in 2 an ALS mouse model 3 4 Christine Marques1,2, Mathieu Fischer1,3, Céline Keime4, Thibaut Burg1, Aurore Brunet1, 5 Jelena Scekic-Zahirovic1 & Caroline Rouaux1* 6 7 8 9 1Inserm UMR_S 1118, Mécanismes centraux et périphériques de la neurodégénérescence, 10 Faculté de Médecine, Université de Strasbourg, Strasbourg, France. 11 2Current address: Department of Neurobiology, Harvard Medical School, Boston, MA, USA; 12 Department of Neurology, Massachusetts General Hospital, Boston, MA, USA. 13 3Current address: Department of Paediatrics, John Radcliffe Hospital, University of Oxford, 14 Oxford, UK. 15 4Inserm UMR_S 1258, CRNS UMR_S 7104, Université de Strasbourg, IGBMC, Strasbourg, 16 France. 17 18 *Correspondence should be addressed to: C.R. ([email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/667733; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease clinically defined as the combined degeneration of corticospinal and corticobulbar neurons (CSN), and bulbar and spinal motor neurons (MN). A growing body of evidence points to the motor cortex, where CSN are located, as the potential initiation site of ALS. However, little is known about the spatiotemporal dynamics of CSN degeneration and the molecular pathways involved.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Comparative Sequence and Structure Analysis of Eif1a and Eif1ad Jielin Yu and Assen Marintchev*
    Yu and Marintchev BMC Structural Biology (2018) 18:11 https://doi.org/10.1186/s12900-018-0091-6 RESEARCHARTICLE Open Access Comparative sequence and structure analysis of eIF1A and eIF1AD Jielin Yu and Assen Marintchev* Abstract Background: Eukaryotic translation initiation factor 1A (eIF1A) is universally conserved in all organisms. It has multiple functions in translation initiation, including assembly of the ribosomal pre-initiation complexes, mRNA binding, scanning, and ribosomal subunit joining. eIF1A binds directly to the small ribosomal subunit, as well as to several other translation initiation factors. The structure of an eIF1A homolog, the eIF1A domain-containing protein (eIF1AD) was recently determined but its biological functions are unknown. Since eIF1AD has a known structure, as well as a homolog, whose structure and functions have been extensively studied, it is a very attractive target for sequence and structure analysis. Results: Structure/sequence analysis of eIF1AD found significant conservation in the surfaces corresponding to the ribosome-binding surfaces of its paralog eIF1A, including a nearly invariant surface-exposed tryptophan residue, which plays an important role in the interaction of eIF1A with the ribosome. These results indicate that eIF1AD may bind to the ribosome, similar to its paralog eIF1A, and could have roles in ribosome biogenenesis or regulation of translation. We identified conserved surfaces and sequence motifs in the folded domain as well as the C-terminal tail of eIF1AD, which are likely protein-protein interaction sites. The roles of these regions for eIF1AD function remain to be determined. We have also identified a set of trypanosomatid-specific surface determinants in eIF1A that could be a promising target for development of treatments against these parasites.
    [Show full text]