The Evolution of the Black Wildebeest, Connochaetes Gnou, and Modern Large Mammal Faunas in Central Southern Africa

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of the Black Wildebeest, Connochaetes Gnou, and Modern Large Mammal Faunas in Central Southern Africa THE EVOLUTION OF THE BLACK WILDEBEEST, CONNOCHAETES GNOU, AND MODERN LARGE MAMMAL FAUNAS IN CENTRAL SOUTHERN AFRICA by James Simpson Brink *** Dissertation presented for the Degree of Doctor of Philosophy at the University of Stellenbosch. Promoter: Prof. H.J. Deacon. December 2005 ii DECLARATION I, the undersigned, hereby declare that the work contained in this dissertation is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree. Signature: ……............................... Date: 22 March 2005 iii ABSTRACT This study investigates the evolution of modern mammalian faunas in the central interior of southern Africa by testing the hypothesis that the evolution of the black wildebeest, Connochaetes gnou, was directly associated with the emergence of Highveld-type open grasslands in the central interior. Southern Africa can be distinguished from other arid and semi-arid parts of the continent by the presence of an alliance of endemic grazing ungulates. The black wildebeest is characteristic of this alliance. Open habitats are essential for the reproductive behaviour of the black wildebeest, because territorial males require an unobstructed view of their territories in order to breed. The specialised territorial breeding behaviour of the black wildebeest is the reason why the black wildebeest is historically confined to the Highveld and Karoo areas and why it is reproductively isolated from sympatric blue wildebeest, Connochaetes taurinus. The finds from a number of fossil-rich localities, dating from the recent past to approximately a million years ago, have been identified. The remains referred to ancestral C. gnou have been subjected to detailed qualitative and quantitative osteological comparisons with cranial and post-cranial elements of modern and fossil reference specimens. This material includes extant southern African alcelaphines and fossil materials of C. gnou, the extinct giant wildebeest, Megalotragus priscus, and North African fossil alcelaphines. The results show that cranial changes in fossil C. gnou, particularly the more forward positioning of the horns, basal inflation of the horns and the resultant re-organisation of the posterior part of the skull, preceded other skeletal modifications. These cranial changes indicate a shift towards more specialised territorial breeding behaviour in the earliest ancestral black wildebeest, evident in the specimens of the c. million year old Free State site of Cornelia-Uitzoek. Since the territorial breeding behaviour of the black wildebeest can only function in open habitat and since cranial characters associated with its territorial breeding behaviour preceded other morphological changes, it is deduced that there was a close association between the speciation of C. gnou from a C. taurinus-like ancestor and the appearance of permanently open Highveld-type grasslands in the central interior of southern Africa. This deduction is supported by the lack of trophic distinction between the modern black and blue wildebeest, suggesting that the evolution of the black wildebeest was not accompanied by an ecological shift. It is concluded that the evolution of a distinct southern endemic wildebeest in the Pleistocene was associated with, and possibly driven by, a shift towards a more specialised kind of territorial breeding behaviour, which can only funtion in open habitat. There are significant post-speciation changes in body size and limb proportions of fossil C. gnou through time. The tempo of change has not been constant and populations in the central interior underwent marked reduction in body size in the last 5000 years. Vicariance in fossil C. gnou is evident in different rates of change that are recorded in the populations of generally smaller body size that became isolated in the Cape Ecozone. These daughter populations, the result of dispersals from the central interior, became extinct at the end of the Pleistocene. iv OPSOMMING Hierdie studie ondersoek die ontstaan van moderne soogdier-faunas in die sentrale binneland van suider-Afrika deur die hipotese te toets dat die evolusie van die swart-wildebees, Connochaetes gnou, ge-assosieer en moontlik die gevolg was van die verskyning van Hoëveld-tipe oop grasveld in die sentrale binneland. Suider-Afrika word onderskei van ander droë en half-droë streke van die kontinent deur ‘n alliansie van endemiese grasvretende hoefdiere. Die swart-wildebees is kenmerkend van hierdie alliansie. Oop habitat is noodsaaklik vir die paringsgedrag van die swart-wildebees, aangesien territoriale bulle ononderbroke sig van hul territoria benodig om te kan voortplant. Die gespesialiseerde territoriale paringsgedrag van die swart-wildebees verklaar waarom sy historiese verspreiding tot die Karoo and Hoëveld beperk was en ook sy reproduktiewe isolasie van simpatriese blou- wildebeeste, Connochaetes taurinus. Die fossiel-oorblyfsels van ‘n reeks lokaliteite, wat in ouderdom strek vanaf die onlangse verlede tot ongeveer een miljoen jaar, is uitgeken. Kraniale sowel as postkraniale elemente van voorouer-C. gnou is met elemente van moderne en fossiel eksemplare vergelyk. Hierdie eksemplare sluit materiaal in van moderne suider-Afrikaanse Alcelaphini, fossiel-materiaal van C. gnou, die uitgestorwe reuse-wildebees, Megalotragus priscus, en Noord-Afrikaanse fossiel-Alcelaphini. Die resultate wys dat sekere anatomiese aspekte van die skedel, soos die vooroor-gebuigde horingvorm, die vergrote horingbasisse en die gepaardgaande herorganisering van die skedelbasis, ander skelet-veranderinge voorafgegaan het in die materiaal van Cornelia-Uitzoek, ‘n Vrystaatse lokaliteit van ongeveer ‘n miljoen jaar oud. Hierdie kraniale veranderinge wys dat daar ‘n gedragsverkuiwing na ‘n meer gespesialiseerde vorm van territoriale gedrag by die eerste voorouer-swart-wildebeeste was. Aangesien die territoriale gedrag van swart- wildebeeste slegs kan funksioneer in oop habitat en aangesien kraniale aanpassings, wat met territoriale gedrag ge-assosieer word, veranderinge aan ander skelet-dele voorafgegaan het, word dit afgelei dat daar ‘n nou verband was tussen die ontstaan van C. gnou uit ‘n C. taurinus-agtige voorouer en die verskyning van Hoëveld-tipe oop grasvelde. Hierdie afleiding word gesteun deur die feit dat moderne swart- en blou-wildebeeste nie trofies onderskeibaar is nie, wat ook impliseer dat die evolusie van die swart-wildebees nie met ‘n ekologiese aanpassing gepaardgegaan het nie. Die slotsom is dat die evolusie van ‘n suidelike endemiese wildebees-spesie gedurende die Pleistoseen onderhewig was aan die verskyning van ‘n gespesialiseerde vorm van territoriale voortplantingsgedrag, wat slegs in oop habitat kan funksioneer. Daar is ook beduidende post-spesiasie veranderinge in liggaamsgrootte en liggaamsproporsies in fossiel-vorme van C. gnou. Die tempo van die veranderinge was nie konstant nie en populasies in die sentrale binneland het merkbaar verklein in die laaste 5000 jaar. Geografiese veranderinge is gedemonstreer in ge-isoleerde populasies met verkleinde liggaamsgrootte in die Kaapse Ekosone. Hierdie dogter-populasies, die produk van vroeëre biogeografiese verspreiding vanuit die sentrale binneland, het uitgesterf teen die einde van die Pleistoseen. v CONTENTS DECLARATION.............................................................................................................................. ii ABSTRACT..................................................................................................................................... xi OPSOMMING................................................................................................................................. iv CONTENTS...................................................................................................................................... v ACKNOWLEDGEMENTS........................................................................................................... xii LIST OF FIGURES ...................................................................................................................... xiv LIST OF TABLES ..................................................................................................................... xxvii CONVENTIONS......................................................................................................................... xxix CHAPTER 1: INTRODUCTION................................................................................................... 1 THE ARID CENTRES OF AFRICA............................................................................................................1 AIM OF THE STUDY....................................................................................................................................1 DISCOVERY OF A PLEISTOCENE CAPRINE IN SOUTHERN AFRICA ..........................................4 CHAPTER 2: HISTORICAL PERSPECTIVE ............................................................................ 5 INTRODUCTION ..........................................................................................................................................5 THE CENTRAL INTERIOR ........................................................................................................................5 AREAS NORTH AND WEST OF THE VAAL RIVER.............................................................................8 THE VAAL RIVER GRAVELS .................................................................................................................10
Recommended publications
  • Annual Mass Drownings of the Serengeti Wildebeest Migration Influence Nutrient Cycling and Storage in the Mara River
    Annual mass drownings of the Serengeti wildebeest migration influence nutrient cycling and storage in the Mara River Amanda L. Subaluskya,b,1, Christopher L. Duttona,b, Emma J. Rosib, and David M. Posta aDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511; and bCary Institute of Ecosystem Studies, Millbrook, NY 12545 Edited by James A. Estes, University of California, Santa Cruz, CA, and approved May 16, 2017 (received for review September 8, 2016) The annual migration of ∼1.2 million wildebeest (Connochaetes taur- hundreds to thousands of bison drowning in rivers of the western inus) through the Serengeti Mara Ecosystem is the largest remaining United States in the late 18th and early 19th centuries when overland migration in the world. One of the most iconic portions of large bison herds were still intact (16, 17). River basins that no their migration is crossing of the Mara River, during which thousands longer contain terrestrial migrations may have lost the annual drown annually. These mass drownings have been noted, but their input of resources from mass drownings, which may fundamen- frequency, size, and impact on aquatic ecosystems have not been tally alter how those river ecosystems function now compared quantified. Here, we estimate the frequency and size of mass drown- with the past. The more well-studied annual migrations of ings in the Mara River and model the fate of carcass nutrients through anadromous fishes and subsequent carcass inputs have been > the river ecosystem. Mass drownings ( 100 individuals) occurred in at shown to be important in rivers (18, 19), but equivalent exami- least 13 of the past 15 y; on average, 6,250 carcasses and 1,100 tons of nation of the influence of terrestrial migrations is lacking.
    [Show full text]
  • African Indaba
    Afriican Indaba eNewslletter Vollume. 5, Number 1 Page 1 AFRICAN INDABA Volume 5, Issue No 1 eNewsletter January 2007 Dedicated to the People and Wildlife of Africa to ensure that the conference did not turn into an emotional, pro- 1 Conservation, Wildlife & versus anti-hunting debate. Speakers, discussions, and ques- tions focused on the role of markets, property rights, and law for Markets the benefit of effective wildlife policy formation. Recommendations from the “Conservation, Wildlife & Mar- One of the first speakers was Richard Leakey, former Direc- kets” conference at the Strathmore Business School, Nai- tor of Kenya’s wildlife regulatory agency, Kenya Wildlife Service. robi, and its implications for Kenya’s wildlife policy review The content of Leakey’s presentation was a surprise to the audi- ence, given his past position statements. Leakey commented on Guest Editorial by Dr Stephanie S. Romañach the unsustainably and large scale of the illegal bushmeat trade. Wildlife conservation and wildlife policy are particularly emo- He stressed that hunting (in some form) has never stopped in tive topics in Kenya, often stimulating media coverage and in- Kenya despite the ban and is, in fact, widespread and out of tense debate. In 1977, Kenya imposed a ban on trophy hunting control. Leakey went on to say that decision makers should con- that is still in place today. sider a policy to regulate hunting, make hunting sustainable, and The Kenyan government has retained ownership of wildlife to allow people to derive value from wildlife. as well as user rights for the wildlife resource except for tourism. The ban on trophy hunting of almost three decades means Despite these policies, Kenya has remained a popular destina- that most Kenyans have never experienced regulated tourist tion among tourists, many choosing to visit the country for its trophy hunting.
    [Show full text]
  • Pending World Record Waterbuck Wins Top Honor SC Life Member Susan Stout Has in THIS ISSUE Dbeen Awarded the President’S Cup Letter from the President
    DSC NEWSLETTER VOLUME 32,Camp ISSUE 5 TalkJUNE 2019 Pending World Record Waterbuck Wins Top Honor SC Life Member Susan Stout has IN THIS ISSUE Dbeen awarded the President’s Cup Letter from the President .....................1 for her pending world record East African DSC Foundation .....................................2 Defassa Waterbuck. Awards Night Results ...........................4 DSC’s April Monthly Meeting brings Industry News ........................................8 members together to celebrate the annual Chapter News .........................................9 Trophy and Photo Award presentation. Capstick Award ....................................10 This year, there were over 150 entries for Dove Hunt ..............................................12 the Trophy Awards, spanning 22 countries Obituary ..................................................14 and almost 100 different species. Membership Drive ...............................14 As photos of all the entries played Kid Fish ....................................................16 during cocktail hour, the room was Wine Pairing Dinner ............................16 abuzz with stories of all the incredible Traveler’s Advisory ..............................17 adventures experienced – ibex in Spain, Hotel Block for Heritage ....................19 scenic helicopter rides over the Northwest Big Bore Shoot .....................................20 Territories, puku in Zambia. CIC International Conference ..........22 In determining the winners, the judges DSC Publications Update
    [Show full text]
  • Damaliscus Pygargus Phillipsi – Blesbok
    Damaliscus pygargus phillipsi – Blesbok colour pattern (Fabricius et al. 1989). Hybridisation between these taxa threatens the genetic integrity of both subspecies (Skinner & Chimimba 2005). Assessment Rationale Listed as Least Concern, as Blesbok are abundant on both formally and privately protected land. We estimate a minimum mature population size of 54,426 individuals (using a 70% mature population structure) across 678 protected areas and wildlife ranches (counts between 2010 and 2016). There are at least an estimated 17,235 animals (counts between 2013 and 2016) on formally Emmanuel Do Linh San protected areas across the country, with the largest subpopulation occurring on Golden Gate Highlands National Park. The population has increased significantly Regional Red List status (2016) Least Concern over three generations (1990–2015) in formally protected National Red List status (2004) Least Concern areas across its range and is similarly suspected to have increased on private lands. Apart from hybridisation with Reasons for change No change Bontebok, there are currently no major threats to its long- Global Red List status (2008) Least Concern term survival. Approximately 69% of Blesbok can be considered genetically pure (A. van Wyk & D. Dalton TOPS listing (NEMBA) None unpubl. data), and stricter translocation policies should be CITES listing None established to prevent the mixing of subspecies. Overall, this subspecies could become a keystone in the Endemic Yes sustainable wildlife economy. The common name, Blesbok, originates from ‘Bles’, the Afrikaans word for a ‘blaze’, which Distribution symbolises the white facial marking running down Historically, the Blesbok ranged across the Highveld from the animal’s horns to its nose, broken only grasslands of the Free State and Gauteng provinces, by the brown band above the eyes (Skinner & extending into northwestern KwaZulu-Natal, and through Chimimba 2005).
    [Show full text]
  • Geology of the Nairobi Region, Kenya
    % % % % % % % % %% %% %% %% %% %% %% % GEOLOGIC HISTORY % %% %% % % Legend %% %% %% %% %% %% %% % % % % % % HOLOCENE: %% % Pl-mv Pka %%% Sediments Mt Margaret U. Kerichwa Tuffs % % % % %% %% % Longonot (0.2 - 400 ka): trachyte stratovolcano and associated deposits. Materials exposed in this map % %% %% %% %% %% %% % section are comprised of the Longonot Ash Member (3.3 ka) and Lower Trachyte (5.6-3.3 ka). The % Pka' % % % % % % L. Kerichwa Tuff % % % % % % Alluvial fan Pleistocene: Calabrian % % % % % % % Geo% lo% gy of the Nairobi Region, Kenya % trachyte lavas were related to cone building, and the airfall tuffs were produced by summit crater formation % % % % % % % % % % % % % % % % % Pna % % % % %% % (Clarke et al. 1990). % % % % % % Pl-tb % % Narok Agglomerate % % % % % Kedong Lake Sediments Tepesi Basalt % % % % % % % % % % % % % % % % %% % % % 37.0 °E % % % % 36.5 °E % % % % For area to North see: Geology of the Kijabe Area, KGS Report 67 %% % % % Pnt %% % PLEISTOCENE: % % %% % % % Pl-kl %% % % Nairobi Trachyte % %% % -1.0 ° % % % % -1.0 ° Lacustrine Sediments % % % % % % % % Pleistocene: Gelasian % % % % % Kedong Valley Tuff (20-40 ka): trachytic ignimbrites and associated fall deposits created by caldera % 0 % 1800 % % ? % % % 0 0 % % % 0 % % % % % 0 % 0 8 % % % % % 4 % 4 Pkt % formation at Longonot. There are at least 5 ignimbrite units, each with a red-brown weathered top. In 1 % % % % 2 % 2 % % Kiambu Trachyte % Pl-lv % % % % % % % % % % %% % % Limuru Pantellerite % % % % some regions the pyroclastic glass and pumice has been
    [Show full text]
  • Fitzhenry Yields 2016.Pdf
    Stellenbosch University https://scholar.sun.ac.za ii DECLARATION By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: March 2016 Copyright © 2016 Stellenbosch University All rights reserved Stellenbosch University https://scholar.sun.ac.za iii GENERAL ABSTRACT Fallow deer (Dama dama), although not native to South Africa, are abundant in the country and could contribute to domestic food security and economic stability. Nonetheless, this wild ungulate remains overlooked as a protein source and no information exists on their production potential and meat quality in South Africa. The aim of this study was thus to determine the carcass characteristics, meat- and offal-yields, and the physical- and chemical-meat quality attributes of wild fallow deer harvested in South Africa. Gender was considered as a main effect when determining carcass characteristics and yields, while both gender and muscle were considered as main effects in the determination of physical and chemical meat quality attributes. Live weights, warm carcass weights and cold carcass weights were higher (p < 0.05) in male fallow deer (47.4 kg, 29.6 kg, 29.2 kg, respectively) compared with females (41.9 kg, 25.2 kg, 24.7 kg, respectively), as well as in pregnant females (47.5 kg, 28.7 kg, 28.2 kg, respectively) compared with non- pregnant females (32.5 kg, 19.7 kg, 19.3 kg, respectively).
    [Show full text]
  • Human Pressure Threaten Swayne's Hartebeest to Point of Local
    Research Article Volume 8:1,2020 Journal of Biodiversity and Endangered DOI: 10.24105/2332-2543.2020.8.239 Species ISSN: 2332-2543 Open Access Human Pressure Threaten Swayne’s Hartebeest to Point of Local Extinction from the Savannah Plains of Nech Sar National Park, South Rift Valley, Ethiopia Simon Shibru1*, Karen Vancampenhout2, Jozef Deckers2 and Herwig Leirs3 1Department of Biology, Arba Minch University, Arba Minch, Ethiopia 2Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200E, B-3001 Leuven, Belgium 3Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium Abstract We investigated the population size of the endemic and endangered Swayne’s Hartebeest (Alcelaphus buselaphus swaynei) in Nech Sar National Park from 2012 to 2014 and document the major threats why the species is on the verge of local extinction. The park was once known for its abundant density of Swayne’s Hartebeest. We used direct total count methods for the census. We administered semi-structured interviews and open-ended questionnaires with senior scouts who are a member of the local communities. Historical records were obtained to evaluate the population trends of the animals since 1974. The density of the animal decreased from 65 in 1974 to 1 individual per 100 km2 in 2014 with a decline of 98.5% in the past 40 years. The respondents agreed that the conservation status of the park was in its worst condition ever now with only 2 Swayne’s Hartebeest left, with a rapid decline from 4 individuals in 2012 and 12 individuals in 2009. Mainly hunting and habitat loss, but also unsuitable season of reproduction and shortage of forage as minor factors were identified as threats for the local extinction of the Swayne’s Hartebeests.
    [Show full text]
  • Hippotragus Equinus – Roan Antelope
    Hippotragus equinus – Roan Antelope authorities as there may be no significant genetic differences between the two. Many of the Roan Antelope in South Africa are H. e. cottoni or equinus x cottoni (especially on private properties). Assessment Rationale This charismatic antelope exists at low density within the assessment region, occurring in savannah woodlands and grasslands. Currently (2013–2014), there are an observed 333 individuals (210–233 mature) existing on nine formally protected areas within the natural distribution range. Adding privately protected subpopulations and an Cliff & Suretha Dorse estimated 0.8–5% of individuals on wildlife ranches that may be considered wild and free-roaming, yields a total mature population of 218–294 individuals. Most private Regional Red List status (2016) Endangered subpopulations are intensively bred and/or kept in camps C2a(i)+D*†‡ to exclude predators and to facilitate healthcare. Field National Red List status (2004) Vulnerable D1 surveys are required to identify potentially eligible subpopulations that can be included in this assessment. Reasons for change Non-genuine: While there was an historical crash in Kruger National Park New information (KNP) of 90% between 1986 and 1993, the subpopulation Global Red List status (2008) Least Concern has since stabilised at c. 50 individuals. Overall, over the past three generations (1990–2015), based on available TOPS listing (NEMBA) Vulnerable data for nine formally protected areas, there has been a CITES listing None net population reduction of c. 23%, which indicates an ongoing decline but not as severe as the historical Endemic Edge of Range reduction. Further long-term data are needed to more *Watch-list Data †Watch-list Threat ‡Conservation Dependent accurately estimate the national population trend.
    [Show full text]
  • Late Quaternary Extinction of Ungulates in Sub-Saharan Africa: a Reductionist's Approach
    Late Quaternary Extinction of Ungulates in Sub-Saharan Africa: a Reductionist's Approach Joris Peters Ins/itu/ für Palaeoanatomie, Domestikationsforschung und Geschichte der Tiermedizin, Universität München. Feldmochinger Strasse 7, D-80992 München, Germany AchilIes Gautier Laboratorium VDor Pa/eonlo/agie, Seclie Kwartairpaleo1ltologie en Archeozoölogie, Universiteit Gent, Krijgs/aon 2811S8, B-9000 Gent, Belgium James S. Brink National Museum, P. 0. Box 266. Bloemfontein 9300. Republic of South Africa Wim Haenen Instituut voor Gezandheidsecologie, Katholieke Universiteit Leuven, Capucijnenvoer 35, B-3000 Leuven, Belgium (Received 24 January 1992, revised manuscrip/ accepted 6 November 1992) Comparative osteomorphology and sta ti st ical analysis cf postcranial limb bone measurements cf modern African wildebeest (Collnochaetes), eland (Taura/ragus) and Africa n buffala (Sy" cer"s) have heen applied to reassess the systematic affiliations between these bovids and related extinct Pleistocene forms. The fossil sam pies come from the sites of Elandsfontein (Cape Province) .nd Flarisb.d (Orange Free State) in South Afrie • . On the basis of differenees in skull morphology and size of the appendicular skeleton between fossil and modern blaek wildebeest (ConlJochaeus gnou). the subspecies name anliquus, proposed earlier to designate the Pleistoeene form, ean be retained. The same taxonomie level is accepted for the large Pleistocene e1and, whieh could be named Taurolragus oryx antiquus. The long horned or giant buffa1o, Pelorovis antiquus, can be inc1uded in the polymorphous Syncerus caffer stock and could therefore be called Syncerus caffer antiquus. The ecology of Pleistocene and modern Connochaetes, Taurolragus and Syncerus is discussed. A relationship between herbivore body size and c1imate, as Bergmann's Rule predicts, could not be demonstrated.
    [Show full text]
  • Reproductive Seasonality in Captive Wild Ruminants: Implications for Biogeographical Adaptation, Photoperiodic Control, and Life History
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Reproductive seasonality in captive wild ruminants: implications for biogeographical adaptation, photoperiodic control, and life history Zerbe, Philipp Abstract: Zur quantitativen Beschreibung der Reproduktionsmuster wurden Daten von 110 Wildwiederkäuer- arten aus Zoos der gemässigten Zone verwendet (dabei wurde die Anzahl Tage, an denen 80% aller Geburten stattfanden, als Geburtenpeak-Breite [BPB] definiert). Diese Muster wurden mit verschiede- nen biologischen Charakteristika verknüpft und mit denen von freilebenden Tieren verglichen. Der Bre- itengrad des natürlichen Verbreitungsgebietes korreliert stark mit dem in Menschenobhut beobachteten BPB. Nur 11% der Spezies wechselten ihr reproduktives Muster zwischen Wildnis und Gefangenschaft, wobei für saisonale Spezies die errechnete Tageslichtlänge zum Zeitpunkt der Konzeption für freilebende und in Menschenobhut gehaltene Populationen gleich war. Reproduktive Saisonalität erklärt zusätzliche Varianzen im Verhältnis von Körpergewicht und Tragzeit, wobei saisonalere Spezies für ihr Körpergewicht eine kürzere Tragzeit aufweisen. Rückschliessend ist festzuhalten, dass Photoperiodik, speziell die abso- lute Tageslichtlänge, genetisch fixierter Auslöser für die Fortpflanzung ist, und dass die Plastizität der Tragzeit unterstützend auf die erfolgreiche Verbreitung der Wiederkäuer in höheren Breitengraden wirkte. A dataset on 110 wild ruminant species kept in captivity in temperate-zone zoos was used to describe their reproductive patterns quantitatively (determining the birth peak breadth BPB as the number of days in which 80% of all births occur); then this pattern was linked to various biological characteristics, and compared with free-ranging animals. Globally, latitude of natural origin highly correlates with BPB observed in captivity, with species being more seasonal originating from higher latitudes.
    [Show full text]
  • Connochaetes Gnou – Black Wildebeest
    Connochaetes gnou – Black Wildebeest Blue Wildebeest (C. taurinus) (Grobler et al. 2005 and ongoing work at the University of the Free State and the National Zoological Gardens), which is most likely due to the historic bottlenecks experienced by C. gnou in the late 1800s. The evolution of a distinct southern endemic Black Wildebeest in the Pleistocene was associated with, and possibly driven by, a shift towards a more specialised kind of territorial breeding behaviour, which can only function in open habitat. Thus, the evolution of the Black Wildebeest was directly associated with the emergence of Highveld-type open grasslands in the central interior of South Africa (Ackermann et al. 2010). Andre Botha Assessment Rationale Regional Red List status (2016) Least Concern*† This is an endemic species occurring in open grasslands in the central interior of the assessment region. There are National Red List status (2004) Least Concern at least an estimated 16,260 individuals (counts Reasons for change No change conducted between 2012 and 2015) on protected areas across the Free State, Gauteng, North West, Northern Global Red List status (2008) Least Concern Cape, Eastern Cape, Mpumalanga and KwaZulu-Natal TOPS listing (NEMBA) (2007) Protected (KZN) provinces (mostly within the natural distribution range). This yields a total mature population size of 9,765– CITES listing None 11,382 (using a 60–70% mature population structure). This Endemic Yes is an underestimate as there are many more subpopulations on wildlife ranches for which comprehensive data are *Watch-list Threat †Conservation Dependent unavailable. Most subpopulations in protected areas are stable or increasing.
    [Show full text]
  • Animals of Africa
    Silver 49 Bronze 26 Gold 59 Copper 17 Animals of Africa _______________________________________________Diamond 80 PYGMY ANTELOPES Klipspringer Common oribi Haggard oribi Gold 59 Bronze 26 Silver 49 Copper 17 Bronze 26 Silver 49 Gold 61 Copper 17 Diamond 80 Diamond 80 Steenbok 1 234 5 _______________________________________________ _______________________________________________ Cape grysbok BIG CATS LECHWE, KOB, PUKU Sharpe grysbok African lion 1 2 2 2 Common lechwe Livingstone suni African leopard***** Kafue Flats lechwe East African suni African cheetah***** _______________________________________________ Red lechwe Royal antelope SMALL CATS & AFRICAN CIVET Black lechwe Bates pygmy antelope Serval Nile lechwe 1 1 2 2 4 _______________________________________________ Caracal 2 White-eared kob DIK-DIKS African wild cat Uganda kob Salt dik-dik African golden cat CentralAfrican kob Harar dik-dik 1 2 2 African civet _______________________________________________ Western kob (Buffon) Guenther dik-dik HYENAS Puku Kirk dik-dik Spotted hyena 1 1 1 _______________________________________________ Damara dik-dik REEDBUCKS & RHEBOK Brown hyena Phillips dik-dik Common reedbuck _______________________________________________ _______________________________________________African striped hyena Eastern bohor reedbuck BUSH DUIKERS THICK-SKINNED GAME Abyssinian bohor reedbuck Southern bush duiker _______________________________________________African elephant 1 1 1 Sudan bohor reedbuck Angolan bush duiker (closed) 1 122 2 Black rhinoceros** *** Nigerian
    [Show full text]