Transformation Optics Applied to Plasmonics

Total Page:16

File Type:pdf, Size:1020Kb

Transformation Optics Applied to Plasmonics Imperial College London Department of Physics Transformation Optics Applied to Plasmonics Yu Luo Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy of Imperial College London and the Diploma of Imperial College London Condensed Matter Theory Group Department of Physics, Blackett Laboratory Imperial College London London SW7 2BZ, UK August 2012 1 Abstract Lately, transformation optics (TO) has driven the development of metamaterial science, providing a direct link between a desired electromagnetic phenomenon and the material response required for its occurrence. However, this powerful framework is not restricted to the metamaterial design, and it has recently been exploited to study surface plasmon assisted phenomena. In this thesis, we mainly focus on the general strategy based on TO to design and study analytically plasmonic devices capable of efficiently harvesting light over a broadband spectrum and achieving considerable field confinement and enhancement. Using TO, we show that a finite nanoparticle with sharp geometrical features can behave like an infinite plasmonic system, thereby allowing simultaneously a broad- band interaction with the incoming light as well as a spectacular nanofocusing of its energy. Various plasmonic structures are designed and studied, such as 2D crescents, groove/wedge like nanostructures, overlapping nanowires, and rough metal surfaces. Comprehensive discussions are also provided on practical issues of this problem. First, we discuss how the edge rounding at the sharp boundary affects the local field enhancement as well as the energy and bandwidth of each plasmonic resonance. In particular, the necessary conditions for achieving broadband light harvesting with blunt structures are highlighted. The TO approach is then applied to study the interaction between plasmonic nanoparticles. We demonstrate that the energy and spectral shape of the localized surface plasmon resonances can be precisely controlled by tuning the separation between the nanoparticles. Finally, we consider the extension of the TO framework to 3D geometries, and show that the 3D structure is more robust to radiative loss than its 2D counterpart. The physical insights into sharp and blunt plasmonic nanostructures presented in this thesis may be of great interest for the design of broadband light-harvesting devices, invisible and non-invasive biosensors, and slowing-light devices. 2 Declaration I hereby certify that the material presented in this thesis, which I now submitted for the award of Doctor of Philosophy of Imperial College London, is my own work unless otherwise cited or acknowledged within the body of the text. Yu Luo 3 Acknowledgement In the summer of 2009 I left my home country for the first time to study at Imperial College. Time flies and now I am about to get my PhD degree. This three years' time is full of fond memories. This thesis would not have been possible without the help and support of the kind people around me, to only some of whom it is possible to give particular mention here. First and foremost I want to give my deepest gratitude to my supervisor, Prof. Pendry. It is his help, support and encouragement that make my Ph.D research productive and stimulating. I am also thankful for his openness and the time he spent on listening to my ideas, some of which even sound crazy. The advice he gave me was always helpful and inspiring, and I was always overwhelmed by his unsurpassed knowledge of physics. His enthusiasm and commitment for his work has also made profound impact on me. Prof. Pendry has provided an example of being a great scientist and professor, making me eager to follow in his footsteps. It is always an honour to be his student. Many colleagues provided generous help during my study, and I am grateful to all of them for their assistance and support. In particular, I would like to thank Dr. Alexandre Aubry, Dr. Antonio Fernández-Domínguez, Dr. Wei Hsiung Wee, Dr. Rongkuo Zhao, and Dr. Kosmas Tsakmakidis for discussions and collaborations. My thanks also go to Prof. Stefan Maier who brought unique perspectives to my work. I appreciate the contributions of time and administrative support from Prof. Matthew Foulkes and Prof. Adrian Sutton throughout the years. I acknowledge Lee Family Scholarship for the financial support for my PhD study. I am appreciative of my fellow graduate students, Tristan West, James Varley, Aeneas Wiener for making my time at Imperial a more enjoyable experience. I'm most grateful to my parents who raised me with a love of science and supported me in all my pursuits, as always, for which my mere expression of thanks does not suffice. Last, but by no means least, I would like to thank my girlfriend Jingjing Zhang, to whom this thesis is dedicated. I appreciate the good times and hard times we spent together, and the tremendous support you have provided in the past three years. Thank you for always being there for me. You are the apple of my eye. Yu Luo 4 Contents LIST OF FIGURES................................................................................................................................7 LIST OF TABLES ................................................................................................................................17 LIST OF ABBREVIATIONS...............................................................................................................18 LIST OF PUBLICATIONS..................................................................................................................19 CHAPTER 1: INTRODUCTION .......................................................................................................21 1.1 THEORY OF SURFACE PLASMONS ...................................................................................................21 1.1.1 Surface Plasmon polaritons at metal/dielectric interfaces....................................................22 1.1.2 Excitation of surface plasmon polaritons..............................................................................29 1.1.3 Localized surface plasmons ..................................................................................................31 1.2 THEORY OF TRANSFORMATION OPTICS...........................................................................................36 1.2.1 Geometrical view of transformation optics ...........................................................................36 1.2.2 Principle of transformation optics approach ........................................................................38 1.2.3 Application of transformation optics.....................................................................................39 1.2.4 Conformal transformation.....................................................................................................41 1.3 THESIS OVERVIEW.........................................................................................................................43 CHAPTER 2: SINGULAR PLASMONIC STRUCTURES FOR BROADBAND LIGHT HARVESTING .....................................................................................................................................45 2.1 EXAMPLES OF TWO TYPICAL SINGULAR STRUCTURES ....................................................................46 2.2 GENERAL SINGULAR STRUCTURES.................................................................................................49 2.2.1 Transformation of geometries ...............................................................................................49 2.2.2 The surface plasmon excitations ...........................................................................................52 2.2.3 The divergent electric field....................................................................................................58 2.2.4 Coupling of a dipole to a metallic wedge..............................................................................61 2.2.5 Light harvesting properties of crescents with a nonzero vertex angle...................................62 2.3 SURFACE ENHANCED RAMAN SCATTERING FROM ROUGH METAL SURFACES ..................................64 2.3.1 Broadband Raman scattering responses ...............................................................................64 2.3.2 Raman signal enhancements .................................................................................................66 2.4 CONCLUSIONS................................................................................................................................70 CHAPTER 3: PLASMONIC NANOSTRUCTURES WITH BLUNT EDGES/CORNERS..........71 3.1 THE CONFORMAL TRANSFORMATION APPROACH ...........................................................................72 3.2 THE NANOCRESCENT CONTAINING BLUNT TIPS ..............................................................................74 3.2.1 The quantization of surface plasmon modes..........................................................................74 3.2.2 Designing blunt plasmonic structures for broadband light absorption.................................77 3.2.3 Nanofocusing with blunt nanostructures...............................................................................80 3.3 THE OVERLAPPING NANOWIRE DIMER WITH BLUNT CORNERS........................................................81 3.3.1 The analytical solution ..........................................................................................................82 3.2.2 The absorption property........................................................................................................84
Recommended publications
  • Electrostatics Vs Magnetostatics Electrostatics Magnetostatics
    Electrostatics vs Magnetostatics Electrostatics Magnetostatics Stationary charges ⇒ Constant Electric Field Steady currents ⇒ Constant Magnetic Field Coulomb’s Law Biot-Savart’s Law 1 ̂ ̂ 4 4 (Inverse Square Law) (Inverse Square Law) Electric field is the negative gradient of the Magnetic field is the curl of magnetic vector electric scalar potential. potential. 1 ′ ′ ′ ′ 4 |′| 4 |′| Electric Scalar Potential Magnetic Vector Potential Three Poisson’s equations for solving Poisson’s equation for solving electric scalar magnetic vector potential potential. Discrete 2 Physical Dipole ′′′ Continuous Magnetic Dipole Moment Electric Dipole Moment 1 1 1 3 ∙̂̂ 3 ∙̂̂ 4 4 Electric field cause by an electric dipole Magnetic field cause by a magnetic dipole Torque on an electric dipole Torque on a magnetic dipole ∙ ∙ Electric force on an electric dipole Magnetic force on a magnetic dipole ∙ ∙ Electric Potential Energy Magnetic Potential Energy of an electric dipole of a magnetic dipole Electric Dipole Moment per unit volume Magnetic Dipole Moment per unit volume (Polarisation) (Magnetisation) ∙ Volume Bound Charge Density Volume Bound Current Density ∙ Surface Bound Charge Density Surface Bound Current Density Volume Charge Density Volume Current Density Net , Free , Bound Net , Free , Bound Volume Charge Volume Current Net , Free , Bound Net ,Free , Bound 1 = Electric field = Magnetic field = Electric Displacement = Auxiliary
    [Show full text]
  • Transformation-Optics-Based Design of a Metamaterial Radome For
    IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES, VOL. 2, 2017 159 Transformation-Optics-Based Design of a Metamaterial Radome for Extending the Scanning Angle of a Phased-Array Antenna Massimo Moccia, Giuseppe Castaldi, Giuliana D’Alterio, Maurizio Feo, Roberto Vitiello, and Vincenzo Galdi, Fellow, IEEE Abstract—We apply the transformation-optics approach to the the initial focus on EM, interest has rapidly spread to other design of a metamaterial radome that can extend the scanning an- disciplines [4], and multiphysics applications are becoming in- gle of a phased-array antenna. For moderate enhancement of the creasingly relevant [5]–[7]. scanning angle, via suitable parameterization and optimization of the coordinate transformation, we obtain a design that admits a Metamaterial synthesis has several traits in common technologically viable, robust, and potentially broadband imple- with inverse-scattering problems [8], and likewise poses mentation in terms of thin-metallic-plate inclusions. Our results, some formidable computational challenges. Within the validated via finite-element-based numerical simulations, indicate emerging framework of “metamaterial-by-design” [9], the an alternative route to the design of metamaterial radomes that “transformation-optics” (TO) approach [10], [11] stands out does not require negative-valued and/or extreme constitutive pa- rameters. as a systematic strategy to analytically derive the idealized material “blueprints” necessary to implement a desired field- Index Terms—Metamaterials,
    [Show full text]
  • Review of Electrostatics and Magenetostatics
    Review of electrostatics and magenetostatics January 12, 2016 1 Electrostatics 1.1 Coulomb’s law and the electric field Starting from Coulomb’s law for the force produced by a charge Q at the origin on a charge q at x, qQ F (x) = 2 x^ 4π0 jxj where x^ is a unit vector pointing from Q toward q. We may generalize this to let the source charge Q be at an arbitrary postion x0 by writing the distance between the charges as jx − x0j and the unit vector from Qto q as x − x0 jx − x0j Then Coulomb’s law becomes qQ x − x0 x − x0 F (x) = 2 0 4π0 jx − xij jx − x j Define the electric field as the force per unit charge at any given position, F (x) E (x) ≡ q Q x − x0 = 3 4π0 jx − x0j We think of the electric field as existing at each point in space, so that any charge q placed at x experiences a force qE (x). Since Coulomb’s law is linear in the charges, the electric field for multiple charges is just the sum of the fields from each, n X qi x − xi E (x) = 4π 3 i=1 0 jx − xij Knowing the electric field is equivalent to knowing Coulomb’s law. To formulate the equivalent of Coulomb’s law for a continuous distribution of charge, we introduce the charge density, ρ (x). We can define this as the total charge per unit volume for a volume centered at the position x, in the limit as the volume becomes “small”.
    [Show full text]
  • Transformation Optics for Thermoelectric Flow
    J. Phys.: Energy 1 (2019) 025002 https://doi.org/10.1088/2515-7655/ab00bb PAPER Transformation optics for thermoelectric flow OPEN ACCESS Wencong Shi, Troy Stedman and Lilia M Woods1 RECEIVED 8 November 2018 Department of Physics, University of South Florida, Tampa, FL 33620, United States of America 1 Author to whom any correspondence should be addressed. REVISED 17 January 2019 E-mail: [email protected] ACCEPTED FOR PUBLICATION Keywords: thermoelectricity, thermodynamics, metamaterials 22 January 2019 PUBLISHED 17 April 2019 Abstract Original content from this Transformation optics (TO) is a powerful technique for manipulating diffusive transport, such as heat work may be used under fl the terms of the Creative and electricity. While most studies have focused on individual heat and electrical ows, in many Commons Attribution 3.0 situations thermoelectric effects captured via the Seebeck coefficient may need to be considered. Here licence. fi Any further distribution of we apply a uni ed description of TO to thermoelectricity within the framework of thermodynamics this work must maintain and demonstrate that thermoelectric flow can be cloaked, diffused, rotated, or concentrated. attribution to the author(s) and the title of Metamaterial composites using bilayer components with specified transport properties are presented the work, journal citation and DOI. as a means of realizing these effects in practice. The proposed thermoelectric cloak, diffuser, rotator, and concentrator are independent of the particular boundary conditions and can also operate in decoupled electric or heat modes. 1. Introduction Unprecedented opportunities to manipulate electromagnetic fields and various types of transport have been discovered recently by utilizing metamaterials (MMs) capable of achieving cloaking, rotating, and concentrating effects [1–4].
    [Show full text]
  • Controlling the Wave Propagation Through the Medium Designed by Linear Coordinate Transformation
    Home Search Collections Journals About Contact us My IOPscience Controlling the wave propagation through the medium designed by linear coordinate transformation This content has been downloaded from IOPscience. Please scroll down to see the full text. 2015 Eur. J. Phys. 36 015006 (http://iopscience.iop.org/0143-0807/36/1/015006) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 128.42.82.187 This content was downloaded on 04/07/2016 at 02:47 Please note that terms and conditions apply. European Journal of Physics Eur. J. Phys. 36 (2015) 015006 (11pp) doi:10.1088/0143-0807/36/1/015006 Controlling the wave propagation through the medium designed by linear coordinate transformation Yicheng Wu, Chengdong He, Yuzhuo Wang, Xuan Liu and Jing Zhou Applied Optics Beijing Area Major Laboratory, Department of Physics, Beijing Normal University, Beijing 100875, People’s Republic of China E-mail: [email protected] Received 26 June 2014, revised 9 September 2014 Accepted for publication 16 September 2014 Published 6 November 2014 Abstract Based on the principle of transformation optics, we propose to control the wave propagating direction through the homogenous anisotropic medium designed by linear coordinate transformation. The material parameters of the medium are derived from the linear coordinate transformation applied. Keeping the space area unchanged during the linear transformation, the polarization-dependent wave control through a non-magnetic homogeneous medium can be realized. Beam benders, polarization splitter, and object illu- sion devices are designed, which have application prospects in micro-optics and nano-optics.
    [Show full text]
  • Transformation Magneto-Statics and Illusions for Magnets
    OPEN Transformation magneto-statics and SUBJECT AREAS: illusions for magnets ELECTRONIC DEVICES Fei Sun1,2 & Sailing He1,2 TRANSFORMATION OPTICS APPLIED PHYSICS 1 Centre for Optical and Electromagnetic Research, Zhejiang Provincial Key Laboratory for Sensing Technologies, JORCEP, East Building #5, Zijingang Campus, Zhejiang University, Hangzhou 310058, China, 2Department of Electromagnetic Engineering, School of Electrical Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm, Sweden. Received 26 June 2014 Based on the form-invariant of Maxwell’s equations under coordinate transformations, we extend the theory Accepted of transformation optics to transformation magneto-statics, which can design magnets through coordinate 28 August 2014 transformations. Some novel DC magnetic field illusions created by magnets (e.g. rescaling magnets, Published cancelling magnets and overlapping magnets) are designed and verified by numerical simulations. Our 13 October 2014 research will open a new door to designing magnets and controlling DC magnetic fields. ransformation optics (TO), which has been utilized to control the path of electromagnetic waves1–7, the Correspondence and conduction of current8,9, and the distribution of DC electric or magnetic field10–20 in an unprecedented way, requests for materials T has become a very popular research topic in recent years. Based on the form-invariant of Maxwell’s equation should be addressed to under coordinate transformations, special media (known as transformed media) with pre-designed functionality have been designed by using coordinate transformations1–4. TO can also be used for designing novel plasmonic S.H. ([email protected]) nanostructures with broadband response and super-focusing ability21–23. By analogy to Maxwell’s equations, the form-invariant of governing equations of other fields (e.g.
    [Show full text]
  • Design Method for Transformation Optics Based on Laplace's Equation
    Design method for quasi-isotropic transformation materials based on inverse Laplace’s equation with sliding boundaries Zheng Chang1, Xiaoming Zhou1, Jin Hu2 and Gengkai Hu 1* 1School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China 2School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, P. R. China *Corresponding author: [email protected] Abstract: Recently, there are emerging demands for isotropic material parameters, arising from the broadband requirement of the functional devices. Since inverse Laplace’s equation with sliding boundary condition will determine a quasi-conformal mapping, and a quasi-conformal mapping will minimize the transformation material anisotropy, so in this work, the inverse Laplace’s equation with sliding boundary condition is proposed for quasi-isotropic transformation material design. Examples of quasi-isotropic arbitrary carpet cloak and waveguide with arbitrary cross sections are provided to validate the proposed method. The proposed method is very simple compared with other quasi-conformal methods based on grid generation tools. 1. Introduction The form invariance of Maxwell’s equations under coordinate transformations constructs the equivalence between the geometrical space and material space, the developed transformation optics theory [1,2] is opening a new field that may cover many aspects of physics and wave phenomenon. Transformation optics (TO) makes it possible to investigate celestial motion and light/matter behavior in laboratory environment by using equivalent materials [3]. Illusion optics [4] is also proposed based on transformation optics, which can design a device looking differently. The attractive application of transformation optics is the invisibility cloak, which covers objects without being detected [5].
    [Show full text]
  • We Continue to Compare the Electrostatic and Magnetostatic Fields. the Electrostatic Field Is Conservative
    We continue to compare the electrostatic and magnetostatic fields. The electrostatic field is conservative: This allows us to define the potential V: dl because a b is independent of the path. If a vector field has no curl (i.e., is conservative), it must be something's gradient. Gravity is conservative. Therefore you do see water flowing in such a loop without a pump in the physical world. For the magnetic field, If a vector field has no divergence (i.e., is solenoidal), it must be something's curl. In other words, the curl of a vector field has zero divergence. Let’s use another physical context to help you understand this math: Ampère’s law J ds 0 Kirchhoff's current law (KCL) S Since , we can define a vector field A such that Notice that for a given B, A is not unique. For example, if then , because Similarly, for the electrostatic field, the scalar potential V is not unique: If then You have the freedom to choose the reference (Ampère’s law) Going through the math, you will get Here is what means: Just notation. Notice that is a vector. Still remember what means for a scalar field? From a previous lecture: Recall that the choice for A is not unique. It turns out that we can always choose A such that (Ampère’s law) The choice for A is not unique. We choose A such that Here is what means: Notice that is a vector. Thus this is actually three equations: Recall the definition of for a scalar field from a previous lecture: Poisson’s equation for the magnetic field is actually three equations: Compare Poisson’s equation for the magnetic field with that for the electrostatic field: Given J, you can solve A, from which you get B by Given , you can solve V, from which you get E by Exams (Test 2 & Final) problems will not involve the vector potential.
    [Show full text]
  • A Unified Approach to Nonlinear Transformation Materials
    www.nature.com/scientificreports OPEN A Unifed Approach to Nonlinear Transformation Materials Sophia R. Sklan & Baowen Li The advances in geometric approaches to optical devices due to transformation optics has led to the Received: 9 October 2017 development of cloaks, concentrators, and other devices. It has also been shown that transformation Accepted: 9 January 2018 optics can be used to gravitational felds from general relativity. However, the technique is currently Published: xx xx xxxx constrained to linear devices, as a consistent approach to nonlinearity (including both the case of a nonlinear background medium and a nonlinear transformation) remains an open question. Here we show that nonlinearity can be incorporated into transformation optics in a consistent way. We use this to illustrate a number of novel efects, including cloaking an optical soliton, modeling nonlinear solutions to Einstein’s feld equations, controlling transport in a Debye solid, and developing a set of constitutive to relations for relativistic cloaks in arbitrary nonlinear backgrounds. Transformation optics1–9, which uses geometric coordinate transformations derive the materials requirements of arbitrary devices, is a powerful technique. Essentially, for any geometry there corresponds a material with identi- cal transport. With the correct geometry, it is possible to construct optical cloaks10–12 and concentrators13 as well as analogues of these devices for other waves14–18 and even for difusion19–26. While many interpretations and for- malisms of transformation optics exist, such as Jacobian transformations4, scattering matrices27–31, and conformal mappings3, one of the most theoretically powerful interpretations comes from the metric formalism32. All of these approaches agree that materials defne an efective geometry, however the metric formalism is important since it allows us to further interpret the geometry.
    [Show full text]
  • Roadmap on Transformation Optics 5 Martin Mccall 1,*, John B Pendry 1, Vincenzo Galdi 2, Yun Lai 3, S
    Page 1 of 59 AUTHOR SUBMITTED MANUSCRIPT - draft 1 2 3 4 Roadmap on Transformation Optics 5 Martin McCall 1,*, John B Pendry 1, Vincenzo Galdi 2, Yun Lai 3, S. A. R. Horsley 4, Jensen Li 5, Jian 6 Zhu 5, Rhiannon C Mitchell-Thomas 4, Oscar Quevedo-Teruel 6, Philippe Tassin 7, Vincent Ginis 8, 7 9 9 9 6 10 8 Enrica Martini , Gabriele Minatti , Stefano Maci , Mahsa Ebrahimpouri , Yang Hao , Paul Kinsler 11 11,12 13 14 15 9 , Jonathan Gratus , Joseph M Lukens , Andrew M Weiner , Ulf Leonhardt , Igor I. 10 Smolyaninov 16, Vera N. Smolyaninova 17, Robert T. Thompson 18, Martin Wegener 18, Muamer Kadic 11 18 and Steven A. Cummer 19 12 13 14 Affiliations 15 1 16 Imperial College London, Blackett Laboratory, Department of Physics, Prince Consort Road, 17 London SW7 2AZ, United Kingdom 18 19 2 Field & Waves Lab, Department of Engineering, University of Sannio, I-82100 Benevento, Italy 20 21 3 College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano 22 Science and Technology, Soochow University, Suzhou 215006, China 23 24 4 University of Exeter, Department of Physics and Astronomy, Stocker Road, Exeter, EX4 4QL United 25 26 Kingdom 27 5 28 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, 29 United Kingdom 30 31 6 KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden 32 33 7 Department of Physics, Chalmers University , SE-412 96 Göteborg, Sweden 34 35 8 Vrije Universiteit Brussel Pleinlaan 2, 1050 Brussel, Belgium 36 37 9 Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche, University of Siena, Via Roma, 38 39 56 53100 Siena, Italy 40 10 41 School of Electronic Engineering and Computer Science, Queen Mary University of London, 42 London E1 4FZ, United Kingdom 43 44 11 Physics Department, Lancaster University, Lancaster LA1 4 YB, United Kingdom 45 46 12 Cockcroft Institute, Sci-Tech Daresbury, Daresbury WA4 4AD, United Kingdom.
    [Show full text]
  • Electrostatics
    Ben Franklin, 1750 “Kite Experiment” – link between lightening and sparks Electrostatics “electrical” fire from the clouds Greeks noticed when they rubbed things against amber an invisible force of attraction occurred. Greek word for amber is elektron, which today represents the word “electrical” Electrostatics Study of electrical charges that can be collected and held in one place Energy at rest- nonmoving electric charge Involves: 1) electric charges, 2) forces between, & 3) their behavior in material An object that exhibits electrical interaction after rubbing is said to be charged Static electricity- electricity caused by friction Charged objects will eventually return to their neutral state Electric Charge “Charge” is a property of subatomic particles. Facts about charge: There are 2 types: positive (protons) and negative (electrons) Matter contains both types of charge ( + & -) occur in pairs, friction separates the two LIKE charges REPEL and OPPOSITE charges ATTRACT Charges are symbolic of fluids in that they can be in 2 states: STATIC or DYNAMIC. Microscopic View of Charge Electrical charges exist w/in atoms 1890, J.J. Thomson discovered the light, negatively charged particles of matter- Electrons 1909-1911 Ernest Rutherford, discovered atoms have a massive, positively charged center- Nucleus Positive nucleus balances out the negative electrons to make atom neutral Can remove electrons w/addition of energy, make atom positively charged or add to make them negatively charged ( called Ions) (+ cations) (- anions) Triboelectric Series Ranks materials according to their tendency to give up their electrons Material exchange electrons by the process of rubbing two objects Electric Charge – The specifics •The symbol for CHARGE is “q” •The SI unit is the COULOMB(C), named after Charles Coulomb •If we are talking about a SINGLE charged particle such as 1 electron or 1 proton we are referring to an ELEMENTARY charge and often use, Some important constants: e , to symbolize this.
    [Show full text]
  • Harnessing Transformation Optics for Understanding Electron Energy Loss and Cathodoluminescence
    Harnessing transformation optics for understanding electron energy loss and cathodoluminescence Yu Luo 1, 2 *, Matthias Kraft 1 *, and J. B. Pendry1 1 The Blackett Laboratory, Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom 2 School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue 639798, Singapore * These authors contributed equally Abstract As the continual experimental advances made in Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) open the door to practical exploitations of plasmonic effects in metal nanoparticles, there is an increasing need for precise interpretation and guidance of such experiments. Numerical simulations are available but lack physical insight, while traditional analytical approaches are rare and limited to studying specific, simple structures. Here, we propose a versatile and efficient method based on transformation optics which can fully characterize and model the EELS problems of nanoparticles of complex geometries. Detailed discussions are given on 2D and 3D nanoparticle dimers, where the frequency and time domain responses under electron beam excitations are derived. Significance Statements Critical to the wide applications of nanoplasmonics is the ability to probe the near-field electromagnetic interactions associated with the nanoparticles. Electron microscope technology has been developed to image materials at the subnanometer level, leading to experimental and theoretical breakthroughs in the field of plasmonics
    [Show full text]