RNA-Based Therapeutics: from Antisense Oligonucleotides to Mirnas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Trans-Acting Antisense Rnas Mediate Transcriptional Gene Cosuppression in S
Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Trans-acting antisense RNAs mediate transcriptional gene cosuppression in S. cerevisiae Jurgi Camblong,1 Nissrine Beyrouthy, Elisa Guffanti, Guillaume Schlaepfer, Lars M. Steinmetz,2 and Francxoise Stutz3 Department of Cell Biology and NCCR ‘‘Frontiers in Genetics’’ Program, University of Geneva, 1211 Geneva 4, Switzerland Homology-dependent gene silencing, a phenomenon described as cosuppression in plants, depends on siRNAs. We provide evidence that in Saccharomyces cerevisiae, which is missing the RNAi machinery, protein coding gene cosuppression exists. Indeed, introduction of an additional copy of PHO84 on a plasmid or within the genome results in the cosilencing of both the transgene and the endogenous gene. This repression is transcriptional and position-independent and requires trans-acting antisense RNAs. Antisense RNAs induce transcriptional gene silencing both in cis and in trans, and the two pathways differ by the implication of the Hda1/2/3 complex. We also show that trans-silencing is influenced by the Set1 histone methyltransferase, which promotes antisense RNA production. Finally we show that although antisense-mediated cis-silencing occurs in other genes, trans- silencing so far depends on features specific to PHO84. All together our data highlight the importance of noncoding RNAs in mediating RNAi-independent transcriptional gene silencing. [Keywords: Antisense RNA; cis and trans transcriptional gene silencing; PHO84; cosuppression; RNAi-independent TGS; noncoding RNA; S. cerevisiae] Supplemental material is available at http://www.genesdev.org. Received January 15, 2009; revised version accepted May 18, 2009. Eukaryotic gene expression is a complex process regu- recently reported (Camblong et al. -
Comparison of the Effects on Mrna and Mirna Stability Arian Aryani and Bernd Denecke*
Aryani and Denecke BMC Research Notes (2015) 8:164 DOI 10.1186/s13104-015-1114-z RESEARCH ARTICLE Open Access In vitro application of ribonucleases: comparison of the effects on mRNA and miRNA stability Arian Aryani and Bernd Denecke* Abstract Background: MicroRNA has become important in a wide range of research interests. Due to the increasing number of known microRNAs, these molecules are likely to be increasingly seen as a new class of biomarkers. This is driven by the fact that microRNAs are relatively stable when circulating in the plasma. Despite extensive analysis of mechanisms involved in microRNA processing, relatively little is known about the in vitro decay of microRNAs under defined conditions or about the relative stabilities of mRNAs and microRNAs. Methods: In this in vitro study, equal amounts of total RNA of identical RNA pools were treated with different ribonucleases under defined conditions. Degradation of total RNA was assessed using microfluidic analysis mainly based on ribosomal RNA. To evaluate the influence of the specific RNases on the different classes of RNA (ribosomal RNA, mRNA, miRNA) ribosomal RNA as well as a pattern of specific mRNAs and miRNAs was quantified using RT-qPCR assays. By comparison to the untreated control sample the ribonuclease-specific degradation grade depending on the RNA class was determined. Results: In the present in vitro study we have investigated the stabilities of mRNA and microRNA with respect to the influence of ribonucleases used in laboratory practice. Total RNA was treated with specific ribonucleases and the decay of different kinds of RNA was analysed by RT-qPCR and miniaturized gel electrophoresis. -
Exploring the Structure of Long Non-Coding Rnas, J
IMF YJMBI-63988; No. of pages: 15; 4C: 3, 4, 7, 8, 10 1 2 Rise of the RNA Machines: Exploring the Structure of 3 Long Non-Coding RNAs 4 Irina V. Novikova, Scott P. Hennelly, Chang-Shung Tung and Karissa Y. Sanbonmatsu Q15 6 Los Alamos National Laboratory, Los Alamos, NM 87545, USA 7 Correspondence to Karissa Y. Sanbonmatsu: [email protected] 8 http://dx.doi.org/10.1016/j.jmb.2013.02.030 9 Edited by A. Pyle 1011 12 Abstract 13 Novel, profound and unexpected roles of long non-coding RNAs (lncRNAs) are emerging in critical aspects of 14 gene regulation. Thousands of lncRNAs have been recently discovered in a wide range of mammalian 15 systems, related to development, epigenetics, cancer, brain function and hereditary disease. The structural 16 biology of these lncRNAs presents a brave new RNA world, which may contain a diverse zoo of new 17 architectures and mechanisms. While structural studies of lncRNAs are in their infancy, we describe existing 18 structural data for lncRNAs, as well as crystallographic studies of other RNA machines and their implications 19 for lncRNAs. We also discuss the importance of dynamics in RNA machine mechanism. Determining 20 commonalities between lncRNA systems will help elucidate the evolution and mechanistic role of lncRNAs in 21 disease, creating a structural framework necessary to pursue lncRNA-based therapeutics. 22 © 2013 Published by Elsevier Ltd. 24 23 25 Introduction rather than the exception in the case of eukaryotic 50 organisms. 51 26 RNA is primarily known as an intermediary in gene LncRNAs are defined by the following: (i) lack of 52 11 27 expression between DNA and proteins. -
Microrna-33A Regulates Cholesterol Synthesis and Cholesterol Efflux
Kostopoulou et al. Arthritis Research & Therapy (2015) 17:42 DOI 10.1186/s13075-015-0556-y RESEARCH ARTICLE Open Access MicroRNA-33a regulates cholesterol synthesis and cholesterol efflux-related genes in osteoarthritic chondrocytes Fotini Kostopoulou1,2, Konstantinos N Malizos2,3, Ioanna Papathanasiou1 and Aspasia Tsezou1,2,4* Abstract Introduction: Several studies have shown that osteoarthritis (OA) is strongly associated with metabolism-related disorders, highlighting OA as the fifth component of the metabolic syndrome (MetS). On the basis of our previous findings on dysregulation of cholesterol homeostasis in OA, we were prompted to investigate whether microRNA-33a (miR-33a), one of the master regulators of cholesterol and fatty acid metabolism, plays a key role in OA pathogenesis. Methods: Articular cartilage samples were obtained from 14 patients with primary OA undergoing total knee replacement surgery. Normal cartilage was obtained from nine individuals undergoing fracture repair surgery. Bioinformatics analysis was used to identify miR-33a target genes. miR-33a and sterol regulatory element-binding protein 2 (SREBP-2) expression levels were investigated using real-time PCR, and their expression was also assessed after treatment with transforming growth factor-β1(TGF-β1) in cultured chondrocytes.Aktphosphorylationafter treatment with both TGF-β1 and miR-33a inhibitor or TGF-β1 and miR-33a mimic was assessed by Western blot analysis. Furthermore, we evaluated the effect of miR-33a mimic and miR-33a inhibitor on Smad7,anegative regulator of TGF-β signaling, on cholesterol efflux-related genes, ATP-binding cassette transporter A1 (ABCA1), apolipoprotein A1 (ApoA1)andliverXreceptors(LXRα and LXRβ), as well as on matrix metalloproteinase-13 (MMP-13), using real-time PCR. -
Santaris Pharma A/S Advances a Second Drug from Its
Santaris Pharma A/S advances a second drug from its cardiometabolic program, SPC4955, inhibiting apoB, into Phase 1 clinical trials for the treatment of high cholesterol Phase 1 clinical study to assess safety and tolerability of SPC4955, a drug inhibiting synthesis of apolipoprotein B (apoB), a major protein component involved in the formation of LDL-C or “bad” cholesterol High cholesterol is a risk factor for cardiovascular disease and according to the World Health Organization, it is estimated to cause 18% of strokes and 56% of heart disease globally In preclinical studies, SPC4955 potently and dose-dependently reduced apoB levels resulting in significant and durable reductions in plasma levels of LDL-C and triglycerides Developed using Santaris Pharma A/S Locked Nucleic Acid Drug Platform, SPC4955 is the second to advance into Phase 1 clinical trials from the company’s multi-faceted cardiometabolic program aimed at helping patients achieve target LDL-C levels Hoersholm, Denmark/San Diego, California, May 11, 2011 — Santaris Pharma A/S, a clinical-stage biopharmaceutical company focused on the research and development of mRNA and microRNA targeted therapies, today announced that it has advanced a second drug from its cardiometabolic program, SPC4955 into Phase 1 clinical trials, for the treatment of high cholesterol. Developed using Santaris Pharma A/S proprietary Locked Nucleic Acid (LNA) Drug Platform, SPC4955 is a mRNA-targeted drug candidate that inhibits apolipoprotein B (apoB), a major protein component involved in the formation of low density lipoprotein cholesterol (LDL-C) or “bad” cholesterol. Cholesterol is an essential component of all cells and several important hormones, but cholesterol levels that are out of balance or too high overall lead to the formation of atherosclerotic plaques that cause cardiovascular diseases such as heart attacks or strokes. -
Mrna Vaccine Era—Mechanisms, Drug Platform and Clinical Prospection
International Journal of Molecular Sciences Review mRNA Vaccine Era—Mechanisms, Drug Platform and Clinical Prospection 1, 1, 2 1,3, Shuqin Xu y, Kunpeng Yang y, Rose Li and Lu Zhang * 1 State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai 200438, China; [email protected] (S.X.); [email protected] (K.Y.) 2 M.B.B.S., School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; [email protected] 3 Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China * Correspondence: [email protected]; Tel.: +86-13524278762 These authors contributed equally to this work. y Received: 30 July 2020; Accepted: 30 August 2020; Published: 9 September 2020 Abstract: Messenger ribonucleic acid (mRNA)-based drugs, notably mRNA vaccines, have been widely proven as a promising treatment strategy in immune therapeutics. The extraordinary advantages associated with mRNA vaccines, including their high efficacy, a relatively low severity of side effects, and low attainment costs, have enabled them to become prevalent in pre-clinical and clinical trials against various infectious diseases and cancers. Recent technological advancements have alleviated some issues that hinder mRNA vaccine development, such as low efficiency that exist in both gene translation and in vivo deliveries. mRNA immunogenicity can also be greatly adjusted as a result of upgraded technologies. In this review, we have summarized details regarding the optimization of mRNA vaccines, and the underlying biological mechanisms of this form of vaccines. Applications of mRNA vaccines in some infectious diseases and cancers are introduced. It also includes our prospections for mRNA vaccine applications in diseases caused by bacterial pathogens, such as tuberculosis. -
Patenting Interfering RNA
Patenting Interfering RNA J. Douglas Schultz SPE Art Unit 1635 (571) 272-0763 [email protected] Oligonucleotide Inhibitors: Mechanisms of Action RNAi - Mechanism of Action • dsRNA induces sequence-specific degradation of homologous gene transcripts • RISC metabolizes dsRNA to small 21-23- nucleotide siRNAs – RISC contains dsRNase (“Dicer”), ssRNase (Argonaut 2 or Ago2) • RISC utilizes antisense strand as “guide” to find cleavable target siRNA Mechanism of Action miRNA Mechanism of Action Interfering RNA Glossary of Terms • RNAi – RNA interference • dsRNA – double stranded RNA • siRNA – small interfering RNA, double stranded, 21-23 nucleotides • shRNA – short hairpin RNA (doubled stranded by virtue of a ssRNA folding back on itself) • miRNA – micro RNA • RISC – RNA-induced silencing complex – Dicer – RNase endonuclease siRNA miRNA • Exogenously delivered • Endogenously produced • 21-23mer dsRNA • 21-23mer dsRNA • Acts through RISC • Acts through RISC • Induces homologous target • Induces homologous target cleavage cleavage • Perfect sequence match • Imperfect sequence match – Results in target degradation – Results in translation arrest RNAi Patentability issues Sample Claims: • A siRNA that inhibits expression of a nucleic acid encoding protein X. OR • A siRNA comprising a 2’-modification, wherein said modification comprises 2’-fluoro, 2’-O-methyl, or 2’- deoxy. (Note: no target recited) OR • A method of reducing tumor cell growth comprising administering siRNA targeting protein X. RNAi Patentability Issues 35 U.S.C. 101 – Utility • Credible/Specific/Substantial/Well Established. • Used to attempt modulation of gene expression in human diseases • Routinely investigate gene function in a high throughput fashion or to (see Rana RT, Nat. Rev. Mol. Cell Biol. 2007, Vol. 8:23-36). -
(12) Patent Application Publication (10) Pub. No.: US 2004/0086860 A1 Sohail (43) Pub
US 20040O86860A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0086860 A1 Sohail (43) Pub. Date: May 6, 2004 (54) METHODS OF PRODUCING RNAS OF Publication Classification DEFINED LENGTH AND SEQUENCE (51) Int. Cl." .............................. C12Q 1/68; C12P 19/34 (76) Inventor: Muhammad Sohail, Marston (GB) (52) U.S. Cl. ............................................... 435/6; 435/91.2 Correspondence Address: MINTZ, LEVIN, COHN, FERRIS, GLOWSKY (57) ABSTRACT AND POPEO, PC. ONE FINANCIAL CENTER Methods of making RNA duplexes and single-stranded BOSTON, MA 02111 (US) RNAS of a desired length and Sequence based on cleavage of RNA molecules at a defined position, most preferably (21) Appl. No.: 10/264,748 with the use of deoxyribozymes. Novel deoxyribozymes capable of cleaving RNAS including a leader Sequence at a (22) Filed: Oct. 4, 2002 Site 3' to the leader Sequence are also described. Patent Application Publication May 6, 2004 Sheet 1 of 2 US 2004/0086860 A1 DNA Oligonucleotides T7 Promoter -TN-- OR 2N-2-N-to y Transcription Products GGGCGAAT-N-UU GGGCGAAT-N-UU w N Deoxyribozyme Cleavage - Q GGGCGAAT -------' Racction GGGCGAAT N-- UU N-UU ssRNA products N-UU Anneal ssRNA UU S-2N- UU siRNA product FIGURE 1: Flowchart summarising the procedure for siRNA synthesis. Patent Application Publication May 6, 2004 Sheet 2 of 2 US 2004/0086860 A1 Full-length transcript 3'-digestion product 5'-digestion product (5'GGGCGAATA) A: Production of single-stranded RNA templates by in vitro transcription and digestion With a deoxyribozyme V 2- 2 V 22inv 22 * 2 &3 S/AS - 88.8x, *...* or as IGFR -- is as 4. -
Ablation of Mir-144 Increases Vimentin Expression and Atherosclerotic Plaque Formation Quan He1, Fangfei Wang1, Takashi Honda1, Kenneth D
www.nature.com/scientificreports OPEN Ablation of miR-144 increases vimentin expression and atherosclerotic plaque formation Quan He1, Fangfei Wang1, Takashi Honda1, Kenneth D. Greis2 & Andrew N. Redington1* It has been suggested that miR-144 is pro-atherosclerotic via efects on reverse cholesterol transportation targeting the ATP binding cassette protein. This study used proteomic analysis to identify additional cardiovascular targets of miR-144, and subsequently examined the role of a newly identifed regulator of atherosclerotic burden in miR-144 knockout mice receiving a high fat diet. To identify afected secretory proteins, miR-144 treated endothelial cell culture medium was subjected to proteomic analysis including two-dimensional gel separation, trypsin digestion, and nanospray liquid chromatography coupled to tandem mass spectrometry. We identifed 5 gel spots representing 19 proteins that changed consistently across the biological replicates. One of these spots, was identifed as vimentin. Atherosclerosis was induced in miR-144 knockout mice by high fat diet and vascular lesions were quantifed by Oil Red-O staining of the serial sectioned aortic root and from en-face views of the aortic tree. Unexpectedly, high fat diet induced extensive atherosclerosis in miR-144 knockout mice and was accompanied by severe fatty liver disease compared with wild type littermates. Vimentin levels were reduced by miR-144 and increased by antagomiR-144 in cultured cardiac endothelial cells. Compared with wild type, ablation of the miR-144/451 cluster increased plasma vimentin, while vimentin levels were decreased in control mice injected with synthetic miR-144. Furthermore, increased vimentin expression was prominent in the commissural regions of the aortic root which are highly susceptible to atherosclerotic plaque formation. -
The Excludon: a New Concept in Bacterial Antisense RNA-Mediated
Nature Reviews Microbiology | AOP, published online 24 December 2013; doi:10.1038/nrmicro2934 PROGRESS this paradigm in the context of other, better characterized asRNA-mediated regulatory The excludon: a new concept in mechanisms. The excludon concept describes unusually long asRNAs that inhibit the bacterial antisense RNA-mediated expression of one group of genes while enhancing the expression of a second group gene regulation of genes. Thus, single transcripts have the ability to control divergent operons that often have opposing functions. Nina Sesto, Omri Wurtzel, Cristel Archambaud, Rotem Sorek and Pascale Cossart asRNAs in microbial transcriptomes Abstract | In recent years, non-coding RNAs have emerged as key regulators of gene asRNAs are encoded on one strand of the DNA and overlap a gene that is encoded on expression. Among these RNAs, the antisense RNAs (asRNAs) are particularly the opposite strand. Therefore, these cis- abundant, but in most cases the function and mechanism of action for a particular encoded asRNAs have perfect complementa‑ asRNA remains elusive. Here, we highlight a recently discovered paradigm termed rity to the sense transcript from the opposite the excludon, which defines a genomic locus encoding an unusually long asRNA that DNA strand. The regulatory role of asRNAs spans divergent genes or operons with related or opposing functions. Because these was first reported more than 30 years ago, in the case of plasmid- and transposon-encoded asRNAs can inhibit the expression of one operon while functioning as an mRNA for asRNAs in Escherichia coli, when the asRNAs the adjacent operon, they act as fine-tuning regulatory switches in bacteria. -
Download Article (PDF)
DNA and RNA Nanotechnology 2015; 2: 42–52 Mini review Open Access Martin Panigaj*, Jakob Reiser Aptamer guided delivery of nucleic acid-based nanoparticles DOI 10.1515/rnan-2015-0005 Evolution of Ligands by Exponential enrichment) [4,5]. Received July 15, 2015; accepted October 3, 2015 Nucleic acid-based aptamers are especially well suited Abstract: Targeted delivery of bioactive compounds is a for the delivery of nucleic acid-based therapeutics. Any key part of successful therapies. In this context, nucleic nucleic acid with therapeutic potential can be linked acid and protein-based aptamers have been shown to to an aptamer sequence [6], resulting in a bivalent bind therapeutically relevant targets including receptors. molecule endowed with a targeting aptamer moiety and In the last decade, nucleic acid-based therapeutics a functional RNA/DNA moiety like a small interfering coupled to aptamers have emerged as a viable strategy for RNA (siRNA), a micro RNA (miRNA), a miRNA antagonist cell specific delivery. Additionally, recent developments (antimiR), deoxyribozymes (DNAzymes), etc. In addition in nucleic acid nanotechnology offer an abundance of to the specific binding, many aptamers upon receptor possibilities to rationally design aptamer targeted RNA recognition elicit antagonistic or agonistic responses that, or DNA nanoparticles involving combinatorial use of in combination with conjugated functional nucleic acids various intrinsic functionalities. Although a host of issues have the potential of synergism. Since the first report including stability, safety and intracellular trafficking describing an aptamer-siRNA delivery approach in 2006 remain to be addressed, aptamers as simple functional many functional RNAs and DNAs conjugated to aptamer chimeras or as parts of multifunctional self-assembled sequences have been tested in vitro and in vivo [7-9]. -
Replication and Kinetic Trapping of Nucleic Acids in Alternative Environments
REPLICATION AND KINETIC TRAPPING OF NUCLEIC ACIDS IN ALTERNATIVE ENVIRONMENTS A Dissertation Presented to The Academic Faculty by Adriana Lozoya Colinas In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Chemistry and Biochemistry Georgia Institute of Technology December 2020 COPYRIGHT © 2020 BY ADRIANA LOZOYA COLINAS REPLICATION AND KINETIC TRAPPING OF NUCLEIC ACIDS IN ALTERNATIVE ENVIRONMENTS Approved by: Dr. Nicholas V. Hud, Advisor Dr. Amanda Stockton School of Chemistry and Biochemistry School of Chemistry and Biochemistry Georgia Institute of Technology Georgia Institute of Technology Dr. Martha A. Grover Dr. Adegboyega (Yomi) Oyelere School of Chemical & Biomolecular School of Chemistry and Biochemistry Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Loren Williams School of Chemistry and Biochemistry Georgia Institute of Technology Date Approved: October 16, 2020 ACKNOWLEDGEMENTS I would like to thank my mom and dad for all their support and setting up an example for me to follow. I really appreciate everything you have done to encourage me to succeed and follow my dreams. I want to thank Mario for always supporting me. I know it hasn’t always been easy being far away, thank you for being patient and supportive with me. Thank you for the time and adventures we lived together. To all my Latino family at Georgia Tech, thank you for making me feel closer to home. We spent a lot of time together, learned a lot from each other and shared our culture, all of which have made my PhD experience more enjoyable. I would also like to acknowledge my advisor, Nick Hud, for being supportive and sharing his passion for science with me.