Grant Kyne Categorising Use Patterns of Non

Total Page:16

File Type:pdf, Size:1020Kb

Grant Kyne Categorising Use Patterns of Non https://link.springer.com/article/10.1007%2Fs11160-019-09576-w POSTPRINT or read published version online https://rdcu.be/bRuYx provided by the Springer Nature SharedIt content-sharing initiative. 1 Running Title: 2 Non-marine elasmobranchs review 3 4 Categorising use patterns of non-marine environments by elasmobranchs and a review of their 5 extinction risk 6 7 Michael I. Grant1*, Peter M. Kyne2, Colin A. Simpfendorfer1, William T. White3,4 and 8 Andrew Chin1 9 10 1Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and 11 Engineering, James Cook University, 1 James Cook Drive, Townsville, Qld 4811, Australia. 12 2Research Institute for the Environment and Livelihoods, Charles Darwin University, 13 Ellengowan Drive, Darwin 0909, Northern Territory, Australia. 14 3CSIRO Oceans and Atmosphere, 3–4 Castray Esplanade, Hobart, Tas. 7004, Australia. 15 4 Australian National Fish Collection, CSIRO National Research Collections Australia, 16 Hobart, Tas. 7004, Australia. 17 *Corresponding author: [email protected] 18 19 Acknowledgements: 20 The authors wish to extend their thanks to Stacy Beirwagon for valuable assistance with 21 producing maps for this manuscript. We also thank the Save Our Seas Foundation for their 22 ongoing support of our research. MIG was supported by an Australian Post Graduate Award, 23 and PMK was supported by the Shark Conservation Fund, and the Marine Biodiversity Hub, a 24 collaborative partnership supported through funding from the Australian Government's 25 National Environmental Science Program. Finally, we thank three anonymous reviewers for 26 their helpful comments on this MS. 27 https://www.nespmarine.edu.au/document/categorising-use-patterns-non- 1 marine-environments-elasmobranchs-and-review-their-extinction https://link.springer.com/article/10.1007%2Fs11160-019-09576-w POSTPRINT or read published version online https://rdcu.be/bRuYx provided by the Springer Nature SharedIt content-sharing initiative. 28 Abstract 29 As the state of non-marine aquatic environments (freshwater and estuarine 30 environments with salinities ≤ 30 ppt) continues to decline globally, there is increasing concern 31 for elasmobranchs (sharks and rays) that use them at critical stages of their life history. Due to 32 a range of impediments including unresolved taxonomy, lack of fisheries data, and poor public 33 perception, our knowledge of elasmobranchs in non-marine environments has lagged behind 34 marine species. Here, we refine previous categorisations of elasmobranchs that occur in non- 35 marine environments by reviewing the timing and duration of freshwater (≤ 5ppt) and/or 36 estuarine (>5 to ≤ 30 ppt) habitat use throughout each species’ life history. We identified five 37 categories describing elasmobranchs in non-marine environments: 1) freshwater obligates (43 38 spp.); 2) euryhaline generalists (10 spp.); 3) estuarine generalists (19 spp.); 4) non-marine 39 transients; 5) non-marine vagrants. Criteria for species inclusion is provided for all categories, 40 and species lists are presented for categories 1–3. Euryhaline and estuarine generalists had the 41 highest number of species that are threatened with extinction on the IUCN Red List of 42 Threatened Species (50% and 65%, respectively), and freshwater obligate species have a very 43 high portion of Data Deficient and Not Evaluated species (77%). The refinement of non-marine 44 elasmobranch categories will aid in our understanding of elasmobranchs that occur in non- 45 marine environments, helping facilitate more strategic conservation and management 46 initiatives. Research on the biology of elasmobranchs and their human interactions in non- 47 marine environments are suggested, as this will lead to better availability of information for 48 conservation and management. 49 50 Key words: Conservation; Elasmobranchs; Estuaries; Euryhaline; Freshwater; Management 51 52 53 54 https://www.nespmarine.edu.au/document/categorising-use-patterns-non- 2 marine-environments-elasmobranchs-and-review-their-extinction https://link.springer.com/article/10.1007%2Fs11160-019-09576-w POSTPRINT or read published version online https://rdcu.be/bRuYx provided by the Springer Nature SharedIt content-sharing initiative. 55 56 Introduction 57 Elasmobranchs (sharks and rays) that use non-marine environments (salinities < 30 ppt, 58 McLusky 1993) during critical stages of their life history are one of the most poorly understood 59 and threatened groups of vertebrates (Compagno and Cook 1995; Dulvy et al. 2014). 60 Elasmobranchs occurring in these environments may be obligate freshwater species or 61 euryhaline species (Lucifora et al. 2015). Approximately 56 (~5%) of all elasmobranch species 62 are known to regularly occur in low salinity environments (Lucifora et al. 2015). Most of these 63 species are rays from the families Potamotrygonidae (neotropical stingrays) and Dasyatidae 64 (stingrays) that reside exclusively in freshwater throughout their entire life history. Meanwhile, 65 only a few elasmobranchs are euryhaline, able to transition between marine and freshwater 66 environments for prolonged periods e.g. bull shark (Carcharhinus leucas) and largetooth 67 sawfish (Pristis pristis). Almost all freshwater and euryhaline elasmobranchs occur across 68 tropical latitudes with a few species also extending marginally into temperate zones such as C. 69 leucas and green sawfish (Pristis zijsron), while the Maugean skate (Zearaja maugeana) occurs 70 exclusively in temperate waters of Tasmania, Southeastern Australia (Compagno 2002; 71 Compagno and Cook 1995). 72 73 With most elasmobranchs that use non-marine environments occurring in tropical latitudes, 74 they have been exposed to a range of anthropogenic pressures associated with the higher levels 75 of human population growth in tropical regions (Collen et al. 2014; Smith 2003). Fisheries 76 pressure (mostly commercial but also artisanal and recreational) is the primary threat to 77 elasmobranchs in freshwater and estuarine environments (Kyne and Feutry 2017; Lucifora et 78 al. 2015; Lucifora et al. 2017). River engineering, habitat destruction, and pollution also pose 79 considerably greater threat to elasmobranchs in non-marine environments, compared to species 80 that use only marine environments (Compagno and Cook 1995; Dulvy et al. 2014; Lucifora et 81 al. 2016; White and Kyne 2010). Elasmobranchs are inherently susceptible to population https://www.nespmarine.edu.au/document/categorising-use-patterns-non- 3 marine-environments-elasmobranchs-and-review-their-extinction https://link.springer.com/article/10.1007%2Fs11160-019-09576-w POSTPRINT or read published version online https://rdcu.be/bRuYx provided by the Springer Nature SharedIt content-sharing initiative. 82 decline due to low productivity, which includes slow growth, late age-at-maturity, longevity, 83 low fecundity, low natural mortality, and often protracted breeding cycles (Cortés 2000). These 84 ‘slow’ life history traits are particularly unfavourable in spatially-confined freshwater and 85 estuarine environments, where population size is inherently constrained (Ballantyne and 86 Robinson 2010). 87 88 Temporally, freshwater and estuarine environments are much more variable in their physical 89 parameters (e.g. temperature, salinity, turbidity, dissolved oxygen, water flow) compared to 90 marine environments (McLusky 1993; Pinto and Marques 2015). Furthermore, it is likely that 91 fluctuations in these physical parameters will become more frequent and severe with climate 92 change (Lennox et al. 2019). Unlike their marine counterparts, elasmobranchs in freshwater 93 and estuarine environments cannot always readily escape unfavourable environmental and 94 anthropogenic pressures (Compagno and Cook 1995). Nor have they evolved strategies such 95 as rapid growth, short life cycles or the ability to aestivate or breath air in order to outlast 96 unfavourable environmental conditions like some teleost fishes (Compagno 2002). 97 98 In recent decades, significant concern has been raised about the status of freshwater and 99 euryhaline elasmobranch populations (Dulvy et al. 2014; Lucifora et al. 2015). Many species 100 have become increasingly threatened and rapid local extinctions have been observed in regions 101 of dense human population (Dulvy et al. 2014; Dulvy et al. 2016; Moore 2017). Of the 33 102 freshwater species identified in Dulvy et al. (2014) (a grouping which includes obligate 103 freshwater and euryhaline species), 12 are listed as threatened with extinction on the 104 International Union for the Conservation of Nature (IUCN) Red List of Threatened Species 105 (‘the Red List’) (IUCN 2018). The conservation status of euryhaline elasmobranchs indicates 106 they have the highest susceptibility to negative anthropogenic pressures. This likely because 107 they move between freshwater and marine environments during their life history, thereby 108 increasing potential for exposure across a range of environments (Compagno and Cook 1995). https://www.nespmarine.edu.au/document/categorising-use-patterns-non- 4 marine-environments-elasmobranchs-and-review-their-extinction https://link.springer.com/article/10.1007%2Fs11160-019-09576-w POSTPRINT or read published version online https://rdcu.be/bRuYx provided by the Springer Nature SharedIt content-sharing initiative. 109 Sawfishes (Pristidae) for example, are one of the most threatened marine vertebrate families 110 with all five species assessed as either Critically Endangered
Recommended publications
  • 13914444D46c0aa91d02e31218
    2 Breeding of wild and some domestic animals at regional zoological institutions in 2013 3 РЫБЫ P I S C E S ВОББЕЛОНГООБРАЗНЫЕ ORECTOLOBIFORMES Сем. Азиатские кошачьи акулы (Бамбуковые акулы) – Hemiscyllidae Коричневополосая бамбуковая акула – Chiloscyllium punctatum Brownbanded bambooshark IUCN (NT) Sevastopol 20 ХВОСТОКОЛООБРАЗНЫЕ DASYATIFORMES Сем. Речные хвостоколы – Potamotrygonidae Глазчатый хвостокол (Моторо) – Potamotrygon motoro IUCN (DD) Ocellate river stingray Sevastopol - ? КАРПООБРАЗНЫЕ CYPRINIFORMES Сем. Цитариновые – Citharinidae Серебристый дистиход – Distichodusaffinis (noboli) Silver distichodus Novosibirsk 40 Сем. Пираньевые – Serrasalmidae Серебристый метиннис – Metynnis argenteus Silver dollar Yaroslavl 10 Обыкновенный метиннис – Metynnis schreitmuelleri (hypsauchen) Plainsilver dollar Nikolaev 4; Novosibirsk 100; Kharkov 20 Пятнистый метиннис – Metynnis maculatus Spotted metynnis Novosibirsk 50 Пиранья Наттерера – Serrasalmus nattereri Red piranha Novosibirsk 80; Kharkov 30 4 Сем. Харацидовые – Characidae Красноплавничный афиохаракс – Aphyocharax anisitsi (rubripinnis) Bloodfin tetra Киев 5; Perm 10 Парагвайский афиохаракс – Aphyocharax paraquayensis Whitespot tetra Perm 11 Рубиновый афиохаракс Рэтбина – Aphyocharax rathbuni Redflank bloodfin Perm 10 Эквадорская тетра – Astyanax sp. Tetra Perm 17 Слепая рыбка – Astyanax fasciatus mexicanus (Anoptichthys jordani) Mexican tetra Kharkov 10 Рублик-монетка – Ctenobrycon spilurus (+ С. spilurusvar. albino) Silver tetra Kharkov 20 Тернеция (Траурная тетра) – Gymnocorymbus
    [Show full text]
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • Shark and Ray Products in the Processing Centres Of
    S H O R T R E P O R T ALIFA BINTHA HAQUE BINTHA ALIFA 6 TRAFFIC Bulletin Vol. 30 No. 1 (2018) TRAFFIC Bulletin 30(1) 1 May 2018 FINAL.indd 8 5/1/2018 5:04:26 PM S H O R T R E P O R T OBSERVATIONS OF SHARK AND RAY Introduction PRODUCTS IN THE PROCESSING early 30% of all shark and ray species are now designated as Threatened or Near Threatened with extinction CENTRES OF BANGLADESH, according to the IUCN Red List of Threatened Species. This is a partial TRADEB IN CITES SPECIES AND understanding of the threat status as 47% of shark species have not CONSERVATION NEEDS yet been assessed owing to data deficiency (Camhi et al., 2009;N Bräutigam et al., 2015; Dulvy et al., 2014). Many species are vulnerable due to demand for their products Alifa Bintha Haque, and are particularly prone to unsustainable fishing practices Aparna Riti Biswas and (Schindler et al., 2002; Clarke et al., 2007; Dulvy et al., Gulshan Ara Latifa 2008; Graham et al., 2010; Morgan and Carlson, 2010). Sharks are exploited primarily for their fins, meat, cartilage, liver oil and skin (Clarke, 2004), whereas rays are targeted for their meat, skin, gill rakers and livers. Most shark catch takes place in response to demand for the animals’ fins, which command high prices (Jabado et al., 2015). Shark fin soup is a delicacy in many Asian countries—predominantly China—and in many other countries (Clarke et al., 2007). Apart from the fins being served in high-end restaurants, there is a demand for other products in different markets and by different consumer groups, and certain body parts are also used medicinally (Clarke et al., 2007).
    [Show full text]
  • Species Bathytoshia Brevicaudata (Hutton, 1875)
    FAMILY Dasyatidae Jordan & Gilbert, 1879 - stingrays SUBFAMILY Dasyatinae Jordan & Gilbert, 1879 - stingrays [=Trygonini, Dasybatidae, Dasybatidae G, Brachiopteridae] GENUS Bathytoshia Whitley, 1933 - stingrays Species Bathytoshia brevicaudata (Hutton, 1875) - shorttail stingray, smooth stingray Species Bathytoshia centroura (Mitchill, 1815) - roughtail stingray Species Bathytoshia lata (Garman, 1880) - brown stingray Species Bathytoshia multispinosa (Tokarev, in Linbergh & Legheza, 1959) - Japanese bathytoshia ray GENUS Dasyatis Rafinesque, 1810 - stingrays Species Dasyatis chrysonota (Smith, 1828) - blue stingray Species Dasyatis hastata (DeKay, 1842) - roughtail stingray Species Dasyatis hypostigma Santos & Carvalho, 2004 - groovebelly stingray Species Dasyatis marmorata (Steindachner, 1892) - marbled stingray Species Dasyatis pastinaca (Linnaeus, 1758) - common stingray Species Dasyatis tortonesei Capapé, 1975 - Tortonese's stingray GENUS Hemitrygon Muller & Henle, 1838 - stingrays Species Hemitrygon akajei (Muller & Henle, 1841) - red stingray Species Hemitrygon bennettii (Muller & Henle, 1841) - Bennett's stingray Species Hemitrygon fluviorum (Ogilby, 1908) - estuary stingray Species Hemitrygon izuensis (Nishida & Nakaya, 1988) - Izu stingray Species Hemitrygon laevigata (Chu, 1960) - Yantai stingray Species Hemitrygon laosensis (Roberts & Karnasuta, 1987) - Mekong freshwater stingray Species Hemitrygon longicauda (Last & White, 2013) - Merauke stingray Species Hemitrygon navarrae (Steindachner, 1892) - blackish stingray Species
    [Show full text]
  • Extinction Risk and Conservation of the World's Sharks and Rays
    RESEARCH ARTICLE elife.elifesciences.org Extinction risk and conservation of the world’s sharks and rays Nicholas K Dulvy1,2*, Sarah L Fowler3, John A Musick4, Rachel D Cavanagh5, Peter M Kyne6, Lucy R Harrison1,2, John K Carlson7, Lindsay NK Davidson1,2, Sonja V Fordham8, Malcolm P Francis9, Caroline M Pollock10, Colin A Simpfendorfer11,12, George H Burgess13, Kent E Carpenter14,15, Leonard JV Compagno16, David A Ebert17, Claudine Gibson3, Michelle R Heupel18, Suzanne R Livingstone19, Jonnell C Sanciangco14,15, John D Stevens20, Sarah Valenti3, William T White20 1IUCN Species Survival Commission Shark Specialist Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 2Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, Canada; 3IUCN Species Survival Commission Shark Specialist Group, NatureBureau International, Newbury, United Kingdom; 4Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, United States; 5British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom; 6Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Australia; 7Southeast Fisheries Science Center, NOAA/National Marine Fisheries Service, Panama City, United States; 8Shark Advocates International, The Ocean Foundation, Washington, DC, United States; 9National Institute of Water and Atmospheric Research, Wellington, New Zealand; 10Global Species Programme, International Union for the Conservation
    [Show full text]
  • Cestoda: Rhinebothriidea) from Stingrays of the Genus Fontitrygon from Senegal
    Institute of Parasitology, Biology Centre CAS Folia Parasitologica 2018, 65: 014 doi: 10.14411/fp.2018.014 http://folia.paru.cas.cz Research Article Two new species of Stillabothrium (Cestoda: Rhinebothriidea) from stingrays of the genus Fontitrygon from Senegal Elsie A. Dedrick1, Florian B. Reyda1, Elise K. Iwanyckyj1, Timothy R. Ruhnke2 1 Biology Department & Biological Field Station, State University of New York, College at Oneonta, Ravine Parkway Oneonta, NY, USA; 2 Department of Biology, West Virginia State University, Institute, WV, USA Abstract: Morphological and molecular analyses of cestode specimens collected during survey work of batoid elasmobranchs and their parasites in Senegal revealed two new species of the rhinebothriidean cestode genus Stillabothrium Healy et Reyda 2016. Stillabothrium allisonae Dedrick et Reyda sp. n. and Stillabothrium charlotteae Iwanyckyj, Dedrick et Reyda sp. n. are both de- scribed from Fontitrygon margaritella (Compagno et Roberts) and Fontitrygon margarita (Günther). Both new cestode species overlap in geographic distribution, host use and proglottid morphology, but are distinguished from each other, and from the other seven described species of Stillabothrium, on the basis of their pattern of bothridial loculi. Phylogenetic analyses based on sequence data for 1,084 bp from the D1–D3 region of 28S rDNA that included multiple specimens of both new species and eight other spe- cies of Stillabothrium corroborated the morphologically-determined species boundaries. The phylogenetic analyses indicate that S. allisonae sp. n. and S. charlotteae sp. n. are sister species, a noteworthy pattern given that the two species of the stingray genus Fontitrygon they both parasitise, F. margaritella and F. margarita, are also sister species.
    [Show full text]
  • A Systematic Revision of the South American Freshwater Stingrays (Chondrichthyes: Potamotrygonidae) (Batoidei, Myliobatiformes, Phylogeny, Biogeography)
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1985 A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae) (batoidei, myliobatiformes, phylogeny, biogeography) Ricardo de Souza Rosa College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Fresh Water Studies Commons, Oceanography Commons, and the Zoology Commons Recommended Citation Rosa, Ricardo de Souza, "A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae) (batoidei, myliobatiformes, phylogeny, biogeography)" (1985). Dissertations, Theses, and Masters Projects. Paper 1539616831. https://dx.doi.org/doi:10.25773/v5-6ts0-6v68 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Pagefs)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
    [Show full text]
  • Chondrichthyes: Dasyatidae)
    1 Ichthyological Exploration of Freshwaters/IEF-1089/pp. 1-6 Published 16 February 2019 LSID: http://zoobank.org/urn:lsid:zoobank.org:pub:DFACCD8F-33A9-414C-A2EC-A6DA8FDE6BEF DOI: http://doi.org/10.23788/IEF-1089 Contemporary distribution records of the giant freshwater stingray Urogymnus polylepis in Borneo (Chondrichthyes: Dasyatidae) Yuanita Windusari*, Muhammad Iqbal**, Laila Hanum*, Hilda Zulkifli* and Indra Yustian* Stingrays (Dasyatidae) are found in marine (con- species entering, or occurring in freshwater. For tinental, insular shelves and uppermost slopes, example, Fluvitrygon oxyrhynchus and F. signifer one oceanic species), brackish and freshwater, and were only known from five or fewer major riverine are distributed across tropical to warm temperate systems (Compagno, 2016a-b; Last et al., 2016a), waters of the Atlantic, Indian and Pacific oceans though recent surveys yielded a single record of (Nelson et al., 2016). Only a small proportion of F. oxyrhynchus and ten records of F. signifier in the dasyatid rays occur in freshwater, and include Musi drainage, South Sumatra, indicating that obligate freshwater species (those found only in both species are more widely distributed than freshwater) and euryhaline species (those that previously expected (Iqbal et al., 2017, 2018). move between freshwater and saltwater) (Last et Particularly, the dasyatid fauna of Borneo al., 2016a). Recently, a total of 89 species of Dasy- includes the giant freshwater stingray Urogymnus atidae has been confirmed worldwide (Last et al., polylepis. The occurrence of U. polylepis in Borneo 2016a), including 14 species which are known to has been reported from Sabah and Sarawak in enter or live permanently in freshwater habitats of Malaysia and the Mahakam basin in Kaliman- Southeast Asia [Brevitrygon imbricata, Fluvitrygon tan of Indonesia (Monkolprasit & Roberts, 1990; kittipongi, F.
    [Show full text]
  • Cop17 Doc. 87
    Original language: English CoP17 Doc. 87 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Seventeenth meeting of the Conference of the Parties Johannesburg (South Africa), 24 September - 5 October 2016 Species specific matters Maintenance of the Appendices FRESHWATER STINGRAYS (POTAMOTRYGONIDAE SPP.) 1. This document has been submitted by the Animals Committee.* Background 2. At its 16th meeting (CoP16, Bangkok, 2013), the Conference of the Parties adopted the following interrelated decisions on freshwater stingrays: Directed to the Secretariat 16.130 The Secretariat shall issue a Notification requesting the range States of freshwater stingrays (Family Potamotrygonidae) to report on the conservation status and management of, and domestic and international trade in the species. Directed to the Animals Committee 16.131 The Animals Committee shall establish a working group comprising the range States of freshwater stingrays in order to evaluate and duly prioritize the species for inclusion in CITES Appendix II. 16.132 The Animals Committee shall consider all information submitted on freshwater stingrays in response to the request made under Decision 16.131 above, and shall: a) identify species of priority concern, including those species that meet the criteria for inclusion in Appendix II of the Convention; b) provide specific recommendations to the range States of freshwater stingrays; and c) submit a report at the 17th meeting of the Conference of the Parties on the progress made by the working group, and its recommendations and conclusions. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat (or the United Nations Environment Programme) concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Elasmobranch Diversity with Preliminary Description of Four Species from Territorial Waters of Bangladesh
    Bangladesh J. Zool. 46(2): 185-195, 2018 ISSN: 0304-9027 (print) 2408-8455 (online) ELASMOBRANCH DIVERSITY WITH PRELIMINARY DESCRIPTION OF FOUR SPECIES FROM TERRITORIAL WATERS OF BANGLADESH A.B.M. Zafaria, Shamsunnahar, Sanjay Chakraborty, Md. Muzammel Hossain1, Md. Masud Rana and Mohammad Abdul Baki* Department of Zoology, Jagannath University, Dhaka-1100, Bangladesh Abstract: There is a significant lack of data regarding the biodiversity of elasmobranchs in the territorial waters of Bangladesh, since that sharks and rays are not targeted by commercial fishing industry, but rather encountered as a by- catch. This paper updated the diversity of elasmobranchs in the territorial waters of Bangladesh. The study was carried out to identify two coastal areas of Patharghata, Barguna and Cox's Bazar between October, 2015 and September, 2016. Using fish landing station survey techniques, total 20 species of elasmobranch were encountered, including eight species of sharks and 12 species of batoids, under 14 genera, ten families. This is the most expended field based records of elasmobranch fishes of Bangladesh. Key words: Elasmobranch, assessment, diversity, shark, skate, ray INTRODUCTION Elasmobranchs have been evolving independently for at least 450 million years and, by the Carboniferous period, they seem to have developed a life- history pattern similar to that seen today. From a practical point of view the life- history pattern of elasmobranchs make this group of animals extremely susceptible to over fishing (Harold et al. 1990). The marine fisheries sector of Bangladesh plays a significant role in the county’s economic growth through provision of employment in coastal area and providing source of protein for the population but shark fisheries (sharks and rays) are artisanal fisheries in Bangladesh.
    [Show full text]
  • Malaysia National Plan of Action for the Conservation and Management of Shark (Plan2)
    MALAYSIA NATIONAL PLAN OF ACTION FOR THE CONSERVATION AND MANAGEMENT OF SHARK (PLAN2) DEPARTMENT OF FISHERIES MINISTRY OF AGRICULTURE AND AGRO-BASED INDUSTRY MALAYSIA 2014 First Printing, 2014 Copyright Department of Fisheries Malaysia, 2014 All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic, mechanical, including photocopy, recording, or any information storage and retrieval system, without prior permission in writing from the Department of Fisheries Malaysia. Published in Malaysia by Department of Fisheries Malaysia Ministry of Agriculture and Agro-based Industry Malaysia, Level 1-6, Wisma Tani Lot 4G2, Precinct 4, 62628 Putrajaya Malaysia Telephone No. : 603 88704000 Fax No. : 603 88891233 E-mail : [email protected] Website : http://dof.gov.my Perpustakaan Negara Malaysia Cataloguing-in-Publication Data ISBN 978-983-9819-99-1 This publication should be cited as follows: Department of Fisheries Malaysia, 2014. Malaysia National Plan of Action for the Conservation and Management of Shark (Plan 2), Ministry of Agriculture and Agro- based Industry Malaysia, Putrajaya, Malaysia. 50pp SUMMARY Malaysia has been very supportive of the International Plan of Action for Sharks (IPOA-SHARKS) developed by FAO that is to be implemented voluntarily by countries concerned. This led to the development of Malaysia’s own National Plan of Action for the Conservation and Management of Shark or NPOA-Shark (Plan 1) in 2006. The successful development of Malaysia’s second National Plan of Action for the Conservation and Management of Shark (Plan 2) is a manifestation of her renewed commitment to the continuous improvement of shark conservation and management measures in Malaysia.
    [Show full text]
  • Biology, Husbandry, and Reproduction of Freshwater Stingrays
    Biology, husbandry, and reproduction of freshwater stingrays. Ronald G. Oldfield University of Michigan, Department of Ecology and Evolutionary Biology Museum of Zoology, 1109 Geddes Ave., Ann Arbor, MI 48109 U.S.A. E-mail: [email protected] A version of this article was published previously in two parts: Oldfield, R.G. 2005. Biology, husbandry, and reproduction of freshwater stingrays I. Tropical Fish Hobbyist. 53(12): 114-116. Oldfield, R.G. 2005. Biology, husbandry, and reproduction of freshwater stingrays II. Tropical Fish Hobbyist. 54(1): 110-112. Introduction In the freshwater aquarium, stingrays are among the most desired of unusual pets. Although a couple species have been commercially available for some time, they remain relatively uncommon in home aquariums. They are often avoided by aquarists due to their reputation for being fragile and difficult to maintain. As with many fishes that share this reputation, it is partly undeserved. A healthy ray is a robust animal, and problems are often due to lack of a proper understanding of care requirements. In the last few years many more species have been exported from South America on a regular basis. As a result, many are just recently being captive bred for the first time. These advances will be making additional species of freshwater stingray increasingly available in the near future. This article answers this newly expanded supply of wild-caught rays and an anticipated increased The underside is one of the most entertaining aspects of a availability of captive-bred specimens by discussing their stingray. In an aquarium it is possible to see the gill slits and general biology, husbandry, and reproduction in order watch it eat, as can be seen in this Potamotrygon motoro.
    [Show full text]