Contributions to the Skeletal Anatomy of Freshwater Stingrays (Chondrichthyes, Myliobatiformes): 1

Total Page:16

File Type:pdf, Size:1020Kb

Contributions to the Skeletal Anatomy of Freshwater Stingrays (Chondrichthyes, Myliobatiformes): 1 Zoosyst. Evol. 88 (2) 2012, 145–158 / DOI 10.1002/zoos.201200013 Contributions to the skeletal anatomy of freshwater stingrays (Chondrichthyes, Myliobatiformes): 1. Morphology of male Potamotrygon motoro from South America Rica Stepanek*,1 and Jrgen Kriwet University of Vienna, Department of Paleontology, Geozentrum (UZA II), Althanstr. 14, 1090 Vienna, Austria Abstract Received 8 August 2011 The skeletal anatomy of most if not all freshwater stingrays still is insufficiently known Accepted 17 January 2012 due to the lack of detailed morphological studies. Here we describe the morphology of Published 28 September 2012 an adult male specimen of Potamotrygon motoro to form the basis for further studies into the morphology of freshwater stingrays and to identify potential skeletal features for analyzing their evolutionary history. Potamotrygon is a member of Myliobatiformes and forms together with Heliotrygon, Paratrygon and Plesiotrygon the Potamotrygoni- dae. Potamotrygonids are exceptional because they are the only South American ba- toids, which are obligate freshwater rays. The knowledge about their skeletal anatomy Key Words still is very insufficient despite numerous studies of freshwater stingrays. These studies, however, mostly consider only external features (e.g., colouration patterns) or selected Batomorphii skeletal structures. To gain a better understanding of evolutionary traits within sting- Potamotrygonidae rays, detailed anatomical analyses are urgently needed. Here, we present the first de- Taxonomy tailed anatomical account of a male Potamotrygon motoro specimen, which forms the Skeletal morphology basis of prospective anatomical studies of potamotrygonids. Introduction with the radiation of mammals. Living elasmobranchs are thus the result of a long evolutionary history. Neoselachians include all living sharks, rays, and Some of the most astonishing and unprecedented ex- skates, and their fossil relatives. Their monophyly is pressions of neoselachian evolution are the adaptation well established and beyond any dispute although the to deep-sea environments with all the required physio- interrelationships of several clades within Neoselachii logical changes (Kriwet & Klug 2009; Klug & Kriwet remain controversial. Major lineages include the Galeo- 2010), the development of filterfeeding and durophagy, morphii, Squalomorphii and Batomorphii, most of and freshwater adaptations (e.g., Compagno 1990; Car- which are key predators in modern marine environ- valho et al. 2004). The fossil record of freshwater ments. Generally perfectly adapted to the environment adapted elasmobranchian clades extends back into the they are living in, several groups developed special Palaeozoic and by the Early Cretaceous, several hybo- adaptations. Fossil evidence suggests that neoselachians dontiform and neoselachian lineages seemingly were have been primarily marine predatory from their ear- fully adapted to freshwater conditions. Early in the liest beginnings and throughout their long evolutionary Cenozoic, various stingrays (e.g., y Asterotrygon, career although freshwater adaption occurred several y Heliobatis) invaded freshwater habitats like rivers and times independently. Major neoselachian radiations are lakes (Carvalho et al. 2004), which probably is in con- recognized in the Early Jurassic, at the end of the Early junction with the most recent neoselachian radiation Cretaceous, in the middle of the Late Cretaceous, and event. in the Cenozoic (Kriwet & Klug 2004; Kriwet & Ben- Nevertheless, despite the development of diverse ton 2004; Kriwet et al. 2009). The most recent elasmo- neoselachian faunas within the Meso- and Cenozoic, branch radiation in the Cenozoic supposedly coincided the palaeoenvironmental specificity of the taxa has gen- * Corresponding author, e-mail: [email protected] # 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 146 Stepanek, R. & Kriwet, J.: Morphology of Potamotrygon motoro (Chondrichthyes, Myliobatiformes) from South America erally been ignored. One of the key questions is what Pectoral fin length, measured from the anterior top of the first ra- environmental changes precipitated these profound dial, which is normally the longest, to the posterior longest radial. The adaptations? The reasons for freshwater adaptations and longest radial doesn’t necessarily have to be the last radial. The width of the fin is measured from mesopterygium to the edge of the fin. the underlying processes are not yet understood. Inter- Pelvic girdle, measured from the anterior top of the prepelvic pro- estingly, some bony fishes and dolphins also entered cess to the posterior end of the mixopterygium, or clasper. the proto-Amazonas as well as stingrays of the family Neurocranium length, measurements are from the anterior end of Potamotrygonidae (e.g. Lovejoy et al., 2010; M. Brito, the nasal capsules to the articulation with the first synarcual. The pers. comm.). All groups nevertheless have a very pat- width is measured from the distal point of the right preorbital process chy fossil record. The oldest known of these very dif- to the left preorbital process. The depth is measured at the posterior ferent groups remains from the Miocene indicate that end of the fronto-parietal fontanel. Length of cervicothoracic synarcual, measured between the anterior they probably adapted to freshwater environments about articulation to the neurocranium and the posterior articulation with the same time. the pelvic girdle. The depth is measured at the highest point including At present, four living potamotrygonid genera are the crest. well-established: Heliotrygon (Carvalho & Lovejoy, Tail length, two distances were measured to establish the complete 2011), Plesiotrygon (Rosa et al., 1987), Potamotrygon length of the tail because of a sharp bend near the articulation of the Garman, 1877, and Paratrygon Dumeril, 1865. sting. Therefore, both anterior and posterior tail proportions related to Although this study is based on a single male speci- the insertion of the spine were measured separately and subsequently combined. In this case, the tail measurements start at the anterior ar- men, it represents the most comprehensive morphologi- ticulation to the pelvic girdle to the posterior end of the tail and com- cal account of any freshwater stingray from South prise the second synarcual and the following vertebrae. America to date and provides important skeletal infor- Abbreviations. aa, angular cartilage a; ab, angular cartilage b; ac, an- mation of freshwater stingrays in general. Miyake torbital cartilage; adf, anterodorsal foramen; ba, branchial arches; (1988) only considered the systematics of the genus Uro- baco, basibranchial capula; bar, scapulacoracoid bar; bpy, basiptery- trygon and Lovejoy (1996) and Carvalho et al. (2004) gium; bhy, basihyal; bridge, bridge projection; cfo, crest foramen; focused on the phylogenetic interrelationship of stingrays chy, ceratohyal; cl, clasper (mixopterygium); cr, crest; cute, curled providing only selected morphological information. terminal; doma, dorsal marginal; epb, epiphysial bar; fpf, fronto-par- Moreover, different and partly misinterpreted morpholo- ietal fontanelle; fsy, first synarcual; hy, hyomandibular; 1st hypo, first hypobranchiale; ilp, iliac process; ins, intermediate segments; isp, gical information of Potamotrygon motoro exist in the ischia process; last, lateral stay; lppp, lateral prepelvic process; ma, literature. mandibular arch (Meckel´s cartilage); map, mandibular process; Thus, the intentions of this paper are to (1) present mono, monospondylous vertebrae; mpa, metapterygial axis; mplate, the first detailed anatomical description of Potamotry- medial plate; mppp, medial prepelvic process; mspy, mesopterygium; gon motoro from the Amazon Basin and (2) review and mpy, metapterygium; na, nasal capsules; nc, neurocranium; ob, orbi- comment the interrelationships and origin of freshwater tal; oc, otic capsule; pcf, pectoral fin; pcg, pectoral girdle; pef, pelvic stingrays. This paper is the first part in a series of mor- fin; peg, pelvic girdle; pf, precerebral fontanelle; poc, preorbital pro- cess; pog, postorbital groove; pop, postorbital process; ppy, proptery- phological studies of freshwater stingrays. gium; pqu, palatoquadrate (upper jaw); ra, radialia; snf, spinal nerve foramina; soc, supraorbital crest; ssy, second synarcual (vertebrae); sp, scapular process; st, sting; veme, ventral marginal. All scale bars Material and methods (if not otherwise stated) equal 1.0 cm. The adult specimen of Potamotrygon motoro that forms the basis of this study was part of a breeding program at the Aquazoo and Lb- Morphology of Potamotrygon motoro becke Museum in Dsseldorf, Germany and was donated to the Mu- seum of Natural History Berlin, Germany for this study after skeletal Morphological characters were described by different preparation. For this, the specimen was mechanically prepared and as authors previously but mostly with the focus on a parti- much soft tissue as possible was removed in a first step. In a next cular organ system or selected skeletal components. step, larder beetles were used for cleaning the skeleton from all re- maining soft tissue. Finally, the skeleton was cleaned using ethyl alco- The morphological description presented in this study hol and bleached with hydrogen peroxide. is based on a single, adult male specimen (Fig. 1). The The morphological terminology follows that of Lovejoy (1996) and total length of the specimen is 350 mm and its total
Recommended publications
  • Continuing Threat to Manta and Mobula Rays
    Ţ Ţ Ţ ŢŢ Ţ :78;p8<Ţ Ţ\Ţ\Ţ Ţ \Ţ Ţi \Ţ Ţ Ţ 2 3 CONTENTS AT A GLANCE 4 2013 MARKET ESTIMATE 8 TOXICOLOGY AND USES 12 CONSUMER AWARENESS 14 STATUS AND TOURISM 16 CONSERVATION 20 REFERENCES AND PHOTO CREDITS 22 REPORT WRITERS Samantha Whitcraft, Mary O’Malley John Weller (graphics, design, editing) PROJECT TEAM Mary O’Malley – WildAid Paul Hilton – WildAid, Paul Hilton Photography Samantha Whitcraft – WildAid Daniel Fernando – The Manta Trust Shawn Heinrichs – WildAid, Blue Sphere Media 2013-14 MARKET SURVEYS, GUANGZHOU, CHINA ©2014 WILDAID 4 5 AT A GLANCE SUMMARY Manta and mobula rays, the mobulids, span the tropics of the world and are among the most captivating and charismatic of marine species. However, their the increasing demand for their gill plates, which are used as a pseudo-medicinala health tonic in China. To assess the trade in dried mobulid gill plates (product name ‘Peng Yu Sai’), and its potential impact on populations of these highly vulnerable species, WildAid researchers conducted market surveys throughout Southeast Asia in 2009-10.This research, compiled in our 2011 report The Global Threat to Manta and Mobula Rays(1), plate trade, representing over 99% of the market. In 2013, the same markets in and begin to gauge market trends. Dried gill plate samples were also purchased and tested for heavy metal contamination. Additionally, in 2014 two baseline complete understanding of Peng Yu Sai Our 2013 estimates reveal a market that has increased by 168% in value in only three years, representing a near threefold increase in mobulids taken, despite the listing of manta rays on Appendix II of the Convention on International Trade in Endangered Species (CITES).
    [Show full text]
  • Manta Or Mobula
    IOTC-2010-WPEB-inf01 Draft identification guide IOTC Working Party on Ecosystems and Bycatch (WPEB) Victoria, Seychelles 27-30 October, 2010 Mobulidae of the Indian Ocean: an identification hints for field sampling Draft, version 2.1, August 2010 by Romanov Evgeny(1)* (1) IRD, UMR 212 EME, Centre de Recherche Halieutique Mediterraneenne et Tropicale Avenue Jean Monnet – BP 171, 34203 Sete Cedex, France ([email protected]) * Present address: Project Leader. Project “PROSpection et habitat des grands PElagiques de la ZEE de La Réunion” (PROSPER), CAP RUN, ARDA, Magasin n°10, Port Ouest, 97420, Le Port, La Réunion, France. ABSTRACT Draft identification guide for species of Mobulidae family, which is commonly observed as by-catch in tuna associated fishery in the region is presented. INTRODUCTION Species of Mobulidae family are a common bycatch occurs in the pelagic tuna fisheries of the Indian Ocean both in the industrial (purse seine and longline) and artisanal (gillnets) sector (Romanov 2002; White et al., 2006; Romanov et al., 2008). Apparently these species also subject of overexploitation: most of Indian Ocean species marked as vulnerable or near threatened at the global level, however local assessment are often not exist (Table). Status of the species of the family Mobulidae in the Indian Ocean (IUCN, 2007) IUCN Status1 Species Common name Global status WIO EIO Manta birostris (Walbaum 1792) Giant manta NT - VU Manta alfredi (Krefft, 1868) Alfred manta - - - Mobula eregoodootenkee Longhorned - - - (Bleeker, 1859) mobula Mobula japanica (Müller & Henle, Spinetail mobula NT - - 1841) Mobula kuhlii (Müller & Henle, Shortfin devil ray NE - - 1841) Mobula tarapacana (Philippi, Chilean devil ray DD - VU 1892) Mobula thurstoni (Lloyd, 1908) Smoothtail NT - - mobula Lack of the data on the distribution, fisheries and biology of mobulids is often originated from the problem with specific identification of these species in the field.
    [Show full text]
  • Gymnuridae 575
    click for previous page Rajiformes: Gymnuridae 575 GYMNURIDAE Butterfly rays by J.D. McEachran, TexasA&MUniversity, USA and M.R. de Carvalho, American Museum of Natural History, New York, USA iagnostic characters:Medium to large-sized stingrays (maximum disc width over 2 m).Body strongly de- Dpressed, with head, trunk, and broadly expanded pectoral fins forming rhomboid disc. Disc at least 1.5 times broad as long. Tail very slender and short (shorter than disc), distinctly demarcated from disc.Pec- toral fins continuous along sides of head, not forming subrostral lobes or cephalic fins.Eyes and spira- cles on top of head. Some species have spiracular tentacles. Snout obtuse and angular. Nasal curtains are broadly expanded and continuous across narrow isthmus in front of mouth and are smooth-edged (with rare exceptions). Mouth is slightly arched and lacks papillae on floor. Jaws bear many small teeth in bands. Cau- dal fin always absent, dorsal fin absent in all Western Central Atlantic representatives. Pectoral fins extend distinctly posterior to origin of pelvic fins. Pelvic fins are moderately laterally expanded and not divided into anterior and posterior lobes. Some species have 1 or more long, serrated spines. Tail with longitudinal folds on upper and/or lower surfaces. Skin of upper side naked in most species, but with a variable num- ber of tubercles in large individuals of others. Colour: dorsal surface grey, light green, olive, purple, or dark brown, sometimes with a reddish cast, often marked with spots or lines; ventral surface white, sometimes with a bronze or rusty cast. disc at least 1.5 times broad as long smooth nasal curtain nostril tail slender and short mouth detail of mouth Habitat, biology, and fisheries: Butterfly rays are cosmopolitan in tropical and warm-temperate waters, usu- ally inhabiting sandy and muddy bottoms in shallow coastal waters, including estuaries and river mouths.
    [Show full text]
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • A Systematic Revision of the South American Freshwater Stingrays (Chondrichthyes: Potamotrygonidae) (Batoidei, Myliobatiformes, Phylogeny, Biogeography)
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1985 A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae) (batoidei, myliobatiformes, phylogeny, biogeography) Ricardo de Souza Rosa College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Fresh Water Studies Commons, Oceanography Commons, and the Zoology Commons Recommended Citation Rosa, Ricardo de Souza, "A systematic revision of the South American freshwater stingrays (chondrichthyes: potamotrygonidae) (batoidei, myliobatiformes, phylogeny, biogeography)" (1985). Dissertations, Theses, and Masters Projects. Paper 1539616831. https://dx.doi.org/doi:10.25773/v5-6ts0-6v68 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Pagefs)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
    [Show full text]
  • AC29 Doc. 35 A4
    Extract from Eschmeyer, W. N., R. Fricke, and R. van der Laan (eds). CATALOG OF FISHES: GENERA, SPECIES, REFERENCES. Electronic version accessed 12 May 2017. AC29 Doc. 35 Annex / Annexe / Anexo 1 (English only / Seulement en anglais / Únicamente en inglés) Taxonomic Checklist of Fish taxa included in the Appendices at the 17th meeting of the Conference of the Parties (Johannesburg, 2016) Species information extracted from Eschmeyer, W.N., R. Fricke, and R. van der Laan (eds.) CATALOG OF FISHES: GENERA, SPECIES, REFERENCES. (http://researcharchive.calacademy.org/research/ichthyology/catal og/fishcatmain.asp). Online version of 28 April 2017 [This version was edited by Bill Eschmeyer.] accessed 12 May 2017 Copyright © W.N. Eschmeyer and California Academy of Sciences. All Rights reserved. Additional comments included by the Nomenclature Specialist of the CITES Animals Committee Reproduction for commercial purposes prohibited. Contents of this extract, prepared for AC29 by the Nomenclature Specialist for Fauna: Class Elasmobranchii Order Carcharhiniformes Family Carcharhinidae Genus Carcharias Species Carcharias falciformis (Bibron 1839) Page 3 Order Lamniformes Family Alopiidae Genus Alopias Rafinesque 1810 Page 6 Alopias pelagicus Nakamura 1935 Alopias superciliosus Lowe 1841 Alopias vulpinus (Bonnaterre 1788) Order Myliobatiformes Family Myliobatidae Genus Mobula Rafinesque 1810 Page 11 Mobula eregoodootenkee (Bleeker 1859) Mobula hypostoma (Bancroft 1831) AC29 Doc. 35; Annex / Annexe / Anexo 4 – p. 1 Extract from Eschmeyer, W. N., R. Fricke, and R. van der Laan (eds). CATALOG OF FISHES: GENERA, SPECIES, REFERENCES. Electronic version accessed 12 May 2017. Mobula japanica (Müller & Henle 1841) Mobula kuhlii (Valenciennes, in Müller & Henle 1841) Mobula mobular (Bonnaterre 1788) Mobula munkiana Notarbartolo-di-Sciara 1987 Mobula rochebrunei (Vaillant 1879) Mobula tarapacana (Philippi 1892) Mobula thurstoni (Lloyd 1908) Family Potamotrygonidae Page 21 Genus Paratrygon Duméril 1865 Paratrygon aiereba (Müller & Henle 1841).
    [Show full text]
  • Cop17 Doc. 87
    Original language: English CoP17 Doc. 87 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Seventeenth meeting of the Conference of the Parties Johannesburg (South Africa), 24 September - 5 October 2016 Species specific matters Maintenance of the Appendices FRESHWATER STINGRAYS (POTAMOTRYGONIDAE SPP.) 1. This document has been submitted by the Animals Committee.* Background 2. At its 16th meeting (CoP16, Bangkok, 2013), the Conference of the Parties adopted the following interrelated decisions on freshwater stingrays: Directed to the Secretariat 16.130 The Secretariat shall issue a Notification requesting the range States of freshwater stingrays (Family Potamotrygonidae) to report on the conservation status and management of, and domestic and international trade in the species. Directed to the Animals Committee 16.131 The Animals Committee shall establish a working group comprising the range States of freshwater stingrays in order to evaluate and duly prioritize the species for inclusion in CITES Appendix II. 16.132 The Animals Committee shall consider all information submitted on freshwater stingrays in response to the request made under Decision 16.131 above, and shall: a) identify species of priority concern, including those species that meet the criteria for inclusion in Appendix II of the Convention; b) provide specific recommendations to the range States of freshwater stingrays; and c) submit a report at the 17th meeting of the Conference of the Parties on the progress made by the working group, and its recommendations and conclusions. * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat (or the United Nations Environment Programme) concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • (Mobula Alfredi) Feeding Habitat in the Dampier Strait, Raja Ampat, West Papua, Indonesia 1Adi I
    Plankton abundance and community structure in reef manta ray (Mobula alfredi) feeding habitat in the Dampier Strait, Raja Ampat, West Papua, Indonesia 1Adi I. Thovyan, 1,2Ricardo F. Tapilatu, 1,2Vera Sabariah, 3,4Stephanie K. Venables 1 Environmental Science Master Program, Graduate School University of Papua (UNIPA) Manokwari, Papua Barat, Indonesia; 2 Research Center of Pacific Marine Resources and Faculty of Fisheries and Marine Science, University of Papua (UNIPA), Manokwari, Papua Barat, Indonesia; 3 Marine Megafauna Foundation, Truckee, California, USA; 4 Centre for Evolutionary Biology, University of Western Australia, Crawley, Australia. Corresponding author: R. F. Tapilatu, [email protected] Abstract. Reef manta rays (Mobula alfredi) are pelagic filter feeders, primarily feeding on zooplankton. Plankton plays an important role in marine food webs and can be used as a bioindicator to evaluate water quality and primary productivity. This study aimed to determine the community structure and abundance of zooplankton and phytoplankton at a M. alfredi feeding habitat in the Dampier Strait region of Raja Ampat, West Papua, Indonesia. Plankton samples were collected and environmental conditions were recorded during two sampling sessions, in March and in July 2017, respectively, from five M. alfredi feeding sites using a 20 μm plankton tow net. Plankton richness was found to be higher in March (272 ind L-1±342) than in July (31 ind L-1±11), which may be due to seasonal variations in ocean current patterns in the Dampier Strait. Copepods (Phylum Arthropoda) were the dominant zooplankton found in samples in both sampling periods. Microplastics were also present in tows from both sampling periods, presenting a cause for concern regarding the large filter feeding species, including M.
    [Show full text]
  • Stingray Bay: Media Kit
    STINGRAY BAY: MEDIA KIT Stingray Bay has been the talk of the town! What is it? Columbus Zoo and Aquarium guests and members will now have the opportunity to see stingrays up close and to touch these majestic creatures! The Stingray Bay experience will encourage visitors to interact with the Zoo’s brand new school of stingrays by watching these beautiful animals “fly” through the water and dipping their hands in the water to come in contact with them. Where is located? Located in Jungle Jack’s Landing near Zoombezi Bay, Stingray Bay will feature an 18,000-gallon saltwater pool for stingrays to call home. Staff and volunteers will monitor the pool, inform guests about the best ways to touch the animals and answer questions when the exhibit opens daily at 10 a.m. What types of stingrays call Stingray Bay home? Dozens of cownose and southern stingrays will glide though the waters of Stingray Bay. Educational interpreters will explain the role of these stingrays in the environment. Stingrays are typically bottom feeders with molar-like teeth used to crush the shells of their prey such as crustaceans, mollusks, and other invertebrates. I’m excited to touch the stingrays, but is it safe? Absolutely! The rays barbs have been carefully trimmed off their whip-like tails. The painless procedure is similar to cutting human fingernails. Safe for all ages, the landscaped pool features a waterfall and a wide ledge for toddlers to lean against when touching the rays. This sounds cool! How much does it cost? Admission to Stingray Bay is free for Columbus Zoo and Aquarium Gold Members and discounted for Members.
    [Show full text]
  • Biology, Husbandry, and Reproduction of Freshwater Stingrays
    Biology, husbandry, and reproduction of freshwater stingrays. Ronald G. Oldfield University of Michigan, Department of Ecology and Evolutionary Biology Museum of Zoology, 1109 Geddes Ave., Ann Arbor, MI 48109 U.S.A. E-mail: [email protected] A version of this article was published previously in two parts: Oldfield, R.G. 2005. Biology, husbandry, and reproduction of freshwater stingrays I. Tropical Fish Hobbyist. 53(12): 114-116. Oldfield, R.G. 2005. Biology, husbandry, and reproduction of freshwater stingrays II. Tropical Fish Hobbyist. 54(1): 110-112. Introduction In the freshwater aquarium, stingrays are among the most desired of unusual pets. Although a couple species have been commercially available for some time, they remain relatively uncommon in home aquariums. They are often avoided by aquarists due to their reputation for being fragile and difficult to maintain. As with many fishes that share this reputation, it is partly undeserved. A healthy ray is a robust animal, and problems are often due to lack of a proper understanding of care requirements. In the last few years many more species have been exported from South America on a regular basis. As a result, many are just recently being captive bred for the first time. These advances will be making additional species of freshwater stingray increasingly available in the near future. This article answers this newly expanded supply of wild-caught rays and an anticipated increased The underside is one of the most entertaining aspects of a availability of captive-bred specimens by discussing their stingray. In an aquarium it is possible to see the gill slits and general biology, husbandry, and reproduction in order watch it eat, as can be seen in this Potamotrygon motoro.
    [Show full text]
  • Bayesian Estimation of the Age and Growth of the Golden Cownose Ray
    10 National Marine Fisheries Service Fishery Bulletin First U.S. Commissioner established in 1881 of Fisheries and founder NOAA of Fishery Bulletin Abstract—The aim of this study was to Bayesian estimation of the age and growth of the use a Bayesian approach to estimate age and growth parameters for the golden golden cownose ray (Rhinoptera steindachneri) cownose ray (Rhinoptera steindachneri) in the southern Gulf of California in in the southern Gulf of California in Mexico Mexico. Age estimates were obtained through analysis of vertebrae of 249 Luis D. Carrillo-Colín1 individuals. The von Bertalanffy growth J. Fernando Márquez-Farías (contact author)2 function (VBGF) and Gompertz growth 3 model (GM) were fit to length-at- age Raúl E. Lara-Mendoza 4 data by using a Markov chain Monte Oscar G. Zamora-García Carlo algorithm for parameter estima- tion. Prior distributions of parameters Email address for contact author: [email protected] were included for an informative prior for disc width at birth (DW0) and unin- 1 Posgrado en Ciencias del Mar y Limnología 3 Dirección General Adjunta de Investigación formative priors for the theoretical Universidad Nacional Autónoma Pesquera en el Atlántico maximum disc width (DW∞) and growth de Mexico Instituto Nacional de Pesca y Acuacultura coefficients (k and g, for the VBGF and Avenida Ciudad Universitaria 3000 Secretaría de Agricultura y Desarrollo Rural GM, respectively). Our results indicate 04510 Coyoacán, Mexico City, Avenida Mexico 190 that the golden cownose ray lives up to Mexico Colonia del Carmen 13 years. The GM for combined sexes 04100 Coyoacán, Mexico City, Mexico was selected as the best model by using 2 Facultad de Ciencias del Mar the Watanabe–Akaike information cri- Universidad Autónoma de Sinaloa 4 Servicios Integrales de Recursos Biológicos, terion for model selection suitable for Paseo Claussen s/n Acuáticos y Ambientales Bayesian estimation.
    [Show full text]
  • CBD Fifth National Report
    Fifth National Report of Japan to the Convention on Biological Diversity Government of Japan March 2014 Contents Executive Summary 1 Chapter 1 Biodiversity: the current situation, trends and threats 7 1.1 Importance of biodiversity 7 (1) Characteristics of biodiversity in Japan from the global perspective 7 (2) Biodiversity that supports life and livelihoods 9 (3) Japan causing impacts on global biodiversity 10 (4) The economic valuation of biodiversity 11 1.2 Major changes to the biodiversity situation and trends 12 (1) The current situation of ecosystems 12 (2) The current situation of threatened wildlife 17 (3) Impacts of the Great East Japan Earthquake on biodiversity 19 1.3 The structure of the biodiversity crisis 21 (1) The four crises of biodiversity 21 (2) Japan Biodiversity Outlook (JBO) 22 1.4 The impacts of changes in biodiversity on ecosystem services, socio-economy, and culture 24 (1) Changes in the distribution of medium and large mammals and the expansion of conflicts 24 (2) Alien species 24 (3) Impacts of changes in the global environment on biodiversity 26 1.5 Future scenarios for biodiversity 28 (1) Impacts of the global warming 28 (2) The impacts of ocean acidification on coral reefs 29 (3) The forecasted expansion in the distribution of sika deer (Cervus nippon ) 30 (4) Second crisis (caused by reduced human activities) 30 Chapter 2 Implementation of the National Biodiversity Strategy and Mainstreaming Biodiversity 32 2.1 Background to the formulation of the National Biodiversity Strategy of Japan and its development
    [Show full text]