Master's Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Master's Thesis MASTER'S THESIS Optimization of Wireless Power Oskar Rönnbäck 2013 Master of Science in Engineering Technology Engineering Physics and Electrical Engineering Luleå University of Technology Deptartment of Computer Science, Electrical and Space Engineering Optimization of Wireless Power Oskar R¨onnb¨ack Lule˚aUniversity of Technology Dept. of Computer Science, Electrical and Space Engineering December 5, 2013 ABSTRACT Today, the limit of wireless devices lays in the way they are powered. Imagine a device that doesn't need a charger or even a battery, which instead gets the power wirelessly over the air. To make such a device possible the transfer distance of currently known systems have to be increased. That will be the aim of this thesis, to investigate how to increase the transfer distance of a wireless power system, WPS, purposed to charge low power electronic devices. In order for the system to be usable certain design limits are set to restricts the size of the coils, flat spiral coils with diameter < 90mm and wire diameter < 2mm, and thereby also narrowing the scope of the thesis. This thesis starts with a presentation of the theoretical framework behind wireless power, including techniques for modeling a complete system. The framework is then broken down to its basic components which generates expressions with geometrical and material properties as variables. These expressions are implemented in Matlab creat- ing a simulator, which finds optimal values of geometrical and material properties that maximizes the transfer distance. The simulator is set up and ran for each system, 2, 3 and 4 coils, this because each system behaves differently and all have some desirable properties. The findings are implemented in Comsol which provides verification and illustrates the electromagnetic fields that are generated. The results from Comsol and Matlab are similar and shows that a 2-coil system can transfer power with 40% efficiency over a distance of ≈ 150mm. While 3- and 4-coil systems significantly improve the transfer distance and can transfer power with the same efficiency over a distance of ≈ 350mm. As a last step were WPS's built using the findings from the simulations. The coils were made according to the optimal parameters and capacitors were added to tune them to the same resonance frequency. An E-class amplifier was designed and built to excite the transmitting coil in the real system. The measurements made are the power delivered to the amplifier and the power delivered to the load. From that the efficiency of the complete system can be calculated. The measurements made in this thesis don't hold up to the simulations in the sense of transfer distance. The main reasons for that is that the amplifier is included in the measured PTE and not in the simulations and that the coils are not perfectly built or tuned. iii PREFACE This thesis work were conducted as the last part of the Master Programme in Engineering Physics and Electrical Engineering at Lulea University of Technology, LTU. During my project work course I first came into contact with wireless power and I thought is was a fascinating technology. Seeing the possibilities for wireless power it is clear that it will play a huge part in the future of electronics. I was not aware of any research in this area in Sweden, therefore I made the thesis work as a project on my own initiative which I carried out at LTU. I would like to thank Kalevi Hyyppa for his understanding and guidance and my family for always supporting me. Oskar Ronnback v CONTENTS Chapter 1 { Introduction 1 1.1 Wireless power today . .1 1.2 Benefits of wireless power systems . .2 1.2.1 Environmental . .2 1.2.2 Social . .2 1.3 Baseline . .3 1.4 Delimitations . .3 1.5 Goal . .4 1.6 Outline . .4 1.7 Frequently used variables and abbreviations . .4 Chapter 2 { Theory 7 2.1 Resistance . .7 2.1.1 Resistance in a wire . .7 2.1.2 Litz wire resistance . .8 2.2 Inductance . .8 2.2.1 Self inductance . .8 2.2.2 Inductance of pancake coil . .9 2.2.3 Inductor quality factor . .9 2.2.4 Mutual inductance . .9 2.2.5 Coupling coefficient . 10 2.3 Induction . 10 2.4 Resonance . 11 2.4.1 Electrical Resonance . 11 2.5 Wireless power using magnetic resonance . 12 2.6 Coupled Mode Theory . 12 2.6.1 Lossy model with source excitation . 13 2.6.2 Model of lossy 2-coil coupled system . 13 2.6.3 Wireless Power Transfer Efficiency . 14 2.6.4 WPT expanded to 3- and 4-coil systems . 14 2.7 Reflected Load Theory . 15 2.7.1 Expanded for m-coil systems . 15 2.8 Unified theory . 16 Chapter 3 { Simulations 17 3.1 Matlab simulations . 17 3.1.1 Finding the optimal PTE . 18 3.1.2 Simulation results . 19 2-coil system . 20 3-coil system . 21 4-coil system . 22 3.2 Comsol . 23 3.2.1 Simulation setup . 23 3.2.2 Simulation results . 24 2-coil system . 24 3-coil system . 26 4-coil system . 28 Chapter 4 { Electronic design 31 4.1 Tuning of the coils . 31 4.2 Source . 31 4.3 E-class amplifier . 32 4.4 Simulation . 33 4.4.1 Component selection . 33 4.4.2 PSpice . 34 Chapter 5 { Real testing 37 5.1 Measurement setup . 37 5.2 Test procedure . 37 5.3 Measurements on 2-coil system . 38 5.4 Measurement on 3-coil system . 39 5.5 Measurements on 4-coil system . 40 Chapter 6 { Discussion 41 6.1 Simulations . 41 6.2 Real tests . 42 6.3 Conclusions . 42 6.4 Health issues . 43 6.5 Future work . 43 viii CHAPTER 1 Introduction Wireless power is an old concept, Nikola Tesla experimented with it in the late 1800's. He was considering it as an alternative to building the electric grid. History tells us that wireless power were never realized at a consumer level and the concept was almost forgotten. Induction stoves and transformers transfers power "wirelessly" and have been around for some time but they all work over negligible distances. In 2007 scientists at MIT issued a press release describing how to transfer power wirelessly using magnetic resonance and presented results of transfer distances up to a couple of meters [1] . Since then interest in this technology have boomed and it is easy to see why. Wireless power could be used in a wide range of applications stretching from mobile devices cell phones, tablets, laptops, sensors, medical implants to electric cars, trains and buses. Estimations indicate that wireless power could be a billion dollar industry within the next 10 years. 1.1 Wireless power today Today, six years since that press release hardly any products have hit the market. At least not using magnetic resonance or who can transfer the power over a significant distance. The scientists at MIT that was behind this technology started a company, WiTricity, to commercialize their discovery. Since then most of their work are kept secret and protected by hundreds of patents. Their primary targets are OEM's that can embed their technology directly into their products. But no such products have been released yet. They have four own products, all using magnetic resonance [2]. Three of them are low power development kits aimed to showcase the technology for developers. The fourth one is a high power system for charging electrical cars. The products that are starting to pop up are charge pads/mats most of them uses the qi standard which is created by the Wireless Power Consortium [3], WPC. The WPC consists of over 140 members including industry leaders in mobile phones, batteries and consumer electronics. Their qi standard is made for low power wireless charging, <5W, 1 2 Introduction and specifies coil geometries, frequencies, communication, control and electric sources. The standard enables some design freedoms and is said to work with both direct induction and magnetic resonance. Most products today uses the first technique and the maximum transfer distance for a qi product today is 4cm. The WPC are working on a standard for medium power < 120W, but the specification for that is not made public yet. Their goal is to make worldwide standards for wireless power which is compatible for all devices, similar to Wi-Fi. Many of the large companies are doing their own research in this area e.g. Apple, Qual- comm, Duracell and Texas Instrument. But most is kept secret and the only available products are a few development kits and short distance charge pads/mats. There are research going on in a wide range of other applications also, from medical implants, consumer electronics to electrical cars and electric roads [4]. The medical implant research focuses on low power transfer using small coils. A 2-coil solution using direct induction, similar to a transformer, has been present for some time. Research for implementing a 4-coil system which is much more efficient and can work over longer distances have been made [5]. 1.2 Benefits of wireless power systems 1.2.1 Environmental One can argue that wireless chargers are not environmental friendly because they have lower efficiency than regular chargers i.e. will consume more power while charging. Be that as it may, wireless chargers can be made with high efficiency similar to regular chargers. But the biggest benefit will come if a global medium-range-wireless standard is implemented. A standard that enables charing of all mobile devices, phone, tablet, laptop, sensors etc, using the same charger. Then all devices don't need to have an own charger, which in turn will save a lot of resources and energy.
Recommended publications
  • Academic Regulations, Course Structure and Detailed Syllabus
    ACADEMIC REGULATIONS, COURSE STRUCTURE AND DETAILED SYLLABUS M.Tech (POWER ELECTRONICS AND ELECTRIC DRIVES) FOR MASTER OF TECHNOLOGY TWO YEAR POST GRADUATE COURSE (Applicable for the batches admitted from 2014-2015) R14 ANURAG GROUP OF INSTITUTIONS (AUTONOMOUS) SCHOOL OF ENGINEERING Venkatapur, Ghatkesar, Hyderabad – 500088 ANURAG GROUP OF INSTITUTIONS (AUTONOMOUS) M.TECH. (POWER ELECTRONICS AND ELECTRIC DRIVES) I YEAR - I SEMESTER COURSE STRUCTURE AND SYLLUBUS Subject Code Subject L P Credits A31058 Machine Modeling& Analysis 3 0 3 A31059 Power Electronic Converters-I 3 0 3 A31024 Modern Control Theory 3 0 3 A31060 Power Electronic Control of DC Drives 3 0 3 Elective-I 3 0 3 A31029 HVDC Transmission A31061 Operations Research A31062 Embedded Systems Elective-II A31027 Microcontrollers and Applications 3 0 3 A31063 Programmable Logic Controllers and their Applications A31064 Special Machines A31213 Power Converters Lab 0 3 2 A31214 Seminar - - 2 Total 18 3 22 I YEAR - II SEMESTER Subject Subject L P Credits Code A32058 Power Electronic Converters-II 3 0 3 A32059 Power Electronic Control of AC Drives 3 0 3 A32022 Flexible AC Transmission Systems (FACTS) 3 0 3 A32060 Neural Networks and Fuzzy Systems 3 0 3 Elective-III A32061 Digital Control Systems 3 0 3 A32062 Power Quality A32063 Advanced Digital Signal Processing Elective-IV A32064 Dynamics of Electrical Machines A32065 High-Frequency Magnetic Components A32066 3 0 3 Renewable Energy Systems A32213 Electrical Systems Simulation Lab 0 3 2 A32214 Seminar-II - - 2 Total 18 3 22 II YEAR – I SEMESTER Code Subject L P Credits A33219 Comprehensive Viva-Voce - - 2 A33220 Project Seminar 0 3 2 A33221 Project Work Part-I - - 18 Total Credits - 3 22 II YEAR – II SEMESTER Code Subject L P Credits A34207 Project Work Part-II and Seminar - - 22 Total - - 22 L P C M.
    [Show full text]
  • Crystal Radio Set Systems: Design, Measurement, and Improvement Volume II a Web Book by Ben Tongue
    Crystal Radio Set Systems: Design, Measurement, and Improvement Volume II A web book by Ben Tongue First published: 10 Jul 1999; Revised: 01/06/10 i NOTES: ii 185 PREFACE Note: An easy way to use a DVM ohmmeter to check if a ferrite is made of MnZn of NiZn material is to place the leads of the ohmmeter on a bare part of the test ferrite and read the The main purpose of these Articles is to show how resistance. The resistance of NiZn will be so high that the Engineering Principles may be applied to the design of crystal ohmmeter will show an open circuit. If the ferrite is of the radios. Measurement techniques and actual measurements are MnZn type, the ohmmeter will show a reading. The reading described. They relate to selectivity, sensitivity, inductor (coil) was about 100k ohms on the ferrite rods used here. and capacitor Q (quality factor), impedance matching, the diode SPICE parameters saturation current and ideality factor, #29 Published: 10/07/2006; Revised: 01/07/08 audio transformer characteristics, earphone and antenna to ground system parameters. The design of some crystal radios that embody these principles are shown, along with performance measurements. Some original technical concepts such as the linear-to-square-law crossover point of a diode detector, contra-wound inductors and the 'benny' are presented. Please note: If any terms or concepts used here are unclear or obscure, please check out Article # 00 for possible explanations. If there still is a problem, e-mail me and I'll try to assist (Use the link below to the Front Page for my Email address).
    [Show full text]
  • Optimization of Low Frequency Litz-Wire RF Coils
    Optimization of Low Frequency Litz-wire RF Coils J.A. Croon, II. M. fkJrSbooll1, A. F. Mehlkopf Fi7culty of Applied Physics, DeFt IJniversity of Technology, P.O. Box 5046, 2600 GA Delft, 77zeNetherlands INTRODUCTION Equations ]4] and [5] show that the skin losses are proportional to the In MRI the patient or sample losses increase with the square of the resistivity while the proximity losses are proportional to the conductiv- resonance frequency. This makes coil losses significant at low field ity. The rota1 losses are minimized if the derivative of P,,,, to p is zero. strengths. dP,oss %kin Rprox_ It is well known (1) that for frequencies of several hundreds of l&z - =--- - 0 or Rski,, = R WI stranded or litz wires can have lower losses than conventional wires, do P P PYqX Here we will investigate and present the optimization of copper solenoid coils for room temperature and for liquid nitrogen temperature. Thus the maximum coil quality is achieved if the skin losses equal the For litz wire coils we distinguish three types of losses: proximity losses. 1. losses within each considered strand, 2. proximity losses in the surrounding strands and RESULTS 3. eddy losses the environment of the coil (mainly determined by the The results of table 1 concern solenoids with a single litz wire and with sample losses). The losses within the considered strands are called skin six parallel litz wires. The six parallel wires are placed above each losses. We will show that the maximum coil quality is achieved if the other and twisted such that the losses in each parallel wire are the skin losses are equal to the proximity losses.
    [Show full text]
  • Figure 1 Old Huge Magnetic Receiving Loop Antennas
    ANTENTOP- 02- 2004, # 006 Old Receiving Magnetic Loop Antennas Igor Grigorov, RK3ZK [email protected] Receiving magnetic loop antennas were widely used in the professional radio communication from the beginning of the 20 Century. Since 1906 magnetic loop antennas were used for direction finding purposes needed for navigation of ships and planes. Later, from 20s, magnetic loop antennas were used for broadcasting reception. In the USSR in 20- 40 years of the 20 Century when broadcasting was gone on LW and MW, huge loop antennas were used on Reception Broadcasting Centers (see pages 93- 94 about USSRs RBC). Magnetic loop antennas worldwide were used for reception service radio stations working in VLW, LW and MW. The article writes up several designs of such old receiving loop antennas. LW- MW Huge Receiving Loop Fig. 2 shows a typical connection of the above mention Antennas for Broadcasting and huge magnetic receiving loop antennas designed for Direction Finding working on one fixing frequency to the receiver. To a resonance the loop A1 is tuned by lengthening coil L1 In old radio textbooks you can find description of old (sometimes two lengthening coils switched symmetrically magnetic receiving loop antennas. As a rule, old to both side of the loop were used) and variable air- magnetic receiving loop antennas had a triangle or dielectric capacitor C1. T1 did connection with antenna square shape, a side of the triangle or square had feedline. L1, C1 and T1, as a rule, are placed directly length in 10-20 meters. The huge square was put near the antenna keeping minimum length for wires from on to a corner.
    [Show full text]
  • Wireless Energy Transfer by Resonant Inductive Coupling
    Wireless Energy Transfer by Resonant Inductive Coupling Master of Science Thesis Rikard Vinge Department of Signals and systems CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2015 Master’s thesis EX019/2015 Wireless Energy Transfer by Resonant Inductive Coupling Rikard Vinge Department of Signals and systems Division of Signal processing and biomedical engineering Signal processing research group Chalmers University of Technology Göteborg, Sweden 2015 Wireless Energy Transfer by Resonant Inductive Coupling Rikard Vinge © Rikard Vinge, 2015. Main supervisor: Thomas Rylander, Department of Signals and systems Additional supervisor: Johan Winges, Department of Signals and systems Examiner: Thomas Rylander, Department of Signals and systems Master’s Thesis EX019/2015 Department of Signals and systems Division of Signal processing and biomedical engineering Signal processing research group Chalmers University of Technology SE-412 96 Göteborg Telephone +46 (0)31 772 1000 Cover: Magnetic field lines between the primary and secondary coil in a wireless energy transfer system simulated in COMSOL. Typeset in LATEX Göteborg, Sweden 2015 iv Wireless Energy Transfer by Resonant Inductive Coupling Rikard Vinge Department of Signals and systems Chalmers University of Technology Abstract This thesis investigates wireless energy transfer systems based on resonant inductive coupling with applications such as charging electric vehicles. Wireless energy trans- fer can be used to power or charge stationary and moving objects and vehicles, and the interest in energy transfer over the air has grown considerably in recent years. We study wireless energy transfer systems consisting of two resonant circuits that are magnetically coupled via coils. Further, we explore the use of magnetic materials and shielding metal plates to improve the performance of the energy transfer.
    [Show full text]
  • Synchro and Resolver Engineering Handbook We Have Been a Leader in the Rotary Components Industry for Over 50 Years
    Synchro and Resolver Engineering Handbook We have been a leader in the rotary components industry for over 50 years. Our staff includes electrical, mechanical, manufacturing and software engineers, metallurgists, chemists, physicists and materials scientists. Ongoing emphasis on research and product development has provided us with the expertise to solve real-life manufacturing problems. Using state-of-the-art tools in our complete analytical facility, our capabilities include a full range of environmental test, calibration and inspection services. Moog Components Group places a continuing emphasis on quality manufacturing and product development to ensure that our products meet our customer’s requirements as well as our stringent quality goals. Moog Components Group has earned ISO-9001 certification. We look forward to working with you to meet your resolver requirements. 1213 North Main Street, Blacksburg, VA 24060-3127 800/336-2112 ext. 279 • 540/552-3011 • FAX 540/557-6400 • www.moog.com • e-mail: [email protected] Specifications and information are subject to change without prior notice. © 2004 Moog Components Group Inc. MSG90020 12/04 www.moog.com Synchro and Resolver Engineering Handbook Contents Page Section 1.0 Introduction 1-1 Section 2.0 Synchros and Resolvers 2-1 2.1 Theory of Operation and Classic Applications 2-1 2.1.1 Transmitter 2-1 2.1.2 Receiver 2-1 2.1.3 Differential 2-2 2.1.4 Control Transformer 2-2 2.1.5 Transolver and Differential Resolver 2-3 2.1.6 Resolver 2-3 2.1.7 Linear Transformer 2-5 2.2 Brushless Synchros and Resolvers
    [Show full text]
  • Analytical Model for Effects of Twisting on Litz-Wire Losses
    Analytical Model for Effects of Twisting on Litz-Wire Losses Charles R. Sullivan Richard Y. Zhang Thayer School of Engineering at Dartmouth Dept. Elec. Eng. & Comp. Sci., M.I.T. 14 Engineering Drive, Hanover, NH 03755, USA Cambridge, MA, USA Email: [email protected] Email: [email protected] Abstract—Litz wire uses complex twisting to balance currents allows answering these questions for any litz-wire construc- between strands. Most models are not helpful for choosing the tion in any transformer or inductor winding application. The twisting configuration because they assume that the twisting ultimate goal is a practical goal, to verify existing design works perfectly. A complete model that shows the effect of twisting on loss is introduced. The model can predict loss for guidelines, such as those provided in [12], and to extend a precise configuration, but in practice, it is difficult to achieve them to provide guidance on all aspects of litz-wire design. sufficient manufacturing precision to use this approach. More In particular, many design methods provide guidance on the practically, the model can predict worst-case loss over the range number and diameter of strands to use. The method in [12] of expected production variation. The model is useful for making is particularly recommended because it provides a simple-to- design choices for the twisting configuration and the pitch of the twisting at each level of construction. use method that takes into account trade-offs between cost and loss in choosing the number and diameter of strands. I. INTRODUCTION Also provided in [12] is a simple and systematic method for Litz wire uses complex twisting configurations to balance choosing some of the construction details— the number of currents between strands.
    [Show full text]
  • Winding Resistance and Winding Power Loss of High-Frequency Power Inductors
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2012 Winding Resistance and Winding Power Loss of High-Frequency Power Inductors Rafal P. Wojda Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Computer Engineering Commons, and the Computer Sciences Commons Repository Citation Wojda, Rafal P., "Winding Resistance and Winding Power Loss of High-Frequency Power Inductors" (2012). Browse all Theses and Dissertations. 1095. https://corescholar.libraries.wright.edu/etd_all/1095 This Dissertation is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. WINDING RESISTANCE AND WINDING POWER LOSS OF HIGH-FREQUENCY POWER INDUCTORS A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Rafal Piotr Wojda B. Tech., Warsaw University of Technology, Warsaw, Poland, 2007 M. S., Warsaw University of Technology, Warsaw, Poland, 2009 2012 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL August 20, 2012 I HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER MY SUPERVISION BY Rafal Piotr Wojda ENTITLED Winding Resistance and Winding Power Loss of High-Frequency Power Inductors BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy. Marian K. Kazimierczuk, Ph.D. Dissertation Director Ramana V. Grandhi, Ph.D. Director, Ph.D. in Engineering Program Andrew Hsu, Ph.D. Dean, Graduate School Committee on Final Examination Marian K.
    [Show full text]
  • History and Future Prospects of Magnet Wire Development Pdf 1.1 MB
    FEATURED TOPIC History and Future Prospects of Magnet Wire Development Jun SUGAWARA*, Takayuki SAEKI, Naohiro KOBAYASHI and Kouzou KIMURA ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- In 2016, it was 100 years since Sumitomo Electric Industries, Ltd. first produced its enameled wire. The magnet wire, coated with an insulation film, has been used in various products including electrical components, household appliances, and electrical conductors, and supported the industry. This paper outlines the history of magnet wire from development to commercialization over the century and introduces our major products. We also discuss the direction of future wire development. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Keywords: magnet wire, enameled wire, thermal resistance, scrape resistance 1. Introduction production site of magnet wire in Thailand. Such production Magnet wire is a generic name for the electrical wire sites now total five thanks to steady market expansion. In used to convert electrical energy to magnetic energy and recent years, Sumitomo Electric has been particularly vice versa, and it plays an important role in wide-ranging
    [Show full text]
  • Reliability Testing of Aluminum Magnet Wire Connections for Hermetic Motors J
    Purdue University Purdue e-Pubs International Compressor Engineering Conference School of Mechanical Engineering 1974 Reliability Testing of Aluminum Magnet Wire Connections for Hermetic Motors J. L. Spears A. O. Smith Corporation Follow this and additional works at: https://docs.lib.purdue.edu/icec Spears, J. L., "Reliability Testing of Aluminum Magnet Wire Connections for Hermetic Motors" (1974). International Compressor Engineering Conference. Paper 94. https://docs.lib.purdue.edu/icec/94 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/ Herrick/Events/orderlit.html RELIABUITY TESTil!G OF ALUI1INU1'1 HAGNE'r WIRE CONNECTIONS FOR HERHETIC JJ[QTORS Jerry 1. Spears, Senior Haterials Engineer A. o. Smith Corp., Electric Motor Div., Tipp City, 0., USA 1 IN'l'Jl.ODUCTION to the aluminum wire and system compati'oili ty ·was maintained. However, alwr,inwn wire even Hhen pro­ The heart of the hermetic compressor is the stator. perly stripped is not easily fused together, and As "•~ith the other components sealed into the her­ with copper wire in the connection, disslinilar metic envirom~ent, the stator is expected to pro­ melting points made heat fusing impossible. Be­ vide years of reliable service. The motor manu­ sides heat fusing, other methods of connecting facturer, however, does not look at the hermetic aluminum wire combinations have been explored. stator as a unit but rather as a selected group of For instance, sample connections were made with materials and processes that will provide the end such advanced techniques as capacitor discharge user with the reliability and performance desired.
    [Show full text]
  • The Tesla Coil
    The Tesla Coil David R. Long Caleb D. Selby A strangely loud buzz punctuated by piercing cracks, all in time with a curiously bright spark in the base of the machine, and seemingly miniaturized lightning bolts shooting from the top, all caused by one amazing invention originally designed by Nikola Tesla. The device is known as a Tesla Coil, which is a high voltage dual coil resonant transformer. This amazing transformer differs from a standard step-up transformer in a few ways, including its dependence on resonating frequencies, capacitance of its output terminal and several other factors. Though the coil may not have been originally designed to produce these miniature lightning bolts, or coronas, these are easily the most recognizable trait of a Tesla Coil. First the coil needs a high voltage power source, which can be achieved by using a high voltage step up transformer to transform standard electrical outlet 120 VAC current, into a much higher voltage, somewhere in the range of 20,000 volts. One output lead of this step up transformer is wired back to the 3rd prong grounding lead of the plug. The other output lead of the transformer is connected to one lead of a resonance or choke coil, which is about 40 turns of magnet wire wrapped around a piece of 1.5” PVC pipe, this choke coil blocks any high frequency from interfering. The second lead of the resonance coil is then connected to a high voltage tank capacitor. One end of this capacitor is then wired to a simple high voltage switch known as the spark gap.
    [Show full text]
  • Electrical Test 3
    RIGON INSTRUMENTS Torino - Italy A WORLD OF INSTRUMENTS Table of contents Mechanical test 1 Chemical test 2 Electrical test 3 Thermal test 4 In-line test 5 Accessories 6 REFERENCES Our customers WORLD WIDE SERVICE Our worldwide representatives RIGON INSTRUMENTS policy is to pursue a continuous research and development of its products to offer to its estimated customers the most upgraded technologies, for this reason the contents of this catalogue could be changed at any moment without notice. We have paid our best care to print this catalogue, we apologize for mistakes. RIGON INSTRUMENTS Via A. Banfo, 42 10155 Torino Italy 2 Tel. +39 011 2480012 e-mail: [email protected] www.rigon.it MECHANICAL TEST Model Page - BIDIRECTIONAL SCRAPE TESTER acc. to NEMA MW1000 BST 4 - BIDIRECTIONAL SCRAPE TESTER acc. to GOST14340.10-69 BST1 5 - ELONGATION TESTER Diameter up to 2,75 mm ET 6 Diameter up to 6,0 mm and strip ET3, ET4 7 Diameter up to 1,16 mm manual/electrical ETM, ETM1,ETM2 9 - LOW STRESS ELONGATION TESTER LSE, LSE-PC 10 - SELF BONDING TESTER Thermal or solvent HBT 12 Joule effect JOU 13 - FLEXIBILITY and ADHERENCE TESTER Jerk JT, JTM 14 Mandrel winding MW, MW1 15 Peel PT 16 Suitable for strip SBD1 17 Flat wire torsion meter TOR 18 - SPRING BACK TESTER Diameter up to 1,60 mm SB0, SB1, SB2 19 Diameter > 1,60 mm and strip SB3, SB4 21 Whole range SB5, SB6 22 - SURFACE SMOOTHNESS TESTER Dynamic SST, SST1, SST2 23 Static SST3 25 Static SST4 26 Static/Dynamic SST5 27 - THICKNESS MEASURING GAUGE TMG 29 - UNIDIRECTIONAL SCRAPE TESTER UST, UST1 31 - WINDABILITY TESTER WT 32 RIGON INSTRUMENTS Via A.
    [Show full text]