Academic Regulations, Course Structure and Detailed Syllabus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Income? Bisone
INCOME? BISONE ED 179 392 SP 029 296 $ AUTHOR Hamilton, Howard B. TITLE Problem Manual for Power Processiug, Tart 1. Electric Machinery Analysis. ) ,INSTITUTION Pittsbutgh Univ., VA. 51'014 AGENCY National Science Foundation, Weeshingtcni D.C. PUB DATE -70 GRANT NSF-GY-4138 NOTE 40p.; For_related documents', see SE 029 295-298 EDRS PRICE MF01/BCO2 Plus Postage. DESCRIPTORS *College Science: Curriculum Develoimeft: Electricity: Electromechanical lacshnology;- Electfonics: *Engineering Educatiob: Higher Education: Instructional Materials: *Problem Solving; Science CourAes:,'Science Curriculum: Science . Eductttion; *Science Materials: Scientific Concepts AOSTRACT This publication was developed as aPortion/ofa . two-semester se4uence commencing t either the-sixth cr seVenth.term of the undergraduate program in electrical engineering at the University of Pittsburgh. The materials of tfie two courses, produced by' National Science Foundation grant, are concernedwitli power con ion systems comprising power electronic devices, electromechanical energy converters, and,associnted logic configurations necessary to cause the systlp to behave in a, prescrib,ed fashion. The erphasis in this portion of the'two course E` sequende (Part 1)is on electric machinery analysis.. 7his publication is-the problem manual for Part 1, which provide's problems included in 4, the first course. (HM) 4 Reproductions supplied by EDPS are the best that can be made from the original document. * **************************v******************************************** 2 -
Control Techniques Commander SK Advanced User Guide
Advanced User Guide Commander SK AC variable speed drive for 3 phase induction motors from 0.25kW to 110kW, 0.33hp to 150hp Part Number: 0472-0001-08 Issue: 8 www.controltechniques.com General Information The manufacturer accepts no liability for any consequences resulting from inappropriate, negligent or incorrect installation or adjustment of the optional operating parameters of the equipment or from mismatching the variable speed drive with the motor. The contents of this guide are believed to be correct at the time of printing. In the interests of a commitment to a policy of continuous development and improvement, the manufacturer reserves the right to change the specification of the product or its performance, or the contents of the guide, without notice. All rights reserved. No parts of this guide may be reproduced or transmitted in any form or by any means, electrical or mechanical including photocopying, recording or by an information storage or retrieval system, without permission in writing from the publisher. Drive software version This product is supplied with the latest software version. If this drive is to be connected to an existing system or machine, all drive software versions should be verified to confirm the same functionality as drives of the same model already present. This may also apply to drives returned from a Control Techniques Service Centre or Repair Centre. If there is any doubt please contact the supplier of the product. The software version of the drive can be checked by looking at Pr 11.29 and Pr 11.34. This takes the form of xx.yy.zz where Pr 11.29 displays xx.yy and Pr 11.34 displays zz. -
Power Electronics
CMR COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS) ACADEMIC REGULATIONS COURSE STRUCTURE AND DETAILED SYLLABUS POWER ELECTRONICS For M.Tech TWO YEAR DEGREE COURSE (Applicable for the batches admitted from 2015-16) CMR COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS) (Affliated to JNTU, Accredited by NAAC with “A” grade) Kandlakoya, Medchal Road, Hyderabad. CMR COLLEGE OF ENGINEERING & TECHNOLOGY (AUTONOMOUS) CMR COLLEGE OF ENGINEERING & TECHNOLOGY (An Autonomous Institution) ACADEMIC REGULATION R15 FOR CBCS BASED M. TECH. (REGULAR) DEGREE PROGRAMMES (Applicable for the students of M. Tech. programme admitted into I year from Academic Year 2015-16 and onwards) 1.0 Eligibility for Admissions Admission to the above program shall be made subject to eligibility, qualification and specialization as prescribed by Government of Telangana State from time to time. Admission shall be made on the basis of merit/rank obtained by the candidates at the qualifying Entrance Test conducted by the Government of Telangana or on the basis of any other order of merit as approved by the University, subject to reservations as laid down by the Government from time to time. 1. Award of M. Tech. degree 2.1. A student shall be declared eligible for the award of the M. Tech. Degree, if he pursues a course of study in not less than two and not more than four academic years. However, he is permitted to write the examinations for two more years after four academic years of course work, failing which he shall forfeit his seat in M.Tech programme. 2.2. The M. Tech. degree of Jawaharlal Nehru Technological University Hyderabad shall be conferred on candidates who are admitted to the program and who fulfil all the requirements for the award of the degree. -
Automatic Permanent Magnet Generator Controller
Automatic Permanent Magnet Generator Controller for Small Applications A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering By William Scott Adkins B.S.E.E., Wright State University, 2013 2015 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL January 6, 2016 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY William Scott Adkins ENTITLED Automatic PMG Controller for Small Applications BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Engineering. ______________________________ Marian K. Kazimierczuk, Ph.D. Thesis Director Committee on Final Examination ______________________________ Brian Rigling, Ph.D. ______________________________ Chair Marian K. Kazimierczuk, Ph.D. Department of Electrical Engineering College of Engineering and Computer Science ______________________________ Lavern Alan Starman, Ph. D ______________________________ Saiyu Ren, Ph.D. ______________________________ Robert E. W. Fyffe, Ph.D. Vice President for Research and Dean of the Graduate School PROPRIETARY & INTECTUAL PROPERTY INFORMATION The information contained within this document is entitled as William Scott Adkins proprietary information and intellectual property and is disclosed in confidence. It is the property of William Scott Adkins and shall not be used, disclosed to others or reproduced without the express written consent of William Scott Adkins, including, but without limitation, it is not to be used in the creation, manufacture, development, or derivation of any repairs, modifications, spare parts, designs, or configuration changes or to obtain FAA or any other government or regulatory approval to do so. If consent is given for reproduction in whole or in part, this notice shall be applicable to all contents of this document or any document provide as such. -
A Dc–Dc Converter with High-Voltage Step-Up Ratio and Reduced- Voltage Stress for Renewable Energy Generation Systems
A DC–DC CONVERTER WITH HIGH-VOLTAGE STEP-UP RATIO AND REDUCED- VOLTAGE STRESS FOR RENEWABLE ENERGY GENERATION SYSTEMS A Dissertation by Satya Veera Pavan Kumar Maddukuri Master of Science, University of Greenwich, UK, 2012 Bachelor of Technology, Jawaharlal Nehru Technology University Kakinada, India, 2010 Submitted to the Department of Electrical Engineering and Computer Science and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2018 1 © Copyright 2018 by Satya Veera Pavan Kumar Maddukuri All Rights Reserved 1 A DC–DC CONVERTER WITH HIGH-VOLTAGE STEP-UP RATIO AND REDUCED- VOLTAGE STRESS FOR RENEWABLE ENERGY GENERATION SYSTEMS The following faculty members have examined the final copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirement for the degree of Doctor of Philosophy with a major in Electrical Engineering and Computer Science. ___________________________________ Aravinthan Visvakumar, Committee Chair ___________________________________ M. Edwin Sawan, Committee Member ___________________________________ Ward T. Jewell, Committee Member ___________________________________ Chengzong Pang, Committee Member ___________________________________ Thomas K. Delillo, Committee Member Accepted for the College of Engineering ___________________________________ Steven Skinner, Interim Dean Accepted for the Graduate School ___________________________________ Dennis Livesay, Dean iii DEDICATION To my parents, my wife, my in-laws, my teachers, and my dear friends iv ACKNOWLEDGMENTS Firstly, I would like to express my sincere gratitude to my advisor Dr. Aravinthan Visvakumar for the continuous support of my PhD study and related research, for his thoughtful patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this dissertation. -
Voltage Control and Braking System of a DFIG During a Fault
Journal of the Institute of Engineering Volume 16, No. 1 Published: April 2021 ISSN: 1810-3383 © TUTA j IOE j PCU Printed in Nepal Voltage Control and Braking System of a DFIG during a Fault Rabin Mahat a, Khagendra B. Thapa b, Sudip Lamichhane, Sudeep Thapaliya, Sagar Dhakal Department of Electrical Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University, Nepal Corresponding Authors: a [email protected], b [email protected] Received: 2020-08-31 Revised: 2021-01-23 Accepted: 2021-01-30 Abstract: This paper describes a voltage control scheme of a doubly fed induction generator (DFIG) wind turbine that can inject more reactive power to the grid during a fault so as to support the grid voltage. To achieve this, the coordinated control scheme using both rotor side converter (RSC) and grid side converters (GSC) controllers of the DFIG are employed simultaneously. The RSC and GSC controllers employ PI controller to operate smoothly. In the voltage control mode, the RSC and GSC are operated. During a fault, both RSC and GSC are used simultaneously to supply the reactive power into the grid (main line) depending on voltage dip condition to support the grid voltage. The proposed system is implemented for single DFIG wind turbine using MATLAB simulation software. The results illustrate that the control strategy injects the reactive power to support the voltage stability during a fault rapidly. Also, the braking system is designed to protect the wind turbine system from over speed. For this purpose, the braking resistors are being used. Keywords: Voltage control, Braking System, DFIG, RSC, GSC 1. -
Voltage Sag Ride-Through of AC Drives: Control and Analysis
Voltage Sag Ride-Through of AC Drives: Control and Analysis Kai PietilÄainen Stockholm 2005 Electrical Machines and Power Electronics Department of Electrical Systems Royal Institute of Technology Submitted to the School of Electrical Engineering, KTH, in partial ful¯llment of the requirements for the degree of Doctor of Technology. TRITA-ETS-2005-12 ISSN 1650{674X ISRN KTH/R-0504-SE ISBN 91-7178-165-X KTH, Royal Institute of Technology Department of Electrical Systems Division of Electrical Machines and Power Electronics KTH/ETS/EME Teknikringen 33 SE-10044 Stockholm Sweden °c Kai PietilÄainen,2005 Abstract This thesis focuses on controller design and analysis for induction motor (IM) drives, flux control for electrically excited synchronous motors with damper windings (EESMs), and to enhance voltage sag ride-through ability and analy- sis for a wind turbine application with a full-power grid-connected active recti- ¯er. The goal is to be able to use the existing equipment, without altering the hardware. Further, design and analysis of the stabilization of DC-link voltage oscillations for DC systems and inverter drives is studied, for example traction drives with voltage sags in focus. The proposed IM controller is based on the ¯eld-weakening controller of Kim and Sul [31], which is further developed. Applying the proposed controller to voltage sag ride-through gives a cheap and simple ride-through system. The EESM controller is based on setpoint adjustment for the ¯eld current controller. The analysis also concerns stability for the proposed flux controller. The DC-link stabilization algorithm is designed following Mosskull [38], where a component is added to the current controller. -
Course Description Bachelor of Technology (Electrical Engineering)
COURSE DESCRIPTION BACHELOR OF TECHNOLOGY (ELECTRICAL ENGINEERING) COLLEGE OF TECHNOLOGY AND ENGINEERING MAHARANA PRATAP UNIVERSITY OF AGRICULTURE AND TECHNOLOGY UDAIPUR (RAJASTHAN) SECOND YEAR (SEMESTER-I) BS 211 (All Branches) MATHEMATICS – III Cr. Hrs. 3 (3 + 0) L T P Credit 3 0 0 Hours 3 0 0 COURSE OUTCOME - CO1: Understand the need of numerical method for solving mathematical equations of various engineering problems., CO2: Provide interpolation techniques which are useful in analyzing the data that is in the form of unknown functionCO3: Discuss numerical integration and differentiation and solving problems which cannot be solved by conventional methods.CO4: Discuss the need of Laplace transform to convert systems from time to frequency domains and to understand application and working of Laplace transformations. UNIT-I Interpolation: Finite differences, various difference operators and theirrelationships, factorial notation. Interpolation with equal intervals;Newton’s forward and backward interpolation formulae, Lagrange’sinterpolation formula for unequal intervals. UNIT-II Gauss forward and backward interpolation formulae, Stirling’s andBessel’s central difference interpolation formulae. Numerical Differentiation: Numerical differentiation based on Newton’sforward and backward, Gauss forward and backward interpolation formulae. UNIT-III Numerical Integration: Numerical integration by Trapezoidal, Simpson’s rule. Numerical Solutions of Ordinary Differential Equations: Picard’s method,Taylor’s series method, Euler’s method, modified -
Power Processing, Part 1. Electric Machinery Analysis
DOCONEIT MORE BD 179 391 SE 029 295,. a 'AUTHOR Hamilton, Howard B. :TITLE Power Processing, Part 1.Electic Machinery Analyiis. ) INSTITUTION Pittsburgh Onii., Pa. SPONS AGENCY National Science Foundation, Washingtcn, PUB DATE 70 GRANT NSF-GY-4138 NOTE 4913.; For related documents, see SE 029 296-298 n EDRS PRICE MF01/PC10 PusiPostage. DESCRIPTORS *College Science; Ciirriculum Develoiment; ElectricityrFlectrOmechanical lechnology: Electronics; *Fagineering.Education; Higher Education;,Instructional'Materials; *Science Courses; Science Curiiculum:.*Science Education; *Science Materials; SCientific Concepts ABSTRACT A This publication was developed as aportion of a two-semester sequence commeicing ateither the sixth cr'seventh term of,the undergraduate program inelectrical engineering at the University of Pittsburgh. The materials of thetwo courses, produced by a ional Science Foundation grant, are concernedwith power convrs systems comprising power electronicdevices, electrouthchanical energy converters, and associated,logic Configurations necessary to cause the system to behave in a prescribed fashion. The emphisis in this portionof the two course sequence (Part 1)is on electric machinery analysis. lechnigues app;icable'to electric machines under dynamicconditions are anallzed. This publication consists of sevenchapters which cW-al with: (1) basic principles: (2) elementary concept of torqueand geherated voltage; (3)tile generalized machine;(4i direct current (7) macrimes; (5) cross field machines;(6),synchronous machines; and polyphase -
Performance Rating of Variable Frequency Drives
AHRI Standard 1210 (I-P) 2017 Standard for Performance Rating of Variable Frequency Drives IMPORTANT SAFETY DISCLAIMER AHRI does not set safety standards and does not certify or guarantee the safety of any products, components or systems designed, tested, rated, installed or operated in accordance with this standard/guideline. It is strongly recommended that products be designed, constructed, assembled, installed and operated in accordance with nationally recognized safety standards and code requirements appropriate for products covered by this standard/guideline. AHRI uses its best efforts to develop standards/guidelines employing state-of-the-art and accepted industry practices. AHRI does not certify or guarantee that any tests conducted under its standards/guidelines will be non- hazardous or free from risk. Note: This standard supersedes ANSI/AHRI Standard 1210 (I-P)-2011 with Addenda 1 and 2. For SI ratings, see AHRI Standard 1211 (SI)-2017. AHRI CERTIFICATION PROGRAM PROVISIONS Scope of the Certification Program The Certification Program includes all Variable Frequency Drive as defined in Section 2 of this standard. Certified Ratings The following certification program ratings are verified by test as indicated in Section 7.1 at the Standard Rating Conditions: Drive System Efficiency, %. Motor Insulation Stress Peak Voltage, V Motor Insulation Stress Rise Time, µsec Power Line Harmonics (Total Harmonic Current Distortion), %. Price $10.00 (M) $20.00 (NM) ©Copyright 2017, by Air-Conditioning, Heating and Refrigeration Institute Printed -
AC Servo Motor & D2 Drive
AC Servo Motor & D2 Drive Technical Information AC Servo Motor & D2 Drive HIWIN MIKROSYSTEM CORP. No.6, Jingke Central Rd., Taichung Precision Machinery Park, Taichung 40852, Taiwan Tel: +886-4-23550110 Fax: +886-4-23550123 www.hiwinmikro.tw [email protected] Subsidiaries & R&D Centers HIWIN GmbH HIWIN Schweiz GmbH HIWIN KOREA OFFENBURG, GERMANY JONA, SWITZERLAND SUWON, KOREA www.hiwin.de www.hiwin.ch www.hiwin.kr www.hiwin.eu [email protected] [email protected] [email protected] HIWIN JAPAN HIWIN FRANCE HIWIN CHINA KOBE‧TOKYO‧NAGOYA‧NAGANO‧ ECHAUFFOUR, FRANCE SUZHOU, CHINA TOHOKU‧HOKURIKU‧HIROSHIMA‧ www.hiwin.fr www.hiwin.cn KUMAMOTO‧FUKUOKA, JAPAN [email protected] [email protected] www.hiwin.co.jp [email protected] HIWIN USA HIWIN s.r.o. Mega-Fabs Motion System, Ltd. CHICAGO‧SILICON VALLEY, U.S.A. BRNO, CZECH REPUBLIC HAIFA, ISRAEL www.hiwin.com www.hiwin.cz www.mega-fabs.com [email protected] [email protected] [email protected] HIWIN Srl HIWIN SINGAPORE BRUGHERIO, ITALY SINGAPORE www.hiwin.it www.hiwin.sg [email protected] [email protected] Technical Information The specifications in this catalog are subject to change without notification. ©2017 FORM MD99TE06-1704 (PRINTED IN TAIWAN) INDUSTRIE 4.0 Best Partner Linear Motor Stage Linear Motor Automated transport / AOI application / Machine tool / Touch panel industry / Precision / Semiconductor Semiconductor industry / • Iron-core Linear Motor Laser manufacturing machine / • Coreless Linear Motor Glass cutting machine • Linear Shaft Motor LMT • Ironcore linear motor-LMFA series, • Planar Servo Motor LMSA series, -
Synchro and Resolver Engineering Handbook We Have Been a Leader in the Rotary Components Industry for Over 50 Years
Synchro and Resolver Engineering Handbook We have been a leader in the rotary components industry for over 50 years. Our staff includes electrical, mechanical, manufacturing and software engineers, metallurgists, chemists, physicists and materials scientists. Ongoing emphasis on research and product development has provided us with the expertise to solve real-life manufacturing problems. Using state-of-the-art tools in our complete analytical facility, our capabilities include a full range of environmental test, calibration and inspection services. Moog Components Group places a continuing emphasis on quality manufacturing and product development to ensure that our products meet our customer’s requirements as well as our stringent quality goals. Moog Components Group has earned ISO-9001 certification. We look forward to working with you to meet your resolver requirements. 1213 North Main Street, Blacksburg, VA 24060-3127 800/336-2112 ext. 279 • 540/552-3011 • FAX 540/557-6400 • www.moog.com • e-mail: [email protected] Specifications and information are subject to change without prior notice. © 2004 Moog Components Group Inc. MSG90020 12/04 www.moog.com Synchro and Resolver Engineering Handbook Contents Page Section 1.0 Introduction 1-1 Section 2.0 Synchros and Resolvers 2-1 2.1 Theory of Operation and Classic Applications 2-1 2.1.1 Transmitter 2-1 2.1.2 Receiver 2-1 2.1.3 Differential 2-2 2.1.4 Control Transformer 2-2 2.1.5 Transolver and Differential Resolver 2-3 2.1.6 Resolver 2-3 2.1.7 Linear Transformer 2-5 2.2 Brushless Synchros and Resolvers