Transparent, Lightweight, High Performance Polymer Films And

Total Page:16

File Type:pdf, Size:1020Kb

Transparent, Lightweight, High Performance Polymer Films And Transparent, Lightweight, High Performance Polymer Films and Their Composites Yunyin Lin SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF DOCTOR OF PHILOSOPHY School of Engineering and Materials Science, Queen Mary University of London, London, UK June 2020 1 Declaration Declaration I, Yunyin Lin, confirm that the research included within this thesis is my own work or that where it has been carried out in collaboration with, or supported by others, that this is duly acknowledged below and my contribution indicated. Previously published material is also acknowledged below. I attest that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge break any UK law, infringe any third party’s copyright or other Intellectual Property Right, or contain any confidential material. I accept that the College has the right to use plagiarism detection software to check the electronic version of the thesis. I confirm that this thesis has not been previously submitted for the award of a degree by this or any other university. The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author. Signature: Date: 03/06/2020 2 Acknowledgements Acknowledgements First, I would like to give my greatest and sincere gratitude to my supervisors Prof. Ton Peijs, Dr. Emiliano Bilotti and Prof. Cees Bastiaansen for their generosity in guiding, supporting as well as sharing their knowledge and experience to me. Ton, always coming up with great ideas with his profound knowledge and comprehensive outlook, gave me plenty of constructive comments and supported me in all aspects over these four years. Emiliano’s helpful suggestions and encouraging support guided me through the whole process. The intensive discussions with Cees taught me how to think critically and to be rigorous when doing research. Without their patient guidance and precious input, I would not have been able to carry out my research. I would like to thank the China Scholarship Council (CSC) for their financial support and giving me an opportunity to study abroad. I gratefully acknowledge the facilities and support offered by School of Engineering and Materials Science and Nanoforce Technology Ltd. I also appreciate Dr. Russell Bailey, Dr. Alice Williams, Dr. Rory Wilson, Dr. Thomas Baumard, Dr. Giovanni Santagiuliana, Dr. Theo Saunders, Mr. Maurizio Leo, Ms. Sanam Ghaffari and Mr. Dennis Ife for their technical support. I greatly appreciate Dr. Wei Tu and Dr. Han Zhang for their useful suggestions and invaluable assistance. A huge thanks to my lovely colleagues and friends Dr. Yi Liu, Dr. Yaqiong Wang, Dr. Nan Meng, Dr. Min Yu, Dr. Hangfeng Zhang, Dr. Kan Chen, Dr. Jiyue Wu, Xintong Ren, Kening Wan, Hanchi Ruan, Xiangyan Yu, Rehan Bhatti, Arnaud Kernin, Leonardo Ventura, Claudia Bertei, Man Zhang and Yichen Wang for all the help in any shape or form. Also I would like to thank undergraduate student Ruhi Patel. 3 Acknowledgements I would also like to greatly acknowledge the support from the Stimuli-responsive Functional Materials & Devices (SFD) Group at Eindhoven University of Technology (Netherlands) and the SFD group members including Prof. Dick Broer, Prof. Albert Schenning, Dr. Lihua Shen, Tom Bus, Rob Verpaalen, Xinlong Pan, Simon Houben, Sarah Lafleur and Yuanyuan Zhan for their help. I spent a fabulous and unforgettable month in Eindhoven. My special thanks go to my parents and my boyfriend, Jun Cao, for their understanding, support and encouragement which helped me throughout my whole PhD period. 4 Abstract Abstract This thesis aims to develop novel polymeric material with an excellent balance in high optical transparency and mechanical properties. More particularly, the current thesis reports the processing and characterization of highly oriented transparent polyethylene films and their use in laminated composites. First, highly transparent high-density polyethylene (HDPE) films with high modulus and tensile strength were developed by regulating solid-state drawing conditions without the need of additives. The effects of drawing parameters like drawing temperature and draw ratio on optical and mechanical properties as well as morphology of these solid-state drawn HDPE films were methodically investigated. It was found that a fairly broad processing window can be utilized to tailor the required balance in optical and mechanical performance. Subsequently, the production of these ultra-drawn transparent HDPE films was carried out using a scalable and continuous cast-film extrusion and drawing process. High optical transparency of around 91 % was achieved even in the far field. A maximum modulus of ~ 33 GPa and tensile strength of ~ 900 MPa of these solid-state drawn HDPE films was attained without compromising optical transparency, which is an order of magnitude higher than mechanical properties of conventional transparent plastics such as polycarbonate (PC) and poly(methyl methacrylate) (PMMA). The influence of extrusion draw down and two-step drawing on optical and mechanical behaviours was also explored. Finally, these highly oriented transparent HDPE films were used as the reinforcing phase in high performance transparent composite laminates. The far field light transmittance of 5 Abstract 4-layer HDPE-reinforced laminates with either a unidirectional (UD) or bidirectional (BD) lay-up sandwiched between glass or PC skins, was maintained at around 85 %. The fabricated transparent composite laminates were shown to have not only a high tensile strength but also a high energy absorption capability, outperforming existing transparent glazing materials such as laminated glass or PC. 6 Table of Contents Table of Contents Declaration ....................................................................................................................... 2 Acknowledgements .......................................................................................................... 3 Abstract ............................................................................................................................ 5 Table of Contents ............................................................................................................. 7 List of Notations and Abbreviations ............................................................................ 11 List of Figures ................................................................................................................ 16 List of Tables .................................................................................................................. 27 Chapter 1 Introduction ................................................................................................. 29 1.1 Background ....................................................................................................... 29 1.2 Objective of the thesis ....................................................................................... 31 1.3 Scope of the thesis ............................................................................................. 32 Chapter 2 Literature Review ....................................................................................... 34 2.1 Conventional transparent inorganic glass .......................................................... 34 2.2 Transparent amorphous polymeric materials .................................................... 38 2.2.1 Polycarbonate (PC) ................................................................................... 39 2.2.2 Poly(methyl methacrylate) (PMMA) ........................................................ 40 2.2.3 Polystyrene (PS) ........................................................................................ 40 2.2.4 Polyvinyl chloride (PVC) .......................................................................... 41 2.2.5 Thermoplastic polyurethanes (TPU) ......................................................... 42 2.2.6 Other transparent amorphous polymers .................................................... 42 2.3 Transparent semi-crystalline polymeric materials ............................................. 43 2.3.1 Isotropic transparent semi-crystalline polymers ....................................... 44 2.3.1.1 Suppressed crystallization .................................................................... 44 7 Table of Contents 2.3.1.2 Reducing crystal size ............................................................................ 46 2.3.1.3 Matching refractive indices .................................................................. 50 2.3.2 Biaxially stretched transparent semi-crystalline polymers ....................... 51 2.3.3 Monoaxially stretched transparent semi-crystalline polymers .................. 56 2.3.3.1 Matching the refractive indices between polymer and voids ............... 57 2.3.3.2 Preventing the formation of voids ........................................................ 62 2.3.3.3 Whitening after overdrawing ................................................................ 65 2.4 Solid-state drawing ............................................................................................ 70 2.5 Transparent composite laminates ...................................................................... 76 2.6 High performance composites ........................................................................... 80 2.7 Summary ..........................................................................................................
Recommended publications
  • Flexible Packaging Buyers Guide 2018 - 2019 Flexible Packaging
    FLEXIBLE PACKAGING BUYERS GUIDE 2018 - 2019 FLEXIBLE PACKAGING • Innovative • Creates Shelf Appeal • Widely Extendible Into Diverse • Enables Visibility of Contents Product Categories • Provides Efficient Product to Package • Maintains and Indicates Freshness Ratios • Offers Consumer Conveniences • Uses Less Energy • Provides Reclosure and Dispensing • Creates Fewer Emissions Options • Creates Less Waste in the First • Is Easily Transported and Stored Place® As one of the fastest growing segments of the packaging industry, flexible packaging combines the best qualities of plastic, film, paper and aluminum foil to deliver a broad range of protective properties while employing a minimum of material. Typically taking the shape of a bag, pouch, liner, or overwrap, flexible packaging is defined as any package or any part of a package whose shape can be readily changed. Flexible packages are used for consumer and institutional products and in industrial applications, to protect, market, and distribute a vast array of products. Leading the way in packaging innovation, flexible packaging adds value and marketability to food and non-food products alike. From ensuring food safety and extending shelf life, to providing even heating, barrier protection, ease of use, resealability and superb printability, the industry continues to advance at an unprecedented rate. The life cycle attributes of flexible packaging demonstrate many sustainable advantages. Flexible packaging starts with less waste in the first place, greatly reducing landfill discards. Innovation and technology have enabled flexible packaging manufacturers to use fewer natural resources in the creation of their packaging, and improvements in production processes have reduced water and energy consumption, greenhouse gas emissions and volatile organic compounds.
    [Show full text]
  • Küresel Ambalaj Trendleri Global Packaging Trends
    6. ULUSLARARASI MATBAA TEKNOLOJİLERİ SEMPOZYUMU 6th INTERNATIONAL PRINTING TECHOLOGIES SYMPOSIUM 6. INTERNATIONAL TECHINOLOGIE SYMPOSIUM FÜR DRUCK İSTANBUL ÜNİVERSİTESİ - CERRAHPAŞA / 01-03 KASIM / NOVEMBER 2018 KÜRESEL AMBALAJ TRENDLERİ GLOBAL PACKAGING TRENDS BEKİR KESKİN1 BİLGE NAZLI ALTAY2,3 MERVE AKYOL4 GÜVEN MERAL5 OLGUN UYAR6 PAUL D. FLEMİNG2 ABSTRACT The packaging sector is one of the massive traditional fields in the printing industry. The rapid developments in technology and environmental regulations have been affecting the expectations from packaging. User demands and the concerns to protect the environment are the two main factors that now demanding change in material properties. The choice used to depend on the physical and chemical requirements of the products, although today’s global mind set on the concepts such as biodegradability, recyclability, reusability, sustainability and carbon footprint reduction are becoming the reason to tailor packaging properties. In general, the choices have been switching from petroleum to bio based materials as well as functional package designs to reduce transportation and storage needs. In this study, today’s packaging trends and the potential developments in the near future are discussed. Key words: packaging, design, material, recycling, sustainability ÖZET Ambalaj sektörü, baskı endüstrisinin çok geniş ve geleneksel bir alanıdır. Bununla birlikte hızlı gelişen teknoloji ve çevreye dair yönetmelikler ambalaj beklentilerini değiştirmektedir. Kullanıcı talepleri ve çevreyi korumaya dair kaygılar, malzeme özelliklerinin değişmesini gerektiren iki önemli faktördür. Malzeme özelliklerinin seçimi, ürünün fiziksel ve kimyasal özelliklerine göre seçilirken; günümüzdeki biyo-çözünürlük, geri dönüşüm, tekrar kullanıla- bilirlik, sürdürülebilirlik ve karbon ayak izini azaltmaya dair küresel bakış açıları ambalajın özelliklerini değiştiren nedenler haline gelmektedir. Genel olarak bu seçimler, petrol bazlı ürünlerden doğal kaynaklara, depolama alanı ve nakliye ihtiyacını azaltan fonksiyonel am- 1 Öğr.
    [Show full text]
  • Der Decal-Prozess Zur Herstellung Katalysatorbeschichteter Membranen Für PEM-Brennstoffzellen
    Konstantin Frölich DER DECAL-PROZESS ZUR HERSTELLUNG KATALYSATORBESCHICHTETER MEMBRANEN M-Brennstoffzellen FÜR PEM-BRENNSTOFFZELLEN E SCHRIFTENREIHE DES INSTITUTS ecal-Prozess für P FÜR ANGEWANDTE MATERIALIEN BAND 47 D K. FRÖLICH 47 Konstantin Frölich Der Decal-Prozess zur Herstellung katalysatorbeschichteter Membranen für PEM-Brennstoffzellen Schriftenreihe des Instituts für Angewandte Materialien Band 47 Karlsruher Institut für Technologie (KIT) Institut für Angewandte Materialien (IAM) Eine Übersicht aller bisher in dieser Schriftenreihe erschienenen Bände finden Sie am Ende des Buches. Der Decal-Prozess zur Herstellung katalysatorbeschichteter Membranen für PEM-Brennstoffzellen von Konstantin Frölich Dissertation, Karlsruher Institut für Technologie (KIT) Fakultät für Maschinenbau Tag der mündlichen Prüfung: 09. Oktober 2014 Impressum Karlsruher Institut für Technologie (KIT) KIT Scientific Publishing Straße am Forum 2 D-76131 Karlsruhe KIT Scientific Publishing is a registered trademark of Karlsruhe Institute of Technology. Reprint using the book cover is not allowed. www.ksp.kit.edu This document – excluding the cover – is licensed under the Creative Commons Attribution-Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ The cover page is licensed under the Creative Commons Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE): http://creativecommons.org/licenses/by-nd/3.0/de/ Print on Demand 2015 ISSN 2192-9963 ISBN 978-3-7315-0334-7 DOI 10.5445/KSP/1000045306 Der Decal-Prozess zur Herstellung katalysatorbeschichteter Membranen für PEM-Brennstoffzellen Zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften der Fakultät für Maschinenbau Karlsruher Institut für Technologie (KIT) genehmigte Dissertation Dipl.-Wi.-Ing. Konstantin Frölich Tag der mündlichen Prüfung: 09.10.2014 Hauptreferent: Prof.
    [Show full text]
  • Company Update Company
    October 30, 2017 OUTPERFORM Indorama Ventures (IVL TB) Share Price: Bt45.75 Target Price: Bt55.0 (+20.2%) Company Update Company Ready to take it all . 65% of newly acquired BOPET is HVA, underscoring healthy EBITDA margins in FY18F onward . M&G’s bankruptcy is an opportunity for IVL to gain more market share in North America . OUTPERFORM, raised TP to Bt55/sh; share price weakness upon weak 3Q17 results is an opportunity to buy IVL could become a major player of BOPET Early this month, IVL signed a share purchase agreement with DuPont Teijin Films (DTF) to acquire 100% stake in their PET film business. This marks an important step for IVL to diversify into PET film used in packaging, industrial, electrical, imaging, and magnetic media. 65% of Naphat CHANTARASEREKUL DTF’s products is ‘thick’ film, which commands the same EBITDA 662 - 659 7000 ext 5000 margin as IVL’s HVA portfolio of automotive and hygiene products. DTF [email protected] COMPANY RESEARCH | RESEARCH COMPANY is a leading producer of biaxially oriented Polyethylene Terephthalate (BOPET) and Polyethylene Naphthalate (PEN). Their business Key Data comprises of eight production assets in the US, Europe, and China with 12-mth High/Low (Bt) 46.5 / 28.25 global innovation center in UK with annual capacity of 277k tons. PET Market capital (Btm/US$m) 239,957/ 7,205 film uses the same feedstock as PET but the market is small at 4.1m ton 3m avg Turnover (Btm/US$m) 747.8 / 22.5 consumption p.a. We are optimistic IVL could become a major player in Free Float (%) 29.5 this market.
    [Show full text]
  • FL.Datasheet Kevlar® Distribution Program.Indd
    MOVING HIGH PERFORMANCE FIBERS FORWARD KEVLAR® DISTRIBUTION PROGRAM FIBERS PROCESSES PRODUCTS WHY FIBER-LINE® DUPONTFIBER TM OPTICAL DISTRIBUTION CABLES PROGRAM? Key Features FIBER-LINE® values its relationships with both its customers and • Purchase small quantities of Kevlar® suppliers. Over the past several years, FIBER-LINE® and DuPontTM have Para-Aramid formed a strong partnership based upon the synergies between both • Many deniers & types available organizations. • Customize your Kevlar® solution with FIBER-LINE® performance adding processes FIBER-LINE®’s ability to add value to the already attractive properties of both Kevlar® Para-Aramid & Nomex® Meta-Aramid creates more opportunity in the market place to provide solution driven products to a diverse range of markets. Because FIBER-LINE® already processes so many different types and deniers of both Kevlar® & Nomex®, FIBER-LINE® have been authorized by DuPontTM to distribute small quantities of these fibers to an ever- growing customer base. Through this program, we hope to introduce businesses of all sizes to the benefit of aramid fibers. Contact us today for small order quantity orders. Available Deniers 200, 380, 400, 750AP, 800AP, 1000, 1000AP, 1420, 1500, 1500AP, 1500BK(Black), 2160, 2250, 2840, 3000, 7100. MOVING HIGH PERFORMANCE FIBERS FORWARD KEVLAR® PARA-ARAMID (HM) BARE FIBER PERFORMANCE Chemical Chemical Chemical Abrasion Yarn on Yarn Ultraviolet (UV) Flame Resistance Resistance Resistance Resistance Abrasion Resistance Resistance (Acid) (Alkali) (Organic Solvent) P O X P P P P CHEMICAL COMPATIBILITY Chemical Resistance to Acid: Degrades in Formic, Hydrochloric, and Sodium Hydroxide acid. Chemical Resistance to Alkali: Strong alkalis will attack at high temperature or concentration. Chemical Resistance to Organic Solvent: Degrades moderately in Carbon Tetrachloride and Ethylene Glycol/Water.
    [Show full text]
  • Additively Manufactured Dielectric Elastomer Actuators: Development and Performance Enhancement
    PhD Dissertations and Master's Theses 7-2021 Additively Manufactured Dielectric Elastomer Actuators: Development and Performance Enhancement Stanislav Sikulskyi Follow this and additional works at: https://commons.erau.edu/edt Part of the Aerospace Engineering Commons This Dissertation - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in PhD Dissertations and Master's Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. ADDITIVELY MANUFACTURED DIELECTRIC ELASTOMER ACTUATORS: DEVELOPMENT AND PERFORMANCE ENHANCEMENT By Stanislav Sikulskyi A Dissertation Submitted to the Faculty of Embry-Riddle Aeronautical University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Aerospace Engineering July 2021 Embry-Riddle Aeronautical University Daytona Beach, Florida ii ADDITIVELY MANUFACTURED DIELECTRIC ELASTOMER ACTUATORS: DEVELOPMENT AND PERFORMANCE ENHANCEMENT By Stanislav Sikulskyi This Dissertation was prepared under the direction of the candidate’s Dissertation Committee Chair, Dr. Daewon Kim, Department of Aerospace Engineering, and has been approved by the members of the Dissertation Committee. It was submitted to the Office of the Senior Vice President for Academic Affairs and Provost, and was accepted in the partial fulfillment of the requirements for the Degree of Philosophy in Aerospace Engineering. DISSERTATION COMMITTEE Digitally signed by Marwan Al-Haik Digitally signed by Daewon Kim DN: cn=Marwan Al-Haik, o=Embry-Riddle Date: 2021.08.04 12:05:57 Aeronautical University, ou=Aerospace Daewon Kim Marwan Al-Haik Engineering, [email protected], c=US -04'00' Date: 2021.08.04 21:19:27 -04'00' Chairman, Dr.
    [Show full text]
  • Foodservice Disposables Guide
    MANUFACTURERS REPRESENTATIVES “Connecting Partnerships” FOODSERVICE DISPOSABLES ENVIRONMENTAL MATERIALS GUIDE 5th Edition 2021 NEXUS CORPORATE HEADQUARTERS 7042 Commerce Circle Suite B, Pleasanton CA 94588 | T 800.482.6088 | F 510.567.1005 www.nexus-now.com rev. 3/21 MISSION STATEMENT OF THIS PUBLICATION “Our mission, as manufacturer’s representatives, is to strive to be good stewards to the environment in our marketplaces by educating, training and informing our customers on all of the different packaging materials and substrates that are used to make a wide array of disposable foodservice products. In this publication we also seek to advise our customers on how each packaging substrate should be used in operational applications like microwaves, freezers and ovens as well as which materials can be recycled and or composted in each respective region in the Western United States.” Chris Matson President, Nexus The information provided in this guide may vary in accuracy due to the ever changing city, state and federal rules, regulations, ordinances and laws that govern recycling, landfills and commercial compost facilities. 3 FOODSERVICE DISPOSABLES ENVIRONMENTAL MATERIALS GUIDE “Connecting Partnerships” TABLE OF CONTENTS 3 MISSION STATEMENT 4 TABLE OF CONTENTS 6 INTRODUCTION 8 ENVIRONMENTAL WASTE 13 LANDFILLS 14 RECYCLABLES 17 INTERNATIONAL RECYCLING 18 PLASTICS 36 GOVERNMENT REGULATIONS 41 FOODSERVICE PACKAGING 43 CLEAN PACKAGING 46 BACTERIA 47 HACCP 49 FOODSERVICE GLOVES 55 MYTHS & FACTS 59 PAPER 65 GREEN 4 5 INTRODUCTION The world of foodservice packaging disposables can be very confusing in today’s ever changing marketplace. There are so many different packaging materials that are used in a variety of food applications made by hundreds of manufacturers.
    [Show full text]
  • Cosmo Films to Set up a New Line for Speciality Polyester (BOPET) Films
    Cosmo Films to set up a new Line for Speciality Polyester (BOPET) Films DELHI, September 1st, 2020– Cosmo Films Ltd., a global leader in films for packaging, lamination, labeling and synthetic paper has announced plans to re-commence the installation of a Speciality Polyester Films line (Biaxially-Oriented Polyethylene Terephthalate) by the second quarter of 2022-23. The new line will be commissioned at the Waluj plant site in Aurangabad, Maharashtra, India with a capacity of 30,000 MT per annum. This plant already houses BOPP lines, extrusion coating lines, chemical coating lines, metallizers and a CPP line. The new production line will complement the existing BOPP capacity of 200,000 MT per annum and allow Cosmo Films to offer a more comprehensive speciality product basket for flexible packaging, labeling, lamination and industrial applications. The project cost is estimated to be Rs.300 crores, which will be financed through a mix of internal accruals and loans. The company’s key financial parameters for the quarter ended June 2020 are well placed - Debt/EBITDA @ 1.8 times and net debt to equity @ 0.7 times. Mr. Pankaj Poddar, CEO, Cosmo Films Ltd said, “Speciality BOPET is a niche segment which caters to multiple application segments, with high margins and opportunities for import substitution as well as worldwide exports.The new specialty BOPET line shall be unique and a majority of the products made on the line would focus on sustainability and creation of a greener future as the key theme. The Debt/EBIDTA and other financial ratios expect to remain in a comfortable range even post the capex.” BOPET films (Biaxially-Oriented Polyethylene Terephthalate films) offer high tensile strength, chemical and dimensional stability, transparency, reflectivity, gas and aroma barrier properties and electrical insulation.
    [Show full text]
  • Exploring the Influence of Entropy on Dynamic Macromolecular Ligation
    Exploring the Influence of Entropy on Dynamic Macromolecular Ligation Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) der KIT-Fakultät für Chemie und Biowissenschaften des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION von Dipl.-Chem. Kai Pahnke aus Nagold, Deutschland KIT-Dekan: Prof. Dr. Willem M. Klopper Referent: Prof. Dr. Christopher Barner-Kowollik Korreferent: Prof. Dr. Manfred Wilhelm Tag der mündlichen Prüfung: 22.07.2016 Die vorliegende Arbeite wurde im Zeitraum von Februar 2013 bis Juni 2016 im Rahmen einer Kollaboration zwischen dem KIT und der Evonik Industries AG unter der Betreuung von Prof. Dr. Christopher Barner-Kowollik durchgeführt Only entropy comes easy. Anton Chekhov ABSTRACT The present thesis reports a novel, expedient linker species as well as previously unforeseen effects of physical molecular parameters on reaction entropy and thus equilibria with extensive implications on diverse fields of research via the study of dynamic ligation chemistries, especially in the realm of macromolecular chemistry. A set of experiments investigating the influence of different physical molecular parameters on reaction or association equilibria is designed. Initially, previous findings of a mass dependant effect on the reaction entropy – resulting in a more pronounced debonding of heavier or longer species – are reproduced and expanded to other dynamic ligation techniques as well as further characterization methods, now including a rapid and catalyst- free Diels–Alder reaction. The effects are evidenced via high temperature nuclear magnetic resonance spectroscopy (HT NMR) as well as temperature dependent size exclusion chromatography (TD SEC) and verified via quantum chemical ab initio calculations. Next, the impact of chain mobility on entropic reaction parameters and thus the overall bonding behavior is explored via the thermoreversible ligation of chains of similar mass and length, comprising isomeric butyl side-chain substituents with differing steric demands.
    [Show full text]
  • Pierre Samuel Du Pont De Nemours from the Executive Director
    Summer 2017 - Vol. 46 No. 2 SAVE THE DATE Fireworks at Hagley June 16 & 23 Bike & Hike Wednesday Evenings June 7 through September 13 HagleyMAGAZINE Summer Camps 2016 ANNUAL REPORT July 10-14, July 31-August 4 Pierre Samuel du Pont de Nemours From The Executive Director Several months ago, I received a phone education system in Virginia. And speaking Executive Director David Cole call from a professor on the Faculty of Law of Jefferson, let’s not forget the crucial role at the University of Paris. He was calling to that du Pont de Nemours played as a behind- inform me that his university is planning a the-scenes broker of the Louisiana Purchase. Cover: Portrait of Pierre Samuel 2017 academic conference in commemoration Across oceans, political divides, and academic du Pont de Nemours on display in of the 200th anniversary of the death of disciplines, this gifted thinker was a true the Morning Room of Eleutherian duPont family patriarch, Pierre Samuel innovator—always eager to experiment in the Mills. The portrait was painted by du Pont de Nemours. This conference, he service of better living. Joseph Ducreux, court painter for Marie Antoinette, in Paris circa 1876. explained, will draw scholars from across the globe Back: Visitors enjoy biking on the and will invite a critical property during Bike & Hike on Across oceans, political summer Wednesday evenings. reappraisal of the intellectual contributions and legacy of divides, and academic this extraordinary figure of the French enlightenment. disciplines, this gifted I was delighted to have thinker was a true innovator. this news, as I have felt for some time that du Pont de Nemours’s life and career as Board of Trustees a philosopher, educator, political figure, and In 2017, Hagley will join the University of Henry B.
    [Show full text]
  • Microstructure and Properties of Polytetrafluoroethylene Composites
    coatings Article Microstructure and Properties of Polytetrafluoroethylene Composites Modified by Carbon Materials and Aramid Fibers Fubao Zhang *, Jiaqiao Zhang , Yu Zhu, Xingxing Wang and Yuyang Jin School of Mechanical Engineering, Nantong University, Nantong 226019, China; [email protected] (J.Z.); [email protected] (Y.Z.); [email protected] (X.W.); [email protected] (Y.J.) * Correspondence: [email protected]; Tel.: +86-13646288919 Received: 12 October 2020; Accepted: 16 November 2020; Published: 18 November 2020 Abstract: Polytetrafluoroethylene (PTFE) is polymerized by tetrafluoroethylene, which has high corrosion resistance, self-lubrication and high temperature resistance. However, due to the large expansion coefficient, high temperature will gradually weaken the intermolecular bonding force of PTFE, which will lead to the enhancement of permeation absorption and the limitation of the application range of fluoroplastics. In order to improve the performance of PTFE, the modified polytetrafluoroethylene, filled by carbon materials and aramid fiber with different scales, is prepared through the compression and sintering. Moreover, the mechanical properties and wear resistance of the prepared composite materials are tested. In addition, the influence of different types of filler materials and contents on the properties of PTFE is studied. According to the experiment results, the addition of carbon fibers with different scales reduces the tensile and impact properties of the composite materials, but the elastic modulus and wear resistance are significantly improved. Among them, the wear rate of 7 µm carbon fiber modified PTFE has decreased by 70%, and the elastic modulus has increased by 70%. The addition of aramid fiber filler significantly reduces the tensile and impact properties of the composite, but its elastic modulus and wear resistance are significantly improved.
    [Show full text]
  • Handbook of Hydrocolloids Second Edition
    Handbook of hydrocolloids Second edition Edited by G. O. Phillips and P. A. Williams Published by Woodhead Publishing Limited, Abington Hall, Granta Park, Great Abington, Cambridge CB21 6AH, UK www.woodheadpublishing.com Woodhead Publishing India Private Limited, G-2, Vardaan House, 7/28 Ansari Road, Daryaganj, New Delhi ± 110002, India Published in North America by CRC Press LLC, 6000 Broken Sound Parkway, NW, Suite 300, Boca Raton, FL 33487, USA First published 2009, Woodhead Publishing Limited and CRC Press LLC ß 2009, Woodhead Publishing Limited The authors have asserted their moral rights. This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. Reasonable efforts have been made to publish reliable data and information, but the authors and the publishers cannot assume responsibility for the validity of all materials. Neither the authors nor the publishers, nor anyone else associated with this publication, shall be liable for any loss, damage or liability directly or indirectly caused or alleged to be caused by this book. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming and recording, or by any information storage or retrieval system, without permission in writing from Woodhead Publishing Limited. The consent of Woodhead Publishing Limited does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from Woodhead Publishing Limited for such copying. Trademark notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe.
    [Show full text]