Topological C*-Categories
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Subtle Introduction to Category Theory
A Subtle Introduction to Category Theory W. J. Zeng Department of Computer Science, Oxford University \Static concepts proved to be very effective intellectual tranquilizers." L. L. Whyte \Our study has revealed Mathematics as an array of forms, codify- ing ideas extracted from human activates and scientific problems and deployed in a network of formal rules, formal definitions, formal axiom systems, explicit theorems with their careful proof and the manifold in- terconnections of these forms...[This view] might be called formal func- tionalism." Saunders Mac Lane Let's dive right in then, shall we? What can we say about the array of forms MacLane speaks of? Claim (Tentative). Category theory is about the formal aspects of this array of forms. Commentary: It might be tempting to put the brakes on right away and first grab hold of what we mean by formal aspects. Instead, rather than trying to present \the formal" as the object of study and category theory as our instrument, we would nudge the reader to consider another perspective. Category theory itself defines formal aspects in much the same way that physics defines physical concepts or laws define legal (and correspondingly illegal) aspects: it embodies them. When we speak of what is formal/physical/legal we inescapably speak of category/physical/legal theory, and vice versa. Thus we pass to the somewhat grammatically awkward revision of our initial claim: Claim (Tentative). Category theory is the formal aspects of this array of forms. Commentary: Let's unpack this a little bit. While individual forms are themselves tautologically formal, arrays of forms and everything else networked in a system lose this tautological formality. -
Topological Categories, Quantaloids and Isbell Adjunctions
Topological categories, quantaloids and Isbell adjunctions Lili Shen1, Walter Tholen1,∗ Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada, M3J 1P3 Dedicated to Eva Colebunders on the occasion of her 65th birthday Abstract In fairly elementary terms this paper presents, and expands upon, a recent result by Garner by which the notion of topologicity of a concrete functor is subsumed under the concept of total cocompleteness of enriched category theory. Motivated by some key results of the 1970s, the paper develops all needed ingredients from the theory of quantaloids in order to place essential results of categorical topology into the context of quantaloid-enriched category theory, a field that previously drew its motivation and applications from other domains, such as quantum logic. Keywords: Concrete category, topological category, enriched category, quantaloid, total category, Isbell adjunction 2010 MSC: 18D20, 54A99, 06F99 1. Introduction Garner's [7] recent discovery that the fundamental notion of topologicity of a concrete functor may be interpreted as precisely total (co)completeness for categories enriched in a free quantaloid reconciles two lines of research that for decades had been perceived by researchers in the re- spectively fields as almost intrinsically separate, occasionally with divisive arguments. While the latter notion is rooted in Eilenberg's and Kelly's enriched category theory (see [6, 15]) and the seminal paper by Street and Walters [21] on totality, the former notion goes back to Br¨ummer's thesis [3] and the pivotal papers by Wyler [27, 28] and Herrlich [9] that led to the development of categorical topology and the categorical exploration of a multitude of new structures; see, for example, the survey by Colebunders and Lowen [16]. -
Homotopy Theory of Diagrams and Cw-Complexes Over a Category
Can. J. Math.Vol. 43 (4), 1991 pp. 814-824 HOMOTOPY THEORY OF DIAGRAMS AND CW-COMPLEXES OVER A CATEGORY ROBERT J. PIACENZA Introduction. The purpose of this paper is to introduce the notion of a CW com plex over a topological category. The main theorem of this paper gives an equivalence between the homotopy theory of diagrams of spaces based on a topological category and the homotopy theory of CW complexes over the same base category. A brief description of the paper goes as follows: in Section 1 we introduce the homo topy category of diagrams of spaces based on a fixed topological category. In Section 2 homotopy groups for diagrams are defined. These are used to define the concept of weak equivalence and J-n equivalence that generalize the classical definition. In Section 3 we adapt the classical theory of CW complexes to develop a cellular theory for diagrams. In Section 4 we use sheaf theory to define a reasonable cohomology theory of diagrams and compare it to previously defined theories. In Section 5 we define a closed model category structure for the homotopy theory of diagrams. We show this Quillen type ho motopy theory is equivalent to the homotopy theory of J-CW complexes. In Section 6 we apply our constructions and results to prove a useful result in equivariant homotopy theory originally proved by Elmendorf by a different method. 1. Homotopy theory of diagrams. Throughout this paper we let Top be the carte sian closed category of compactly generated spaces in the sense of Vogt [10]. -
The Morita Theory of Quantum Graph Isomorphisms
Commun. Math. Phys. Communications in Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-018-3225-6 Mathematical Physics The Morita Theory of Quantum Graph Isomorphisms Benjamin Musto, David Reutter, Dominic Verdon Department of Computer Science, University of Oxford, Oxford, UK. E-mail: [email protected]; [email protected]; [email protected] Received: 31 January 2018 / Accepted: 11 June 2018 © The Author(s) 2018 Abstract: We classify instances of quantum pseudo-telepathy in the graph isomorphism game, exploiting the recently discovered connection between quantum information and the theory of quantum automorphism groups. Specifically, we show that graphs quantum isomorphic to a given graph are in bijective correspondence with Morita equivalence classes of certain Frobenius algebras in the category of finite-dimensional representations of the quantum automorphism algebra of that graph. We show that such a Frobenius algebra may be constructed from a central type subgroup of the classical automorphism group, whose action on the graph has coisotropic vertex stabilisers. In particular, if the original graph has no quantum symmetries, quantum isomorphic graphs are classified by such subgroups. We show that all quantum isomorphic graph pairs corresponding to a well-known family of binary constraint systems arise from this group-theoretical construction. We use our classification to show that, of the small order vertex-transitive graphs with no quantum symmetry, none is quantum isomorphic to a non-isomorphic graph. We show that this is in fact asymptotically almost surely true of all graphs. Contents 1. Introduction ................................. 2. Background ................................. 2.1 String diagrams, Frobenius monoids and Gelfand duality ...... -
Categories of Quantum and Classical Channels (Extended Abstract)
Categories of Quantum and Classical Channels (extended abstract) Bob Coecke∗ Chris Heunen† Aleks Kissinger∗ University of Oxford, Department of Computer Science fcoecke,heunen,[email protected] We introduce the CP*–construction on a dagger compact closed category as a generalisation of Selinger’s CPM–construction. While the latter takes a dagger compact closed category and forms its category of “abstract matrix algebras” and completely positive maps, the CP*–construction forms its category of “abstract C*-algebras” and completely positive maps. This analogy is justified by the case of finite-dimensional Hilbert spaces, where the CP*–construction yields the category of finite-dimensional C*-algebras and completely positive maps. The CP*–construction fully embeds Selinger’s CPM–construction in such a way that the objects in the image of the embedding can be thought of as “purely quantum” state spaces. It also embeds the category of classical stochastic maps, whose image consists of “purely classical” state spaces. By allowing classical and quantum data to coexist, this provides elegant abstract notions of preparation, measurement, and more general quantum channels. 1 Introduction One of the motivations driving categorical treatments of quantum mechanics is to place classical and quantum systems on an equal footing in a single category, so that one can study their interactions. The main idea of categorical quantum mechanics [1] is to fix a category (usually dagger compact) whose ob- jects are thought of as state spaces and whose morphisms are evolutions. There are two main variations. • “Dirac style”: Objects form pure state spaces, and isometric morphisms form pure state evolutions. -
Compact Inverse Categories 11
COMPACT INVERSE CATEGORIES ROBIN COCKETT AND CHRIS HEUNEN Abstract. The Ehresmann-Schein-Nambooripad theorem gives a structure theorem for inverse monoids: they are inductive groupoids. A particularly nice case due to Jarek is that commutative inverse monoids become semilattices of abelian groups. It has also been categorified by DeWolf-Pronk to a structure theorem for inverse categories as locally complete inductive groupoids. We show that in the case of compact inverse categories, this takes the particularly nice form of a semilattice of compact groupoids. Moreover, one-object com- pact inverse categories are exactly commutative inverse monoids. Compact groupoids, in turn, are determined in particularly simple terms of 3-cocycles by Baez-Lauda. 1. Introduction Inverse monoids model partial symmetry [24], and arise naturally in many com- binatorial constructions [8]. The easiest example of an inverse monoid is perhaps a group. There is a structure theorem for inverse monoids, due to Ehresmann-Schein- Nambooripad [9, 10, 27, 26], that exhibits them as inductive groupoids. The latter are groupoids internal to the category of partially ordered sets with certain ex- tra requirements. By a result of Jarek [19], the inductive groupoids corresponding to commutative inverse monoids can equivalently be described as semilattices of abelian groups. A natural typed version of an inverse monoid is an inverse category [22, 6]. This notion can for example model partial reversible functional programs [12]. The eas- iest example of an inverse category is perhaps a groupoid. DeWolf-Pronk have generalised the ESN theorem to inverse categories, exhibiting them as locally com- plete inductive groupoids. This paper investigates `the commutative case', thus fitting in the bottom right cell of Figure 1. -
Stellar Stratifications on Classifying Spaces
Stellar Stratifications on Classifying Spaces Dai Tamaki and Hiro Lee Tanaka September 18, 2018 Abstract We extend Bj¨orner’s characterization of the face poset of finite CW complexes to a certain class of stratified spaces, called cylindrically normal stellar complexes. As a direct consequence, we obtain a discrete analogue of cell decompositions in smooth Morse theory, by using the classifying space model introduced in [NTT]. As another application, we show that the exit-path category Exit(X), in the sense of [Lur], of a finite cylindrically normal CW stellar complex X is a quasicategory. Contents 1 Introduction 1 1.1 Acknowledgments................................... 5 2 Recollections 5 2.1 Simplicial Terminology . 5 2.2 NervesandClassifyingSpaces. ... 5 3 Stellar Stratified Spaces and Their Face Categories 6 3.1 StratificationsbyPosets .. .. .. .. .. .. .. .. .. .. .. .. ... 7 3.2 JoinsandCones .................................... 9 3.3 StellarStratifiedSpaces .............................. .. 11 4 Stellar Stratifications on Classifying Spaces of Acyclic Categories 15 4.1 Stable and Unstable Stratifications . .... 15 4.2 TheExit-PathCategory .............................. .. 20 4.3 DiscreteMorseTheory............................... .. 22 5 Concluding Remarks 22 1 Introduction arXiv:1804.11274v2 [math.AT] 14 Sep 2018 In this paper, we study stratifications on classifying spaces of acyclic topological categories. In particular, the following three questions are addressed. Question 1.1. How can we recover the original category C from its classifying space BC? Question 1.2. For a stratified space X with a structure analogous to a cell complex, the first author [Tam18] defined an acyclic topological category C(X), called the face category of X, whose classifying space is homotopy equivalent to X. On the other hand, there is a way to associate an 1 ∞-category Exit(X), called the exit-path category1 of X, to a stratified space satisfying certain conditions [Lur]. -
Most Human Things Go in Pairs. Alcmaeon, ∼ 450 BC
Most human things go in pairs. Alcmaeon, 450 BC ∼ true false good bad right left up down front back future past light dark hot cold matter antimatter boson fermion How can we formalize a general concept of duality? The Chinese tried yin-yang theory, which inspired Leibniz to develop binary notation, which in turn underlies digital computation! But what's the state of the art now? In category theory the fundamental duality is the act of reversing an arrow: • ! • • • We use this to model switching past and future, false and true, small and big... Every category has an opposite op, where the arrows are C C reversed. This is a symmetry of the category of categories: op : Cat Cat ! and indeed the only nontrivial one: Aut(Cat) = Z=2 In logic, the simplest duality is negation. It's order-reversing: if P implies Q then Q implies P : : and|ignoring intuitionism!|it's an involution: P = P :: Thus if is a category of propositions and proofs, we C expect a functor: : op : C ! C with a natural isomorphism: 2 = 1 : ∼ C This has two analogues in quantum theory. One shows up already in the category of finite-dimensional vector spaces, FinVect. Every vector space V has a dual V ∗. Taking the dual is contravariant: if f : V W then f : W V ! ∗ ∗ ! ∗ and|ignoring infinite-dimensional spaces!|it's an involution: V ∗∗ ∼= V This kind of duality is captured by the idea of a -autonomous ∗ category. Recall that a symmetric monoidal category is roughly a category with a unit object I and a tensor product C 2 C : ⊗ C × C ! C that is unital, associative and commutative up to coherent natural isomorphisms. -
The Way of the Dagger
The Way of the Dagger Martti Karvonen I V N E R U S E I T H Y T O H F G E R D I N B U Doctor of Philosophy Laboratory for Foundations of Computer Science School of Informatics University of Edinburgh 2018 (Graduation date: July 2019) Abstract A dagger category is a category equipped with a functorial way of reversing morph- isms, i.e. a contravariant involutive identity-on-objects endofunctor. Dagger categor- ies with additional structure have been studied under different names in categorical quantum mechanics, algebraic field theory and homological algebra, amongst others. In this thesis we study the dagger in its own right and show how basic category theory adapts to dagger categories. We develop a notion of a dagger limit that we show is suitable in the following ways: it subsumes special cases known from the literature; dagger limits are unique up to unitary isomorphism; a wide class of dagger limits can be built from a small selection of them; dagger limits of a fixed shape can be phrased as dagger adjoints to a diagonal functor; dagger limits can be built from ordinary limits in the presence of polar decomposition; dagger limits commute with dagger colimits in many cases. Using cofree dagger categories, the theory of dagger limits can be leveraged to provide an enrichment-free understanding of limit-colimit coincidences in ordinary category theory. We formalize the concept of an ambilimit, and show that it captures known cases. As a special case, we show how to define biproducts up to isomorphism in an arbitrary category without assuming any enrichment. -
Continuous Families : Categorical Aspects Cahiers De Topologie Et Géométrie Différentielle Catégoriques, Tome 24, No 4 (1983), P
CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES DAVID B. LEVER Continuous families : categorical aspects Cahiers de topologie et géométrie différentielle catégoriques, tome 24, no 4 (1983), p. 393-432 <http://www.numdam.org/item?id=CTGDC_1983__24_4_393_0> © Andrée C. Ehresmann et les auteurs, 1983, tous droits réservés. L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE Vol. XXI V - 4 (1983 ) E T GÉOMÉTRIE DIFFÉRENTIELLE CONTINUOUS FAMILIES : CATEGORICAL ASPECTS by David B. LEVER CON TENTS. 0. Introduction 1. Continuous families 2. Topological categories 3. Associated sheaf functor 4. Main result 5. Sheaves of finitary algebras References 0. INTRODUCT10N. Let Top denote the category of topological spaces and continuous functions, Set denote the category of sets and functions, and SET denote the Top-indexed category of sheaves of sets (see Section 1 for the defini- tion of SET or see [16] for the theory of indexed categories). Although SET has an extensive history [8] its properties as an indexed category have been neglected until now. Accepting the view of the working mathema- tician [9, 11]J that a sheaf of sets on a topological space X is a local homeomorphism whose fibers form a family of sets varying continuously over the space, the theory of indexed categories provides a language in which SET is Set suitably topologized, in that we have specified a «con- tinuous functions X - SET to be a sheaf of sets on X. -
Categories of Relations As Models of Quantum Theory
Categories of relations as models of quantum theory Chris Heunen∗ and Sean Tull† fheunen,[email protected] University of Oxford, Department of Computer Science Categories of relations over a regular category form a family of models of quantum theory. Using regular logic, many properties of relations over sets lift to these models, including the correspon- dence between Frobenius structures and internal groupoids. Over compact Hausdorff spaces, this lifting gives continuous symmetric encryption. Over a regular Mal’cev category, this correspondence gives a characterization of categories of completely positive maps, enabling the formulation of quan- tum features. These models are closer to Hilbert spaces than relations over sets in several respects: Heisenberg uncertainty, impossibility of broadcasting, and behavedness of rank one morphisms. 1 Introduction Many features of quantum theory can be abstracted to arbitrary compact dagger categories [1]. Thus we can compare models of quantum theory in a unified setting, and look for features that distinguish the category FHilb of finite-dimensional Hilbert spaces that forms the traditional model. The category Rel of sets and relations is an alternative model. It exhibits many features considered typical of quantum theory [2], but also refutes presumed correspondences between them [15, 21]. However, apart from Rel and its subcategory corresponding to Spekkens’ toy model [14], few alternative models have been studied in detail. We consider a new family of models by generalizing to categories Rel(C) of relations over an arbi- trary regular category C, including any algebraic category like that of groups, any abelian category like that of vector spaces, and any topos like that of sets. -
A Survey of Graphical Languages for Monoidal Categories
5 Traced categories 32 5.1 Righttracedcategories . 33 5.2 Planartracedcategories. 34 5.3 Sphericaltracedcategories . 35 A survey of graphical languages for monoidal 5.4 Spacialtracedcategories . 36 categories 5.5 Braidedtracedcategories . 36 5.6 Balancedtracedcategories . 39 5.7 Symmetrictracedcategories . 40 Peter Selinger 6 Products, coproducts, and biproducts 41 Dalhousie University 6.1 Products................................. 41 6.2 Coproducts ............................... 43 6.3 Biproducts................................ 44 Abstract 6.4 Traced product, coproduct, and biproduct categories . ........ 45 This article is intended as a reference guide to various notions of monoidal cat- 6.5 Uniformityandregulartrees . 47 egories and their associated string diagrams. It is hoped that this will be useful not 6.6 Cartesiancenter............................. 48 just to mathematicians, but also to physicists, computer scientists, and others who use diagrammatic reasoning. We have opted for a somewhat informal treatment of 7 Dagger categories 48 topological notions, and have omitted most proofs. Nevertheless, the exposition 7.1 Daggermonoidalcategories . 50 is sufficiently detailed to make it clear what is presently known, and to serve as 7.2 Otherprogressivedaggermonoidalnotions . ... 50 a starting place for more in-depth study. Where possible, we provide pointers to 7.3 Daggerpivotalcategories. 51 more rigorous treatments in the literature. Where we include results that have only 7.4 Otherdaggerpivotalnotions . 54 been proved in special cases, we indicate this in the form of caveats. 7.5 Daggertracedcategories . 55 7.6 Daggerbiproducts............................ 56 Contents 8 Bicategories 57 1 Introduction 2 9 Beyond a single tensor product 58 2 Categories 5 10 Summary 59 3 Monoidal categories 8 3.1 (Planar)monoidalcategories . 9 1 Introduction 3.2 Spacialmonoidalcategories .