Hausdorff coalgebras Dirk Hofmann and Pedro Nora∗ Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Portugal. HASLab INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, University of Minho, Portugal.
[email protected],
[email protected] As composites of constant, (co)product, identity, and powerset functors, Kripke polynomial functors form a relevant class of Set-functors in the theory of coalgebras. The main goal of this paper is to expand the theory of limits in categories of coal- gebras of Kripke polynomial functors to the context of quantale-enriched categories. To assume the role of the powerset functor we consider “powerset-like” functors based on the Hausdorff V-category structure. As a starting point, we show that for a lifting of a Set-functor to a topological category X over Set that commutes with the forgetful functor, the corresponding category of coalgebras over X is topologi- cal over the category of coalgebras over Set and, therefore, it is “as complete” but cannot be “more complete”. Secondly, based on a Cantor-like argument, we observe that Hausdorff functors on categories of quantale-enriched categories do not admit a terminal coalgebra. Finally, in order to overcome these “negative” results, we com- bine quantale-enriched categories and topology à la Nachbin. Besides studying some basic properties of these categories, we investigate “powerset-like” functors which si- multaneously encode the classical Hausdorff metric and Vietoris topology and show that the corresponding categories of coalgebras of “Kripke polynomial” functors are (co)complete. arXiv:1908.04380v1 [math.CT] 12 Aug 2019 Contents 1.