Apr 0 8 2011
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Topological Categories, Quantaloids and Isbell Adjunctions
Topological categories, quantaloids and Isbell adjunctions Lili Shen1, Walter Tholen1,∗ Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada, M3J 1P3 Dedicated to Eva Colebunders on the occasion of her 65th birthday Abstract In fairly elementary terms this paper presents, and expands upon, a recent result by Garner by which the notion of topologicity of a concrete functor is subsumed under the concept of total cocompleteness of enriched category theory. Motivated by some key results of the 1970s, the paper develops all needed ingredients from the theory of quantaloids in order to place essential results of categorical topology into the context of quantaloid-enriched category theory, a field that previously drew its motivation and applications from other domains, such as quantum logic. Keywords: Concrete category, topological category, enriched category, quantaloid, total category, Isbell adjunction 2010 MSC: 18D20, 54A99, 06F99 1. Introduction Garner's [7] recent discovery that the fundamental notion of topologicity of a concrete functor may be interpreted as precisely total (co)completeness for categories enriched in a free quantaloid reconciles two lines of research that for decades had been perceived by researchers in the re- spectively fields as almost intrinsically separate, occasionally with divisive arguments. While the latter notion is rooted in Eilenberg's and Kelly's enriched category theory (see [6, 15]) and the seminal paper by Street and Walters [21] on totality, the former notion goes back to Br¨ummer's thesis [3] and the pivotal papers by Wyler [27, 28] and Herrlich [9] that led to the development of categorical topology and the categorical exploration of a multitude of new structures; see, for example, the survey by Colebunders and Lowen [16]. -
Homotopy Theory of Diagrams and Cw-Complexes Over a Category
Can. J. Math.Vol. 43 (4), 1991 pp. 814-824 HOMOTOPY THEORY OF DIAGRAMS AND CW-COMPLEXES OVER A CATEGORY ROBERT J. PIACENZA Introduction. The purpose of this paper is to introduce the notion of a CW com plex over a topological category. The main theorem of this paper gives an equivalence between the homotopy theory of diagrams of spaces based on a topological category and the homotopy theory of CW complexes over the same base category. A brief description of the paper goes as follows: in Section 1 we introduce the homo topy category of diagrams of spaces based on a fixed topological category. In Section 2 homotopy groups for diagrams are defined. These are used to define the concept of weak equivalence and J-n equivalence that generalize the classical definition. In Section 3 we adapt the classical theory of CW complexes to develop a cellular theory for diagrams. In Section 4 we use sheaf theory to define a reasonable cohomology theory of diagrams and compare it to previously defined theories. In Section 5 we define a closed model category structure for the homotopy theory of diagrams. We show this Quillen type ho motopy theory is equivalent to the homotopy theory of J-CW complexes. In Section 6 we apply our constructions and results to prove a useful result in equivariant homotopy theory originally proved by Elmendorf by a different method. 1. Homotopy theory of diagrams. Throughout this paper we let Top be the carte sian closed category of compactly generated spaces in the sense of Vogt [10]. -
Stellar Stratifications on Classifying Spaces
Stellar Stratifications on Classifying Spaces Dai Tamaki and Hiro Lee Tanaka September 18, 2018 Abstract We extend Bj¨orner’s characterization of the face poset of finite CW complexes to a certain class of stratified spaces, called cylindrically normal stellar complexes. As a direct consequence, we obtain a discrete analogue of cell decompositions in smooth Morse theory, by using the classifying space model introduced in [NTT]. As another application, we show that the exit-path category Exit(X), in the sense of [Lur], of a finite cylindrically normal CW stellar complex X is a quasicategory. Contents 1 Introduction 1 1.1 Acknowledgments................................... 5 2 Recollections 5 2.1 Simplicial Terminology . 5 2.2 NervesandClassifyingSpaces. ... 5 3 Stellar Stratified Spaces and Their Face Categories 6 3.1 StratificationsbyPosets .. .. .. .. .. .. .. .. .. .. .. .. ... 7 3.2 JoinsandCones .................................... 9 3.3 StellarStratifiedSpaces .............................. .. 11 4 Stellar Stratifications on Classifying Spaces of Acyclic Categories 15 4.1 Stable and Unstable Stratifications . .... 15 4.2 TheExit-PathCategory .............................. .. 20 4.3 DiscreteMorseTheory............................... .. 22 5 Concluding Remarks 22 1 Introduction arXiv:1804.11274v2 [math.AT] 14 Sep 2018 In this paper, we study stratifications on classifying spaces of acyclic topological categories. In particular, the following three questions are addressed. Question 1.1. How can we recover the original category C from its classifying space BC? Question 1.2. For a stratified space X with a structure analogous to a cell complex, the first author [Tam18] defined an acyclic topological category C(X), called the face category of X, whose classifying space is homotopy equivalent to X. On the other hand, there is a way to associate an 1 ∞-category Exit(X), called the exit-path category1 of X, to a stratified space satisfying certain conditions [Lur]. -
10. Algebra Theories II 10.1 Essentially Algebraic Theory Idea: A
Page 1 of 7 10. Algebra Theories II 10.1 essentially algebraic theory Idea: A mathematical structure is essentially algebraic if its definition involves partially defined operations satisfying equational laws, where the domain of any given operation is a subset where various other operations happen to be equal. An actual algebraic theory is one where all operations are total functions. The most familiar example may be the (strict) notion of category: a small category consists of a set C0of objects, a set C1 of morphisms, source and target maps s,t:C1→C0 and so on, but composition is only defined for pairs of morphisms where the source of one happens to equal the target of the other. Essentially algebraic theories can be understood through category theory at least when they are finitary, so that all operations have only finitely many arguments. This gives a generalization of Lawvere theories, which describe finitary algebraic theories. As the domains of the operations are given by the solutions to equations, they may be understood using the notion of equalizer. So, just as a Lawvere theory is defined using a category with finite products, a finitary essentially algebraic theory is defined using a category with finite limits — or in other words, finite products and also equalizers (from which all other finite limits, including pullbacks, may be derived). Definition As alluded to above, the most concise and elegant definition is through category theory. The traditional definition is this: Definition. An essentially algebraic theory or finite limits theory is a category that is finitely complete, i.e., has all finite limits. -
Continuous Families : Categorical Aspects Cahiers De Topologie Et Géométrie Différentielle Catégoriques, Tome 24, No 4 (1983), P
CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES DAVID B. LEVER Continuous families : categorical aspects Cahiers de topologie et géométrie différentielle catégoriques, tome 24, no 4 (1983), p. 393-432 <http://www.numdam.org/item?id=CTGDC_1983__24_4_393_0> © Andrée C. Ehresmann et les auteurs, 1983, tous droits réservés. L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE Vol. XXI V - 4 (1983 ) E T GÉOMÉTRIE DIFFÉRENTIELLE CONTINUOUS FAMILIES : CATEGORICAL ASPECTS by David B. LEVER CON TENTS. 0. Introduction 1. Continuous families 2. Topological categories 3. Associated sheaf functor 4. Main result 5. Sheaves of finitary algebras References 0. INTRODUCT10N. Let Top denote the category of topological spaces and continuous functions, Set denote the category of sets and functions, and SET denote the Top-indexed category of sheaves of sets (see Section 1 for the defini- tion of SET or see [16] for the theory of indexed categories). Although SET has an extensive history [8] its properties as an indexed category have been neglected until now. Accepting the view of the working mathema- tician [9, 11]J that a sheaf of sets on a topological space X is a local homeomorphism whose fibers form a family of sets varying continuously over the space, the theory of indexed categories provides a language in which SET is Set suitably topologized, in that we have specified a «con- tinuous functions X - SET to be a sheaf of sets on X. -
Exercise Sheet
Exercises on Higher Categories Paolo Capriotti and Nicolai Kraus Midlands Graduate School, April 2017 Our course should be seen as a very first introduction to the idea of higher categories. This exercise sheet is a guide for the topics that we discuss in our four lectures, and some exercises simply consist of recalling or making precise concepts and constructions discussed in the lectures. The notion of a higher category is not one which has a single clean def- inition. There are numerous different approaches, of which we can only discuss a tiny fraction. In general, a very good reference is the nLab at https://ncatlab.org/nlab/show/HomePage. Apart from that, a very incomplete list for suggested further reading is the following (all available online). For an overview over many approaches: – Eugenia Cheng and Aaron Lauda, Higher-Dimensional Categories: an illustrated guide book available online, cheng.staff.shef.ac.uk/guidebook Introductions to simplicial sets: – Greg Friedman, An Elementary Illustrated Introduction to Simplicial Sets very gentle introduction, arXiv:0809.4221. – Emily Riehl, A Leisurely Introduction to Simplicial Sets a slightly more advanced introduction, www.math.jhu.edu/~eriehl/ssets.pdf Quasicategories: – Jacob Lurie, Higher Topos Theory available as paperback (ISBN-10: 0691140499) and online, arXiv:math/0608040 Operads (not discussed in our lectures): – Tom Leinster, Higher Operads, Higher Categories available as paperback (ISBN-10: 0521532159) and online, 1 arXiv:math/0305049 Note: Exercises are ordered by topic and can be done in any order, unless an exercise explicitly refers to a previous one. We recommend to do the exercises marked with an arrow ⇒ first. -
A Whirlwind Tour of the World of (∞,1)-Categories
Contemporary Mathematics A Whirlwind Tour of the World of (1; 1)-categories Omar Antol´ınCamarena Abstract. This introduction to higher category theory is intended to a give the reader an intuition for what (1; 1)-categories are, when they are an appro- priate tool, how they fit into the landscape of higher category, how concepts from ordinary category theory generalize to this new setting, and what uses people have put the theory to. It is a rough guide to a vast terrain, focuses on ideas and motivation, omits almost all proofs and technical details, and provides many references. Contents 1. Introduction 2 2. The idea of higher category theory 3 2.1. The homotopy hypothesis and the problem with strictness 5 2.2. The 3-type of S2 8 2.3. Shapes for cells 10 2.4. What does (higher) category theory do for us? 11 3. Models of (1; 1)-categories 12 3.1. Topological or simplicial categories 12 3.2. Quasi-categories 13 3.3. Segal categories and complete Segal spaces 16 3.4. Relative categories 17 3.5. A1-categories 18 3.6. Models of subclasses of (1; 1)-categories 20 3.6.1. Model categories 20 3.6.2. Derivators 21 3.6.3. dg-categories, A1-categories 22 4. The comparison problem 22 4.1. Axiomatization 24 5. Basic (1; 1)-category theory 25 5.1. Equivalences 25 5.1.1. Further results for quasi-categories 26 5.2. Limits and colimits 26 5.3. Adjunctions, monads and comonads 28 2010 Mathematics Subject Classification. Primary 18-01. -
Change of Base for Locally Internal Categories
Journal of Pure and Applied Algebra 61 (1989) 233-242 233 North-Holland CHANGE OF BASE FOR LOCALLY INTERNAL CATEGORIES Renato BETTI Universitb di Torino, Dipartimento di Matematica, via Principe Amedeo 8, IO123 Torino, Italy Communicated by G.M. Kelly Received 4 August 1988 Locally internal categories over an elementary topos 9 are regarded as categories enriched in the bicategory Span g. The change of base is considered with respect to a geometric morphism S-r 8. Cocompleteness is preserved, and the topos S can be regarded as a cocomplete, locally internal category over 6. This allows one in particular to prove an analogue of Diaconescu’s theorem in terms of general properties of categories. Introduction Locally internal categories over a topos & can be regarded as categories enriched in the bicategory Span& and in many cases their properties can be usefully dealt with in terms of standard notions of enriched category theory. From this point of view Betti and Walters [2,3] study completeness, ends, functor categories, and prove an adjoint functor theorem. Here we consider a change of the base topos, i.e. a geometric morphismp : 9-t CF. In particular 9 itself can be regarded as locally internal over 8. Again, properties of p can be expressed by the enrichment (both in Spangand in Span 8) and the relevant module calculus of enriched category theory applies directly to most calculations. Our notion of locally internal category is equivalent to that given by Lawvere [6] under the name of large category with an &-atlas, and to Benabou’s locally small fibrations [l]. -
On the Classification of Topological Field Theories
On the Classification of Topological Field Theories (Draft) Jacob Lurie May 10, 2009 Our goal in this article is to give an expository account of some recent work on the classification of topological field theories. More specifically, we will outline the proof of a version of the cobordism hypothesis conjectured by Baez and Dolan in [2]. Contents 1 Topological Field Theories and Higher Categories 2 1.1 Classical Definitions . 2 1.2 Extending Down: Lower Dimensional Manifolds . 7 1.3 Higher Category Theory . 15 1.4 Extending Up: Diffeomorphism Groups . 18 2 Formulation of the Cobordism Hypothesis 24 2.1 Complete Segal Spaces . 24 2.2 Bordism Categories as Segal Spaces . 34 2.3 Fully Dualizable Objects . 37 2.4 The Cobordism Hypothesis . 43 2.5 The Mumford Conjecture . 48 3 Proof of the Cobordism Hypothesis 51 3.1 Inductive Formulation . 52 3.2 Reduction to the Unoriented Case . 57 3.3 Unfolding of Higher Categories . 61 3.4 The Index Filtration . 70 3.5 Obstruction Theory . 79 4 Beyond the Cobordism Hypothesis 86 4.1 Topological Chiral Homology . 87 4.2 The Cobordism Hypothesis in Low Dimensions . 92 4.3 Manifolds with Singularities . 97 4.4 The Tangle Hypothesis . 105 Terminology Unless otherwise specified, we will use the word manifold to refer to a compact smooth manifold M, possibly with boundary (or with corners). If M is a manifold, we will denote its boundary by @M. We will say that 1 M is closed if the boundary @M is empty. For a brief description of how the ideas of this paper generalize to manifolds which are not smooth, we refer the reader to Remark 2.4.30. -
Topological Categories*
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Tcpology and its Applications 18 (198-l) 27-41 27 North-Holland TOPOLOGICAL CATEGORIES* G.C.L. BRijMMER Department of Mathematics, Unicersity of Cape Town, 7700 Rondebosch, South Africa Received 1 February 1983 Revised 4 August 1983 This is a survey for the working mathematician of the theory of initially complete categories. These are concrete categories (~2, T) where T:d + Z is a topological functor, i.e. ti admits arbitrary T-initial structures. Such categories provide a setting for general topology and topological algebra when I is the category of sets or a category of algebras. It is characteristic for initially complete categories that increasing richness in structure is the same thing as increasing generality. We end with the core results on initial completions, (E, hi)-topological, topologically algebraic and semitopological functors. A.M.S. Subj. Class.: Primary 18-02, 18B30, 54-02, 54830. Secondary 18A22, 18A32, 18A35. 18A40, 22A99, 54A99, 54D10, 54E99 topological functor concrete category topological category initial completion semitopological functor topologically algebraic functor 1. What is topology? When an algebraist, a topologist and an analyst try to converse about the essential message which each man’s specialty has for the others, it is likely to be conceded that analysis builds upon intricately intertwined structures that are taken apart, studied in some degree of abstraction and perhaps reassembled, by algebraists, topologists, measure theorists, logicians and others. The question “What is algebra?” has received a great deal of study and on the informal level most mathematicians feel that they have an adequate answer, although it depends on one’s point of view whether infinitary operations and complete lattices belong to algebra or to topology. -
A Whirlwind Tour of the World of $(\Infty, 1) $-Categories
Contemporary Mathematics A Whirlwind Tour of the World of (∞, 1)-categories Omar Antol´ın Camarena Abstract. This introduction to higher category theory is intended to a give the reader an intuition for what (∞, 1)-categories are, when they are an appro- priate tool, how they fit into the landscape of higher category, how concepts from ordinary category theory generalize to this new setting, and what uses people have put the theory to. It is a rough guide to a vast terrain, focuses on ideas and motivation, omits almost all proofs and technical details, and provides many references. 1. Introduction An (∞, 1)-category is a category-like thing that besides objects and morphisms has 2-morphisms between morphisms, 3-morphisms between 2-morphisms, and so on all the way to ∞; but in which all k-morphisms for k> 1 are “invertible”, at least up to higher invertible morphisms. This is the sort of invertibility that homotopies have: the composition or concatenation of any homotopy with its reverse is not actually the identity but it is homotopic to it. So we can picture an (∞, 1)-category as a “homotopy theory”: a kind of category with objects, morphisms, homotopies between morphisms, higher homotopies between homotopies and so on. Any context where there is a notion of homotopy, can benefit from the use of (∞, 1)-categories in place of ordinary categories. This includes homotopy theory itself, of course, but also homological algebra and more generally wherever Quillen’s version of abstract homotopy theory, the theory of model categories, has been used. Notions of homotopy are perhaps more common than one might expect since the arXiv:1303.4669v3 [math.CT] 5 Sep 2013 philosophy of model categories shows that simply specifying a class of “weak equiv- alences” in a category, a collection of morphisms which we wish to treat as if they were isomorphisms, produces a notion of homotopy. -
HIGHER-DIMENSIONAL ALGEBRA V: 2-GROUPS 1. Introduction
Theory and Applications of Categories, Vol. 12, No. 14, 2004, pp. 423–491. HIGHER-DIMENSIONAL ALGEBRA V: 2-GROUPS JOHN C. BAEZ AND AARON D. LAUDA Abstract. A 2-group is a ‘categorified’ version of a group, in which the underlying set G has been replaced by a category and the multiplication map m: G × G → G has been replaced by a functor. Various versions of this notion have already been explored; our goal here is to provide a detailed introduction to two, which we call ‘weak’ and ‘coherent’ 2-groups. A weak 2-group is a weak monoidal category in which every morphism has an ∼ ∼ inverse and every object x has a ‘weak inverse’: an object y such that x ⊗ y = 1 = y ⊗ x. A coherent 2-group is a weak 2-group in which every object x is equipped with a specified weak inversex ¯ and isomorphisms ix:1→ x⊗x¯, ex:¯x⊗x → 1 forming an adjunction. We describe 2-categories of weak and coherent 2-groups and an ‘improvement’ 2-functor that turns weak 2-groups into coherent ones, and prove that this 2-functor is a 2-equivalence of 2-categories. We internalize the concept of coherent 2-group, which gives a quick way to define Lie 2-groups. We give a tour of examples, including the ‘fundamental 2-group’ of a space and various Lie 2-groups. We also explain how coherent 2-groups can be classified in terms of 3rd cohomology classes in group cohomology. Finally, using this classification, we construct for any connected and simply-connected compact simple Lie group G a family of 2-groups G ( ∈ Z)havingG as its group of objects and U(1) as the group of automorphisms of its identity object.