Categories with Fuzzy Sets and Relations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MAT 4162 - Homework Assignment 2
MAT 4162 - Homework Assignment 2 Instructions: Pick at least 5 problems of varying length and difficulty. You do not have to provide full details in all of the problems, but be sure to indicate which details you declare trivial. Due date: Monday June 22nd, 4pm. The category of relations Let Rel be the category whose objects are sets and whose morphisms X ! Y are relations R ⊆ X × Y . Two relations R ⊆ X × Y and S ⊆ Y × Z may be composed via S ◦ R = f(x; z)j9y 2 Y:R(x; y) ^ S(y; z): Exercise 1. Show that this composition is associative, and that Rel is indeed a category. The powerset functor(s) Consider the powerset functor P : Set ! Set. On objects, it sends a set X to its powerset P(X). A function f : X ! Y is sent to P(f): P(X) !P(Y ); U 7! P(f)(U) = f[U] =def ff(x)jx 2 Ug: Exercise 2. Show that P is indeed a functor. For every set X we have a singleton map ηX : X !P(X), defined by 2 S x 7! fxg. Also, we have a union map µX : P (X) !P(X), defined by α 7! α. Exercise 3. Show that η and µ constitute natural transformations 1Set !P and P2 !P, respectively. Objects of the form P(X) are more than mere sets. In class you have seen that they are in fact complete boolean algebras. For now, we regard P(X) as a complete sup-lattice. A partial ordering (P; ≤) is a complete sup-lattice if it is equipped with a supremum map W : P(P ) ! P which sends a subset U ⊆ P to W P , the least upper bound of U in P . -
EXERCISES on LIMITS & COLIMITS Exercise 1. Prove That Pullbacks Of
EXERCISES ON LIMITS & COLIMITS PETER J. HAINE Exercise 1. Prove that pullbacks of epimorphisms in Set are epimorphisms and pushouts of monomorphisms in Set are monomorphisms. Note that these statements cannot be deduced from each other using duality. Now conclude that the same statements hold in Top. Exercise 2. Let 푋 be a set and 퐴, 퐵 ⊂ 푋. Prove that the square 퐴 ∩ 퐵 퐴 퐵 퐴 ∪ 퐵 is both a pullback and pushout in Set. Exercise 3. Let 푅 be a commutative ring. Prove that every 푅-module can be written as a filtered colimit of its finitely generated submodules. Exercise 4. Let 푋 be a set. Give a categorical definition of a topology on 푋 as a subposet of the power set of 푋 (regarded as a poset under inclusion) that is stable under certain categorical constructions. Exercise 5. Let 푋 be a space. Give a categorical description of what it means for a set of open subsets of 푋 to form a basis for the topology on 푋. Exercise 6. Let 퐶 be a category. Prove that if the identity functor id퐶 ∶ 퐶 → 퐶 has a limit, then lim퐶 id퐶 is an initial object of 퐶. Definition. Let 퐶 be a category and 푋 ∈ 퐶. If the coproduct 푋 ⊔ 푋 exists, the codiagonal or fold morphism is the morphism 훻푋 ∶ 푋 ⊔ 푋 → 푋 induced by the identities on 푋 via the universal property of the coproduct. If the product 푋 × 푋 exists, the diagonal morphism 훥푋 ∶ 푋 → 푋 × 푋 is defined dually. Exercise 7. In Set, show that the diagonal 훥푋 ∶ 푋 → 푋 × 푋 is given by 훥푋(푥) = (푥, 푥) for all 푥 ∈ 푋, so 훥푋 embeds 푋 as the diagonal in 푋 × 푋, hence the name. -
Relations in Categories
Relations in Categories Stefan Milius A thesis submitted to the Faculty of Graduate Studies in partial fulfilment of the requirements for the degree of Master of Arts Graduate Program in Mathematics and Statistics York University Toronto, Ontario June 15, 2000 Abstract This thesis investigates relations over a category C relative to an (E; M)-factori- zation system of C. In order to establish the 2-category Rel(C) of relations over C in the first part we discuss sufficient conditions for the associativity of horizontal composition of relations, and we investigate special classes of morphisms in Rel(C). Attention is particularly devoted to the notion of mapping as defined by Lawvere. We give a significantly simplified proof for the main result of Pavlovi´c,namely that C Map(Rel(C)) if and only if E RegEpi(C). This part also contains a proof' that the category Map(Rel(C))⊆ is finitely complete, and we present the results obtained by Kelly, some of them generalized, i. e., without the restrictive assumption that M Mono(C). The next part deals with factorization⊆ systems in Rel(C). The fact that each set-relation has a canonical image factorization is generalized and shown to yield an (E¯; M¯ )-factorization system in Rel(C) in case M Mono(C). The setting without this condition is studied, as well. We propose a⊆ weaker notion of factorization system for a 2-category, where the commutativity in the universal property of an (E; M)-factorization system is replaced by coherent 2-cells. In the last part certain limits and colimits in Rel(C) are investigated. -
A Subtle Introduction to Category Theory
A Subtle Introduction to Category Theory W. J. Zeng Department of Computer Science, Oxford University \Static concepts proved to be very effective intellectual tranquilizers." L. L. Whyte \Our study has revealed Mathematics as an array of forms, codify- ing ideas extracted from human activates and scientific problems and deployed in a network of formal rules, formal definitions, formal axiom systems, explicit theorems with their careful proof and the manifold in- terconnections of these forms...[This view] might be called formal func- tionalism." Saunders Mac Lane Let's dive right in then, shall we? What can we say about the array of forms MacLane speaks of? Claim (Tentative). Category theory is about the formal aspects of this array of forms. Commentary: It might be tempting to put the brakes on right away and first grab hold of what we mean by formal aspects. Instead, rather than trying to present \the formal" as the object of study and category theory as our instrument, we would nudge the reader to consider another perspective. Category theory itself defines formal aspects in much the same way that physics defines physical concepts or laws define legal (and correspondingly illegal) aspects: it embodies them. When we speak of what is formal/physical/legal we inescapably speak of category/physical/legal theory, and vice versa. Thus we pass to the somewhat grammatically awkward revision of our initial claim: Claim (Tentative). Category theory is the formal aspects of this array of forms. Commentary: Let's unpack this a little bit. While individual forms are themselves tautologically formal, arrays of forms and everything else networked in a system lose this tautological formality. -
Knowledge Representation in Bicategories of Relations
Knowledge Representation in Bicategories of Relations Evan Patterson Department of Statistics, Stanford University Abstract We introduce the relational ontology log, or relational olog, a knowledge representation system based on the category of sets and relations. It is inspired by Spivak and Kent’s olog, a recent categorical framework for knowledge representation. Relational ologs interpolate between ologs and description logic, the dominant formalism for knowledge representation today. In this paper, we investigate relational ologs both for their own sake and to gain insight into the relationship between the algebraic and logical approaches to knowledge representation. On a practical level, we show by example that relational ologs have a friendly and intuitive—yet fully precise—graphical syntax, derived from the string diagrams of monoidal categories. We explain several other useful features of relational ologs not possessed by most description logics, such as a type system and a rich, flexible notion of instance data. In a more theoretical vein, we draw on categorical logic to show how relational ologs can be translated to and from logical theories in a fragment of first-order logic. Although we make extensive use of categorical language, this paper is designed to be self-contained and has considerable expository content. The only prerequisites are knowledge of first-order logic and the rudiments of category theory. 1. Introduction arXiv:1706.00526v2 [cs.AI] 1 Nov 2017 The representation of human knowledge in computable form is among the oldest and most fundamental problems of artificial intelligence. Several recent trends are stimulating continued research in the field of knowledge representation (KR). -
Arxiv:2008.00486V2 [Math.CT] 1 Nov 2020
Anticommutativity and the triangular lemma. Michael Hoefnagel Abstract For a variety V, it has been recently shown that binary products com- mute with arbitrary coequalizers locally, i.e., in every fibre of the fibration of points π : Pt(C) → C, if and only if Gumm’s shifting lemma holds on pullbacks in V. In this paper, we establish a similar result connecting the so-called triangular lemma in universal algebra with a certain cat- egorical anticommutativity condition. In particular, we show that this anticommutativity and its local version are Mal’tsev conditions, the local version being equivalent to the triangular lemma on pullbacks. As a corol- lary, every locally anticommutative variety V has directly decomposable congruence classes in the sense of Duda, and the converse holds if V is idempotent. 1 Introduction Recall that a category is said to be pointed if it admits a zero object 0, i.e., an object which is both initial and terminal. For a variety V, being pointed is equivalent to the requirement that the theory of V admit a unique constant. Between any two objects X and Y in a pointed category, there exists a unique morphism 0X,Y from X to Y which factors through the zero object. The pres- ence of these zero morphisms allows for a natural notion of kernel or cokernel of a morphism f : X → Y , namely, as an equalizer or coequalizer of f and 0X,Y , respectively. Every kernel/cokernel is a monomorphism/epimorphism, and a monomorphism/epimorphism is called normal if it is a kernel/cokernel of some morphism. -
Two Constructions in Monoidal Categories Equivariantly Extended Drinfel’D Centers and Partially Dualized Hopf Algebras
Two constructions in monoidal categories Equivariantly extended Drinfel'd Centers and Partially dualized Hopf Algebras Dissertation zur Erlangung des Doktorgrades an der Fakult¨atf¨urMathematik, Informatik und Naturwissenschaften Fachbereich Mathematik der Universit¨atHamburg vorgelegt von Alexander Barvels Hamburg, 2014 Tag der Disputation: 02.07.2014 Folgende Gutachter empfehlen die Annahme der Dissertation: Prof. Dr. Christoph Schweigert und Prof. Dr. Sonia Natale Contents Introduction iii Topological field theories and generalizations . iii Extending braided categories . vii Algebraic structures and monoidal categories . ix Outline . .x 1. Algebra in monoidal categories 1 1.1. Conventions and notations . .1 1.2. Categories of modules . .3 1.3. Bialgebras and Hopf algebras . 12 2. Yetter-Drinfel'd modules 25 2.1. Definitions . 25 2.2. Equivalences of Yetter-Drinfel'd categories . 31 3. Graded categories and group actions 39 3.1. Graded categories and (co)graded bialgebras . 39 3.2. Weak group actions . 41 3.3. Equivariant categories and braidings . 48 4. Equivariant Drinfel'd center 51 4.1. Half-braidings . 51 4.2. The main construction . 55 4.3. The Hopf algebra case . 61 5. Partial dualization of Hopf algebras 71 5.1. Radford biproduct and projection theorem . 71 5.2. The partial dual . 73 5.3. Examples . 75 A. Category theory 89 A.1. Basic notions . 89 A.2. Adjunctions and monads . 91 i ii Contents A.3. Monoidal categories . 92 A.4. Modular categories . 97 References 99 Introduction The fruitful interplay between topology and algebra has a long tradi- tion. On one hand, invariants of topological spaces, such as the homotopy groups, homology groups, etc. -
Relations: Categories, Monoidal Categories, and Props
Logical Methods in Computer Science Vol. 14(3:14)2018, pp. 1–25 Submitted Oct. 12, 2017 https://lmcs.episciences.org/ Published Sep. 03, 2018 UNIVERSAL CONSTRUCTIONS FOR (CO)RELATIONS: CATEGORIES, MONOIDAL CATEGORIES, AND PROPS BRENDAN FONG AND FABIO ZANASI Massachusetts Institute of Technology, United States of America e-mail address: [email protected] University College London, United Kingdom e-mail address: [email protected] Abstract. Calculi of string diagrams are increasingly used to present the syntax and algebraic structure of various families of circuits, including signal flow graphs, electrical circuits and quantum processes. In many such approaches, the semantic interpretation for diagrams is given in terms of relations or corelations (generalised equivalence relations) of some kind. In this paper we show how semantic categories of both relations and corelations can be characterised as colimits of simpler categories. This modular perspective is important as it simplifies the task of giving a complete axiomatisation for semantic equivalence of string diagrams. Moreover, our general result unifies various theorems that are independently found in literature and are relevant for program semantics, quantum computation and control theory. 1. Introduction Network-style diagrammatic languages appear in diverse fields as a tool to reason about computational models of various kinds, including signal processing circuits, quantum pro- cesses, Bayesian networks and Petri nets, amongst many others. In the last few years, there have been more and more contributions towards a uniform, formal theory of these languages which borrows from the well-established methods of programming language semantics. A significant insight stemming from many such approaches is that a compositional analysis of network diagrams, enabling their reduction to elementary components, is more effective when system behaviour is thought of as a relation instead of a function. -
The Morita Theory of Quantum Graph Isomorphisms
Commun. Math. Phys. Communications in Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-018-3225-6 Mathematical Physics The Morita Theory of Quantum Graph Isomorphisms Benjamin Musto, David Reutter, Dominic Verdon Department of Computer Science, University of Oxford, Oxford, UK. E-mail: [email protected]; [email protected]; [email protected] Received: 31 January 2018 / Accepted: 11 June 2018 © The Author(s) 2018 Abstract: We classify instances of quantum pseudo-telepathy in the graph isomorphism game, exploiting the recently discovered connection between quantum information and the theory of quantum automorphism groups. Specifically, we show that graphs quantum isomorphic to a given graph are in bijective correspondence with Morita equivalence classes of certain Frobenius algebras in the category of finite-dimensional representations of the quantum automorphism algebra of that graph. We show that such a Frobenius algebra may be constructed from a central type subgroup of the classical automorphism group, whose action on the graph has coisotropic vertex stabilisers. In particular, if the original graph has no quantum symmetries, quantum isomorphic graphs are classified by such subgroups. We show that all quantum isomorphic graph pairs corresponding to a well-known family of binary constraint systems arise from this group-theoretical construction. We use our classification to show that, of the small order vertex-transitive graphs with no quantum symmetry, none is quantum isomorphic to a non-isomorphic graph. We show that this is in fact asymptotically almost surely true of all graphs. Contents 1. Introduction ................................. 2. Background ................................. 2.1 String diagrams, Frobenius monoids and Gelfand duality ...... -
Categorical Proof of Holomorphic Atiyah-Bott Formula
Categorical proof of Holomorphic Atiyah-Bott formula Grigory Kondyrev, Artem Prikhodko Abstract Given a 2-commutative diagram FX X / X ϕ ϕ Y / Y FY in a symmetric monoidal (∞, 2)-category E where X, Y ∈ E are dualizable objects and ϕ admits a right adjoint we construct a natural morphism TrE(FX ) / TrE(FY ) between the traces of FX and FY respectively. We then apply this formalism to the case when E is the (∞, 2)-category of k-linear presentable categories which in combination of various calculations in the setting of derived algebraic geometry gives a categorical proof of the classical Atiyah-Bott formula (also known as the Holomorphic Lefschetz fixed point formula). Contents 1 Dualizable objects and traces 4 1.1 Traces in symmetric monoidal (∞, 1)-categories .. .. .. .. .. .. .. 4 1.2 Traces in symmetric monoidal (∞, 2)-categories .. .. .. .. .. .. .. 5 2 Traces in algebraic geometry 11 2.1 Duality for Quasi-Coherent sheaves . .............. 11 2.2 Calculatingthetrace. .. .. .. .. .. .. .. .. .......... 13 3 Holomorphic Atiyah-Bott formula 16 3.1 Statement of Atiyah-Bott formula . ............ 17 3.2 ProofofAtiyah-Bottformula . ........... 19 arXiv:1607.06345v3 [math.AG] 12 Nov 2019 Introduction The well-known Lefschetz fixed point theorem [Lef26, Formula 71.1] states that for a compact manifold f M and an endomorphism M / M with isolated fixed points there is an equality 2dim M i ∗ L(f) := (−1) tr(f|Hi(X,Q))= degx(1 − f) (1) Xi=0 x=Xf(x) The formula (1) made huge impact on algebraic geometry in 20th century leading Grothendieck and co- authors to development of ´etale cohomology theory and their spectacular proof of Weil’s conjectures. -
Categories of Quantum and Classical Channels (Extended Abstract)
Categories of Quantum and Classical Channels (extended abstract) Bob Coecke∗ Chris Heunen† Aleks Kissinger∗ University of Oxford, Department of Computer Science fcoecke,heunen,[email protected] We introduce the CP*–construction on a dagger compact closed category as a generalisation of Selinger’s CPM–construction. While the latter takes a dagger compact closed category and forms its category of “abstract matrix algebras” and completely positive maps, the CP*–construction forms its category of “abstract C*-algebras” and completely positive maps. This analogy is justified by the case of finite-dimensional Hilbert spaces, where the CP*–construction yields the category of finite-dimensional C*-algebras and completely positive maps. The CP*–construction fully embeds Selinger’s CPM–construction in such a way that the objects in the image of the embedding can be thought of as “purely quantum” state spaces. It also embeds the category of classical stochastic maps, whose image consists of “purely classical” state spaces. By allowing classical and quantum data to coexist, this provides elegant abstract notions of preparation, measurement, and more general quantum channels. 1 Introduction One of the motivations driving categorical treatments of quantum mechanics is to place classical and quantum systems on an equal footing in a single category, so that one can study their interactions. The main idea of categorical quantum mechanics [1] is to fix a category (usually dagger compact) whose ob- jects are thought of as state spaces and whose morphisms are evolutions. There are two main variations. • “Dirac style”: Objects form pure state spaces, and isometric morphisms form pure state evolutions. -
PULLBACK and BASE CHANGE Contents
PART II.2. THE !-PULLBACK AND BASE CHANGE Contents Introduction 1 1. Factorizations of morphisms of DG schemes 2 1.1. Colimits of closed embeddings 2 1.2. The closure 4 1.3. Transitivity of closure 5 2. IndCoh as a functor from the category of correspondences 6 2.1. The category of correspondences 6 2.2. Proof of Proposition 2.1.6 7 3. The functor of !-pullback 8 3.1. Definition of the functor 9 3.2. Some properties 10 3.3. h-descent 10 3.4. Extension to prestacks 11 4. The multiplicative structure and duality 13 4.1. IndCoh as a symmetric monoidal functor 13 4.2. Duality 14 5. Convolution monoidal categories and algebras 17 5.1. Convolution monoidal categories 17 5.2. Convolution algebras 18 5.3. The pull-push monad 19 5.4. Action on a map 20 References 21 Introduction Date: September 30, 2013. 1 2 THE !-PULLBACK AND BASE CHANGE 1. Factorizations of morphisms of DG schemes In this section we will study what happens to the notion of the closure of the image of a morphism between schemes in derived algebraic geometry. The upshot is that there is essentially \nothing new" as compared to the classical case. 1.1. Colimits of closed embeddings. In this subsection we will show that colimits exist and are well-behaved in the category of closed subschemes of a given ambient scheme. 1.1.1. Recall that a map X ! Y in Sch is called a closed embedding if the map clX ! clY is a closed embedding of classical schemes.