Knowledge Representation in Bicategories of Relations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Logic Programming in Tabular Allegories∗
Logic Programming in Tabular Allegories∗ Emilio Jesús Gallego Arias1 and James B. Lipton2 1 Universidad Politécnica de Madrid 2 Wesleyan University Abstract We develop a compilation scheme and categorical abstract machine for execution of logic pro- grams based on allegories, the categorical version of the calculus of relations. Operational and denotational semantics are developed using the same formalism, and query execution is performed using algebraic reasoning. Our work serves two purposes: achieving a formal model of a logic programming compiler and efficient runtime; building the base for incorporating features typi- cal of functional programming in a declarative way, while maintaining 100% compatibility with existing Prolog programs. 1998 ACM Subject Classification D.3.1 Formal Definitions and Theory, F.3.2 Semantics of Programming Languages, F.4.1 Mathematical Logic Keywords and phrases Category Theory,Logic Programming,Lawvere Categories,Programming Language Semantics,Declarative Programming Digital Object Identifier 10.4230/LIPIcs.ICLP.2012.334 1 Introduction Relational algebras have a broad spectrum of applications in both theoretical and practical computer science. In particular, the calculus of binary relations [37], whose main operations are intersection (∪), union (∩), relative complement \, inversion (_)o and relation composition (;) was shown by Tarski and Givant [40] to be a complete and adequate model for capturing all first-order logic and set theory. The intuition is that conjunction is modeled by ∩, disjunction by ∪ and existential quantification by composition. This correspondence is very useful for modeling logic programming. Logic programs are naturally interpreted by binary relations and relation algebra is a suitable framework for algebraic reasoning over them, including execution of queries. -
Maintaining Spatial Relations in an Incremental Diagrammatic Reasoner
Maintaining Spatial Relations in an Incremental Diagrammatic Reasoner Ronald W. Ferguson, Joseph L. Bokor, Rudolph L. Mappus IV and Adam Feldman College of Computing Georgia Institute of Technology 801 Atlantic Avenue Atlanta, GA 30332 {rwf, jlbokor, cmappus, storm} @cc.gatech.edu Abstract gram. This work extends the GeoRep diagrammatic rea- soner (Ferguson & Forbus, 2000), which is described in Because diagrams are often created incrementally, a qualitative section 3. After describing GeoRep, we discuss how Ge o- diagrammatic reasoning system must dynamically manage a po- Rep was modified to allow incremental processing, and tentially large set of spatial interpretations. This paper describes cover a number of implementation issues: how to handle an architecture for handling spatial relations in an incremental, nonmonotonic diagrammatic reasoning system. The architecture composite objects, the interface between low-level and represents jointly exhaustive and pairwise disjoint (JEPD) spatial high-level reasoning, and a modified default assumption relation sets as nodes in a dependency network. Examples of these mechanism. We also describe extensions to a user interface spatial relation sets are interval relations, relative orientation rela- allowing a user to create diagrams and update the infer- tions, and connectivity relations. The network caches dependen- ences of the reasoner. We then discuss future challenges cies between low-level spatial relations, allowing those relations for this architecture. to be easily assumed or retracted as visual elements are added or removed from a diagram. We also describe how the system sup- ports high-level reasoning, including support for creating default 2. Related Work assumptions. Finally, we show how this system was integrated In qualitative spatial reasoning, researchers have explored with an existing drawing program and discuss its possible use in how to process qualitative spatial vocabularies incremen- diagrammatic and geographic reasoning. -
Schema.Org As a Description Logic
Schema.org as a Description Logic Andre Hernich1, Carsten Lutz2, Ana Ozaki1 and Frank Wolter1 1University of Liverpool, UK 2University of Bremen, Germany fandre.hernich, anaozaki, [email protected] [email protected] Abstract Patel-Schneider [2014] develops an ontology language for Schema.org with a formal syntax and semantics that, apart Schema.org is an initiative by the major search en- from some details, can be regarded as a fragment of OWL DL. gine providers Bing, Google, Yahoo!, and Yandex that provides a collection of ontologies which web- In this paper, we abstract slightly further and view the masters can use to mark up their pages. Schema.org Schema.org ontology language as a DL, in line with the for- comes without a formal language definition and malization by Patel-Schneider. Thus, what Schema.org calls a without a clear semantics. We formalize the lan- type becomes a concept name and a property becomes a role guage of Schema.org as a Description Logic (DL) name. The main characteristics of the resulting ‘Schema.org and study the complexity of querying data using DL’ are that (i) the language is very restricted, allowing only (unions of) conjunctive queries in the presence of inclusions between concept and role names, domain and range ontologies formulated in this DL (from several per- restrictions, nominals, and datatypes; (ii) ranges and domains spectives). While querying is intractable in general, of roles can be restricted to disjunctions of concept names (pos- we identify various cases in which it is tractable and sibly mixed with datatypes in range restrictions) and nominals where queries are even rewritable into FO queries are used in ‘one-of enumerations’ which also constitute a form or datalog programs. -
MAT 4162 - Homework Assignment 2
MAT 4162 - Homework Assignment 2 Instructions: Pick at least 5 problems of varying length and difficulty. You do not have to provide full details in all of the problems, but be sure to indicate which details you declare trivial. Due date: Monday June 22nd, 4pm. The category of relations Let Rel be the category whose objects are sets and whose morphisms X ! Y are relations R ⊆ X × Y . Two relations R ⊆ X × Y and S ⊆ Y × Z may be composed via S ◦ R = f(x; z)j9y 2 Y:R(x; y) ^ S(y; z): Exercise 1. Show that this composition is associative, and that Rel is indeed a category. The powerset functor(s) Consider the powerset functor P : Set ! Set. On objects, it sends a set X to its powerset P(X). A function f : X ! Y is sent to P(f): P(X) !P(Y ); U 7! P(f)(U) = f[U] =def ff(x)jx 2 Ug: Exercise 2. Show that P is indeed a functor. For every set X we have a singleton map ηX : X !P(X), defined by 2 S x 7! fxg. Also, we have a union map µX : P (X) !P(X), defined by α 7! α. Exercise 3. Show that η and µ constitute natural transformations 1Set !P and P2 !P, respectively. Objects of the form P(X) are more than mere sets. In class you have seen that they are in fact complete boolean algebras. For now, we regard P(X) as a complete sup-lattice. A partial ordering (P; ≤) is a complete sup-lattice if it is equipped with a supremum map W : P(P ) ! P which sends a subset U ⊆ P to W P , the least upper bound of U in P . -
Acm Names Fellows for Innovations in Computing
CONTACT: Virginia Gold 212-626-0505 [email protected] ACM NAMES FELLOWS FOR INNOVATIONS IN COMPUTING 2014 Fellows Made Computing Contributions to Enterprise, Entertainment, and Education NEW YORK, January 8, 2015—ACM has recognized 47 of its members for their contributions to computing that are driving innovations across multiple domains and disciplines. The 2014 ACM Fellows, who hail from some of the world’s leading universities, corporations, and research labs, have achieved advances in computing research and development that are driving innovation and sustaining economic development around the world. ACM President Alexander L. Wolf acknowledged the advances made by this year’s ACM Fellows. “Our world has been immeasurably improved by the impact of their innovations. We recognize their contributions to the dynamic computing technologies that are making a difference to the study of computer science, the community of computing professionals, and the countless consumers and citizens who are benefiting from their creativity and commitment.” The 2014 ACM Fellows have been cited for contributions to key computing fields including database mining and design; artificial intelligence and machine learning; cryptography and verification; Internet security and privacy; computer vision and medical imaging; electronic design automation; and human-computer interaction. ACM will formally recognize the 2014 Fellows at its annual Awards Banquet in June in San Francisco. Additional information about the ACM 2014 Fellows, the awards event, as well as previous -
Ontologies and Description Logics
Symbolic and structural models for image understanding Part II: Ontologies and description logics Jamal Atif - Isabelle Bloch - Céline Hudelot IJCAI 2016 1 / 72 J. Atif, I. Bloch, C. Hudelot Image Understanding Outline 1 What is an ontology ? 2 Ontologies for image understanding: overview 3 Description Logics 4 Description Logics for image understanding 5 Conclusion What is an ontology ? What is an ontology ? Example from F. Gandon, WIMMICS Team, INRIA What is the last document that you have read? Documents 3 / 72 J. Atif, I. Bloch, C. Hudelot Image Understanding What is an ontology ? Ontologies: Definition Ontology ethymology: ontos (being, that which is) + logos (science, study, theory) Philosophy Study of the nature of being, becoming and reality. Study of the basic categories of being and their relations. Computer Science Formal representation of a domain of discourse. Explicit specification of a conceptualization [Gruber 95]. Ref: [Guarino 09] 4 / 72 J. Atif, I. Bloch, C. Hudelot Image Understanding What is an ontology ? Ontologies: Definition ontology Formal, explicit (and shared) specification of a conceptualization [Gruber 95, Studer 98] Formal, explicit specification: a formal language is used to refer to the elements of the conceptualization, e.g. description logics Conceptualization: Objects, concepts and other entities and their relationships Concept Relation Denoted by: Denoted by: a name a name a meaning (intensional definition) an intension a set of denoted objects (extensional an extension definition) 5 / 72 J. Atif, I. Bloch, C. Hudelot Image Understanding What is an ontology ? The different types of ontologies According to their expressivity Source : [Uschold 04] 6 / 72 J. Atif, I. Bloch, C. -
Relations in Categories
Relations in Categories Stefan Milius A thesis submitted to the Faculty of Graduate Studies in partial fulfilment of the requirements for the degree of Master of Arts Graduate Program in Mathematics and Statistics York University Toronto, Ontario June 15, 2000 Abstract This thesis investigates relations over a category C relative to an (E; M)-factori- zation system of C. In order to establish the 2-category Rel(C) of relations over C in the first part we discuss sufficient conditions for the associativity of horizontal composition of relations, and we investigate special classes of morphisms in Rel(C). Attention is particularly devoted to the notion of mapping as defined by Lawvere. We give a significantly simplified proof for the main result of Pavlovi´c,namely that C Map(Rel(C)) if and only if E RegEpi(C). This part also contains a proof' that the category Map(Rel(C))⊆ is finitely complete, and we present the results obtained by Kelly, some of them generalized, i. e., without the restrictive assumption that M Mono(C). The next part deals with factorization⊆ systems in Rel(C). The fact that each set-relation has a canonical image factorization is generalized and shown to yield an (E¯; M¯ )-factorization system in Rel(C) in case M Mono(C). The setting without this condition is studied, as well. We propose a⊆ weaker notion of factorization system for a 2-category, where the commutativity in the universal property of an (E; M)-factorization system is replaced by coherent 2-cells. In the last part certain limits and colimits in Rel(C) are investigated. -
Improving Knowledge Development and Exchange Via Transformative Pictogram Design
2020 24th International Conference Information Visualisation (IV) Visual Design Thinking for Public Education: Improving knowledge development and exchange via transformative pictogram design 1st Nana Wang 2nd Leah Burns Sichuan University Aalto Univeristy China Finland 0000-0003-3902-7393 leah.burns@aalto.fi Abstract—How might the exchange and development of knowl- edge improve through a critical examination of pictogram- based methods of information visualization? In this article, we investigate the International System of TYpographic Picture Education(ISOTYPE), an influential model of pictorial diagram design theory and practice. Given ISOTYPE’s continuing impact on information design, we use it as a critical case study to assess the potential and limitations of pictorial diagrams(PD) for knowl- edge development and exchange. The goal of this study is not to evaluate artistic quality, style, or designer talent; rather, our focus is on analysis of the learning functions of pictograms and their potential for knowledge transmission and supporting reasoning behaviour among diverse audiences. We explore the different features of a pictogram, and how these features might support knowledge development through diagrammatic reasoning(DR). Three key questions are posed: 1. What are the advantages and disadvantages of pictograms for promoting learning and reasoning behaviour versus more abstract or representational visual information design? 2. What are the criteria for choosing the visual characteristics of pictograms? 3. How can the visual characteristics of pictograms be evaluated and revised base on the goal of supporting learning and reasoning behaviour? Index Terms Fig. 1. ISOTYPE, Atlas, Gesellschaft und Wirtschaft,1930, reproduced from —ISOTYPE; Pictorial diagram(PD); Public ed- Osterreichisches¨ Gesellschafts - und Wirtschaftsmuseum ucation; Informal learning; Knowledge visualization(KV); dia- grammatic reasoning(DR) I. -
A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints
A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints by Mehrdad Sabetzadeh A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer Science University of Toronto Copyright c 2003 by Mehrdad Sabetzadeh Abstract A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints Mehrdad Sabetzadeh Master of Science Graduate Department of Computer Science University of Toronto 2003 Eliciting the requirements for a proposed system typically involves different stakeholders with different expertise, responsibilities, and perspectives. This may result in inconsis- tencies between the descriptions provided by stakeholders. Viewpoints-based approaches have been proposed as a way to manage incomplete and inconsistent models gathered from multiple sources. In this thesis, we propose a category-theoretic framework for the analysis of fuzzy viewpoints. Informally, a fuzzy viewpoint is a graph in which the elements of a lattice are used to specify the amount of knowledge available about the details of nodes and edges. By defining an appropriate notion of morphism between fuzzy viewpoints, we construct categories of fuzzy viewpoints and prove that these categories are (finitely) cocomplete. We then show how colimits can be employed to merge the viewpoints and detect the inconsistencies that arise independent of any particular choice of viewpoint semantics. Taking advantage of the same category-theoretic techniques used in defining fuzzy viewpoints, we will also introduce a more general graph-based formalism that may find applications in other contexts. ii To my mother and father with love and gratitude. Acknowledgements First of all, I wish to thank my supervisor Steve Easterbrook for his guidance, support, and patience. -
Journal of Applied Logic
JOURNAL OF APPLIED LOGIC AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Impact Factor p.1 • Abstracting and Indexing p.1 • Editorial Board p.1 • Guide for Authors p.5 ISSN: 1570-8683 DESCRIPTION . This journal welcomes papers in the areas of logic which can be applied in other disciplines as well as application papers in those disciplines, the unifying theme being logics arising from modelling the human agent. For a list of areas covered see the Editorial Board. The editors keep close contact with the various application areas, with The International Federation of Compuational Logic and with the book series Studies in Logic and Practical Reasoning. Benefits to authors We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services. Please see our Guide for Authors for information on article submission. This journal has an Open Archive. All published items, including research articles, have unrestricted access and will remain permanently free to read and download 48 months after publication. All papers in the Archive are subject to Elsevier's user license. If you require any further information or help, please visit our Support Center IMPACT FACTOR . 2016: 0.838 © Clarivate Analytics Journal Citation Reports 2017 ABSTRACTING AND INDEXING . Zentralblatt MATH Scopus EDITORIAL BOARD . Executive Editors Dov M. Gabbay, King's College London, London, UK Sarit Kraus, Bar-llan University, -
THE DATA COMPLEXITY of DESCRIPTION LOGIC ONTOLOGIES in Recent Years, the Use of Ontologies to Access Instance Data Has Become In
THE DATA COMPLEXITY OF DESCRIPTION LOGIC ONTOLOGIES CARSTEN LUTZ AND FRANK WOLTER University of Bremen, Germany e-mail address: [email protected] University of Liverpool e-mail address: [email protected] ABSTRACT. We analyze the data complexity of ontology-mediated querying where the ontologies are formulated in a description logic (DL) of the ALC family and queries are conjunctive queries, positive existential queries, or acyclic conjunctive queries. Our approach is non-uniform in the sense that we aim to understand the complexity of each single ontology instead of for all ontologies for- mulated in a certain language. While doing so, we quantify over the queries and are interested, for example, in the question whether all queries can be evaluated in polynomial time w.r.t. a given on- tology. Our results include a PTIME/CONP-dichotomy for ontologies of depth one in the description logic ALCFI, the same dichotomy for ALC- and ALCI-ontologies of unrestricted depth, and the non-existence of such a dichotomy for ALCF-ontologies. For the latter DL, we additionally show that it is undecidable whether a given ontology admits PTIME query evaluation. We also consider the connection between PTIME query evaluation and rewritability into (monadic) Datalog. 1. INTRODUCTION In recent years, the use of ontologies to access instance data has become increasingly popular [PLC+08, KZ14, BO15]. The general idea is that an ontology provides domain knowledge and an enriched vocabulary for querying, thus serving as an interface between the query and the data, and enabling the derivation of additional facts. In this emerging area, called ontology-mediated querying, it is a central research goal to identify ontology languages for which query evaluation scales to large amounts of instance data. -
Category Theory and Cyber Physical Systems
Category theory and Cyber physical systems Eswaran Subrahmanian (CMU/NIST) Spencer Breiner (NIST) July 22, 2017 CPS workshop Robert Bosch Center for Cyber Physical Systems IISC Bangalore, India Talk outline • Basic elements of CPS • CPS as composition of different systems • Category theory • A formalism for representing different formalisms • A formalism for composing system from from formalisms. • Ologs • A CT based knowledge representation scheme • Examples of database intergration • Cyber and Physical system and composition. • String diagram for Process composition • Basic elements • Antilock brakes - Top level • Antilock brakes – Expanding The modulator • Redesign for traction control + stability control • Incorporating semantics • Conclusion Cyber physical system: A definition Cyber Physical Systems Interconnected Systems & Control Internet of Things Sensing and Acting Physical Environment Things Person Network Physical World 3 Basic elements and composition of CPS Basic elements • Perceptual devices: Identification and Measurements • Actuating devices: activation results in action • Physical devices: transmission, amplification of power, • Logical devices: computational/logical • Humans devices: mental model Multiple Modeling formalisms: logic, state machines, differential equations, stochastic models, etc. Requires composition and compositionality to ensure desired behavior Category theory • Category Theory (CT) is a potential solution. • CT is the mathematical theory of abstract processes and composition • CT could be thought of as the conceptual operating system. Categories & Composition • A category is a universe of resources (objects) �, �, �, … and processes (arrows) �, �, ℎ, … • Every process has input and output resources, indicated �:�→�. • The main property of categorical processes is that they compose: Category theory: relationship to domains Category Theory as a universal Modeling Language (Spivak, 2015*) The Category Theory (CT) view of modeling – two postulates: 1.