Chapter 15: Alcohols, Diols, and Thiols 15.1: Sources of Alcohols (Table 15.1, P

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 15: Alcohols, Diols, and Thiols 15.1: Sources of Alcohols (Table 15.1, P C10H14 127.0 31.2 128.2 125.7 41.7 21.8 12.3 147.6 δ= 2.61 δ= 2.61 (d, J=7.0, 3H) (t, J=7.0, 3H) δ= 2.61 δ= 2.61 (pentet, (sextet, J=7.0, 2H) J=7.0, 1H) δ= 7.4-7.1 (m, 5H) 73 Chapter 15: Alcohols, Diols, and Thiols 15.1: Sources of Alcohols (Table 15.1, p. 616) Hydration of alkenes (Chapter 6) 1. Acid-catalyzed hydration (Chapter 6.6) 2. Oxymercuration (p. 258-9) 3. Hydroboration (Chapter 6.8) Hydrolysis of alkyl halides (Chapter 8.1) nucleophilic substitution Reaction of Grignard or organolithium reagents with ketones, aldehydes, and esters. (Chapter 14.5) Reduction of aldehydes, ketones, esters, and carboxylic acids (Chapters 15.2 - 15.3) Reaction of epoxides with Grignard Reagents (Chapter 15.4) Diols from the dihydroxylation of alkenes (Chapter 15.5) 74 37 15.2: Preparation of Alcohols by Reduction of Aldehydes and Ketones - add the equivalent of H2 across the π-bond of the carbonyl to yield an alcohol H O [H] O aldehyde (R or R´= H) → 1° alcohol C C ketone (R and R´≠ H) → 2° alcohol R H R R' R' Catalytic hydrogenation is not typically used for the reduction of ketones or aldehydes to alcohols. Metal hydride reagents: equivalent to H:– (hydride) sodium borohydride lithium aluminium hydride (NaBH4) (LiAlH4) H H Na+ H B H Li+ H Al H H H B H Al H electronegativity 2.0 2.1 1.5 2.1 75 target disconnection precursors R1 R1 R2 C OH C O + NaBH4 H R2 NaBH4 reduces aldehydes to primary alcohols O H H NaBH O2N 4 O N H 2 OH HOCH2CH3 NaBH4 reduces ketones to secondary alcohols H OH O NaBH4 HOCH2CH3 ketones 2° alcohols NaBH4 does not react with esters or carboxylic acids O HO H NaBH4 H CH CO H3CH2CO 3 2 HOCH2CH3 O O 76 38 Lithium Aluminium Hydride (LiAlH4, LAH) - much more reactive than NaBH4. Incompatible with protic solvents (alcohols, H2O). LiAlH4 (in ether) reduces aldehydes, carboxylic acids, and esters to 1° alcohols and ketones to 2° alcohols. H OH O 1) LiAlH4, ether + 2) H3O ketones 2° alcohols O H H 1) LiAlH4, ether H OH + 2) H3O aldehydes 1° alcohols 77 15.3: Preparation of Alcohols By Reduction of Carboxylic Acids (and Esters) - LiAlH4 (but not NaBH4 or catalytic hydrogenation). O H H O 1) LiAlH , ether 4 OH 1) LiAlH4, ether OCH2CH3 OH + + 2) H3O 2) H3O Esters 1° alcohols Carboxylic acids 15.4: Preparation of Alcohols From Epoxides - the three- membered ring of an epoxide is strained. Epoxides undergo ring- opening reaction with nucleophiles (Grignard reagents, organo- lithium reagents, and cuprates). ether, O then H O+ C C + 3 H H BrMg-CH3 HO CH2CH2 CH3 H H SN2 78 39 target disconnection precursors OH MgBr O + O OH Br Mg(0) MgBr then THF + H3O 15.5: Preparation of Diols - Vicinal diols have hydroxyl groups on adjacent carbons (1,2-diols, vic-diols, glycols) Dihydroxylation: formal addition of HO-OH across the π-bond of an alkene to give a 1,2-diol. This is an overall oxidation. OsO (catalytic) H H 4 OH (H3C)3C-OOH O O Os (H C) COH 3 3 OH O O H H osmate ester intermediate 79 15.6: Reactions of Alcohols: A Review and a Preview Table 15.2, p.623 Conversion to alkyl halides (Chapter 4) 1. Reaction with hydrogen halides (Chapter 4.7) 2. Reaction with thionyl chloride (Chapter 4.12) 3. Reaction with phosphorous trihalides (Chapter 4.12 Acid-catalyzed dehydration to alkenes (Chapter 5.9) Conversion to p-toluenesulfonate esters (Chapter 8.11) Conversion to ethers (Chapter 15.7) Conversion to esters (Chapter 15.8) Oxidation to carbonyl compounds (Chapter 15.9) Cleavage of vicinal diols to ketones and aldehydes (Chapter 15.11) 80 40 15.7: Conversion of Alcohols to Ethers - Symmetrical ethers can be prepared by treating the corresponding alcohol with a strong acid. H2SO4 H3CH2C-OH + HO-CH2CH3 H3CH2C-O-CH2CH3 + H2O Limitations: ether must be symmetrical works best for 1° alcohols 81 15.8: Esterification - Fischer esterification: acid-catalyzed reaction between a carboxylic acid and alcohol to afford an ester. The reverse reaction is the hydrolysis of an ester O H+ O + HOH C + HO-R C R1 OH 2 R1 OR2 Mechanism (Chapters 18 and 19) Dean-Stark Trap 82 41 Ester formation via the reaction of an acid chloride or acid anhydride with an alcohol (nucleophilic acyl substitution) O O + HCl C + HO-R C R1 Cl 2 R1 OR2 acid chloride O O O O + C + C C C HO-R2 R OR R1 O R1 1 2 R1 OH acid anhydride Mechanism (Chapters 19) 83 Esters of Inorganic Acids O O O O O N HO S OH + HO-R HO P OH + HO-R C + HO-R2 + HO-R R1 OH OH O OH carboxylic alcohol nitric sulfuric phosphoric acid acid acid acid O O O O C + N OR + HOH HO S OR + HOH HO P OR + HOH R1 OR2 HOH O O OH esters nitrate sulfate phosphate ester ester ester H ONO 2 N H O N O2NO ONO2 H2N H O N H N N O HO2C C C O P O N N O nitroglycerin O H H O O O H N H O O O O H3CO S OCH3 phosphotyrosine H P O O O O H N N P O O N dimethylsulfate N H N H2N H O O N N O O O HO OSO HO2C C C O P O 3 O H H O HO O O H2N Phosphodiester OH phosphoserine 84 6-sulfogalactosamine of DNA 42 15.9: Oxidation of Alcohols oxidation [O] OH O H reduction [H] H OH [O] O C C R1 R2 R1 R2 2° alcohols ketone H H [O] O [O] O C C C R1 OH R1 H R1 OH 1° alcohols aldehyde carboxylic acids Potassium permanganate (KMnO4) and chromic acid + (Na2Cr2O7, H3O ) oxidize secondary alcohols to ketones, and primary alcohols to carboxylic acids. 85 Oxidation of primary alcohols to aldehydes Pyridinium Dichromate (PDC) 2- Cr O Na2Cr2O7 + HCl + pyridine N 2 5 H 2 Pyridinium Chlorochromate (PCC) - ClCrO CrO3 + 6M HCl + pyridine N 3 H PCC and PDC are soluble in anhydrous organic solvent such as CH2Cl2. The oxidation of primary alcohols with PCC or PDC in anhydrous CH2Cl2 stops at the aldehyde. H2Cr2O7 PCC CO H H O+, CHO 2 3 OH CH2Cl2 acetone Carboxylic Acid 1° alcohol Aldehyde 86 43 15.10: Biological Oxidation of Alcohols (please read) Ethanol metabolism: alcohol aldehyde O O dehydrogenase dehydrogenase C C CH3CH2OH H C H 3 H3C OH ethanol acetaldehyde acetic acid Nicotinamide Adenine Dinucleotide (NAD) H H O O H2N N H2N N O O O O N N O O P O P O O N NH2 N N O O P O P O O N NH2 N OH OH N OH OH O OH HO OH O OH HO OH R reduced form R oxidized form R= H NADH, NAD+ 2- + R= PO3 NADPH, NADP CO2H Vitamin B3, nicotinic acid, niacin N 87 15.11: Oxidative Cleavage of Vicinal Diols Oxidative Cleavage of 1,2-diols to aldehydes and ketones with sodium periodate (NaIO4) or periodic acid (HIO4) R1 R3 HO OH NaIO4 O + O R1 R3 THF, H O R2 R4 R2 R4 2 OH O O I O O periodate ester R1 R3 intermediate R2 R4 CH3 OH NaIO4 O CH3 OH H2O, acetone H H O 88 44 15.12: Thiols Thiols (mercaptans) are sulfur analogues of alcohols. Thiols have a pKa ~ 10 and are stronger acids than alcohols. – – RS-H + HO RS + H-OH (pKa ~10) (pKa ~15.7) RS– and HS – are weakly basic and strong nucleophiles. Thiolates react with 1° and 2° alkyl halides to yield sulfides (SN2). NaH, THF _ Br + CH3CH2-SH CH3CH2-S Na CH3CH2-S-CH2CH2CH2CH3 SN2 _ + + THF HS Na Br-CH2CH2CH2CH3 HS-CH2CH2CH2CH3 SN2 89 Oxidation States of organosulfur compounds Thiols can be oxidized to disulfides [O] 2 R-SH R-S-S-R [H] thiols disulfide O C O 2 H N O C O - + H3N N CO2 2 H -2e , -2H H 2 N O H3N N CO2 S H O +2e-, +2H+ SH S O glutathione H O C N NH 2 N 3 H O CO2 Oxidation of thiols to sulfonic acids [O] [O] O [O] O 2 R SH R S OH R S OH R S OH O Thiol sulfenic acid sulfinic acid sulfonic acid Oxidation of thioethers – O– O [O] [O] +2 R S R' R S R' R S R' 90 O– Thioether Sulfoxide Sulfone 45 Bioactivation and detoxication of benzo[a]pyrene diol epoxide: P450 H2O O2 HO O OH benzo[a]pyrene OH NH2 HO N N O P450 N N DNA HO NH HO OH N N N N glutathione G-S transferase DNA O C O SG 2 H HO N H3N N CO2 H O HO SH OH glutathione 91 15.13 Spectroscoic Analysis of Alcohols and Thiols: Infrared (IR): Characteristic O–H stretching absorption at 3300 to 3600 cm-1 Sharp absorption near 3600 cm-1 except if H-bonded: then broad absorption 3300 to 3400 cm-1 range -1 Strong C–O stretching absorption near 1050 cm H O % T T % O-H C-O 92 cm-1 46 1H NMR: protons attached to the carbon bearing the hydroxyl group are deshielded by the electron-withdrawing nature of the oxygen, δ 3.3 to 4.7 H3C H H δ= 0.9, H3C C C C OH d, 6H H H H δ= 1.5, q, 2H δ= 3.65, δ= 1.7, t, 2H δ= 2.25, m, 1H br s, 1H 61.2 22.6 41.7 24.7 CDCl3 O-H C-O 93 Usually spin-spin coupling is not observed between the O–H proton and neighboring protons on carbon due to exchange reaction H A C O H C O H + H A H H The chemical shift of the -OH proton occurs over a large range (2.0 - 5.5 ppm).
Recommended publications
  • 3-Monochloropropane-1,2-Diol Esters and Glycidyl Esters
    www.nature.com/scientificreports OPEN Monitoring of heat‑induced carcinogenic compounds (3‑monochloropropane‑1,2‑diol esters and glycidyl esters) in fries Yu Hua Wong1, Kok Ming Goh1,2, Kar Lin Nyam2, Ling Zhi Cheong3, Yong Wang4, Imededdine Arbi Nehdi5,6, Lamjed Mansour7 & Chin Ping Tan1* 3‑Monochloropropane‑1,2‑diol (3‑MCPD) esters and glycidyl esters (GE) are heat‑induced contaminants which form during oil refning process, particularly at the high temperature deodorization stage. It is worth to investigate the content of 3‑MCPD and GE in fries which also involved high temperature. The content of 3‑MCPD esters and GE were monitored in fries. The factors that been chosen were temperature and duration of frying, and diferent concentration of salt (NaCl). The results in our study showed that the efect was in the order of concentration of sodium chloride < frying duration < frying temperature. The content of 3‑MCPD esters was signifcantly increased whereas GE was signifcantly decreased, when prolong the frying duration. A high temperature results in a high 3‑MCPD ester level but a low GE level in fries. The present of salt had contributed signifcant infuence to the generation of 3‑MCPD. The soaking of potato chips in salt showed no signifcant efect on the level of GE during the frying. The oil oxidation tests showed that all the fries were below the safety limit. Hence, the frying cycle, temperature and the added salt to carbohydrate‑based food during frying should be monitored. Deep-fat frying is commonly being used to process food. During the process, heat transfer between the fried food and oil is occurs.
    [Show full text]
  • 8.6 Acidity of Alcohols and Thiols 355
    08_BRCLoudon_pgs5-1.qxd 12/8/08 11:05 AM Page 355 8.6 ACIDITY OF ALCOHOLS AND THIOLS 355 ural barrier to the passage of ions. However, the hydrocarbon surface of nonactin allows it to enter readily into, and pass through, membranes. Because nonactin binds and thus transports ions, the ion balance crucial to proper cell function is upset, and the cell dies. Ion Channels Ion channels, or “ion gates,” provide passageways for ions into and out of cells. (Recall that ions are not soluble in membrane phospholipids.) The flow of ions is essen- tial for the transmission of nerve impulses and for other biological processes. A typical chan- nel is a large protein molecule imbedded in a cell membrane. Through various mechanisms, ion channels can be opened or closed to regulate the concentration of ions in the interior of the cell. Ions do not diffuse passively through an open channel; rather, an open channel contains regions that bind a specific ion. Such an ion is bound specifically within the channel at one side of the membrane and is somehow expelled from the channel on the other side. Remark- ably, the structures of the ion-binding regions of these channels have much in common with the structures of ionophores such as nonactin. The first X-ray crystal structure of a potassium- ion channel was determined in 1998 by a team of scientists at Rockefeller University led by Prof. Roderick MacKinnon (b. 1956), who shared the 2003 Nobel Prize in Chemistry for this work. The interior of the channel contains binding sites for two potassium ions; these sites are oxygen-rich, much like the interior of nonactin.
    [Show full text]
  • Than Was the Monoleucyl Ester of Cis-Cyclopentane-1,2-Diol
    SOME OBSERVATIONS ON THE MECHANISM OF THE ACYLATION PROCESS IN PROTEIN SYNTHESIS* BY BEVERLY E. GRIFFIN AND C. B. REESE UNIVERSITY CHEMICAL LABORATORY, CAMBRIDGE, ENGLAND Communicated by Lord Todd, January 2, 1964 During recent years much attention has been given to the mechanism of synthesis of proteins in biological systems.' Although the process is by no means fully understood, some of the steps involved appear to be well established.2-4 Before amino acids can be incorporated into polypeptide chains they must first be "activated." The "activation" process involves ribonucleic acids of comparatively low molecular weight, known as "transfer" or "soluble" ribonucleic acids (sRNA), adenosine-5' triphosphate (ATP) as an energy source, and a specific enzyme for each amino acid. In the first step of the "activation" process, the amino acid reacts with ATP to form a mixed anhydride with adenosine-5' phosphate (AMP) releasing inorganic pyrophosphate; this mixed anhydride then acylates a specific sRNA on its terminal nucleoside (adenosine) residue to yield a 2' (or 3')-aminoacyl ester-the "activated" amino-acid. These processes are reversible. ATP + amino acid aminoacyl-AMP + pyrophosphate (1) sRNA + aminoacyl-AMP aminoacyl-sRNA + AMP (2) Beyond this point our knowledge of the process of polypeptide synthesis is less certain. The "activated" amino acids are believed to be transferred to the ribo- somes-the site of assembly of polypeptide chains-and then the amino acids become linked together in a genetically controlled order to synthesize a specific protein.5 Although there is as yet no definite evidence regarding this final step, it is frequently assumed that it involves a simple acylation as indicated in step (3).
    [Show full text]
  • Carboligation Using the Aldol Reaction
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1730 Carboligation using the aldol reaction A comparison of stereoselectivity and methods DERAR AL-SMADI ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0472-4 UPPSALA urn:nbn:se:uu:diva-362866 2018 Dissertation presented at Uppsala University to be publicly examined in BMC C2:301, Husargatan 3, Uppsala, Friday, 30 November 2018 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Ulf Nilsson (Lund University). Abstract Al-Smadi, D. 2018. Carboligation using the aldol reaction. A comparison of stereoselectivity and methods. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1730. 50 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0472-4. The research summarized in this thesis focuses on synthesizing aldehyde and aldol compounds as substrates and products for the enzyme D-fructose-6-aldolase (FSA). Aldolases are important enzymes for the formation of carbon-carbon bonds in nature. In biological systems, aldol reactions, both cleavage and formation play central roles in sugar metabolism. Aldolases exhibit high degrees of stereoselectivity and can steer the product configurations to a given enantiomeric and diastereomeric form. To become truly useful synthetic tools, the substrate scope of these enzymes needs to become broadened. In the first project, phenylacetaldehyde derivatives were synthesized for the use as test substrates for E. coli FSA. Different methods were discussed to prepare phenylacetaldehyde derivatives, the addition of a one carbon unit to benzaldehyde derivatives using a homologation reaction was successful and was proven efficient and non-sensitive to the moisture.
    [Show full text]
  • THIOL OXIDATION a Slippery Slope the Oxidation of Thiols — Molecules RSH Oxidation May Proceed Too Predominates
    RESEARCH HIGHLIGHTS Nature Reviews Chemistry | Published online 25 Jan 2017; doi:10.1038/s41570-016-0013 THIOL OXIDATION A slippery slope The oxidation of thiols — molecules RSH oxidation may proceed too predominates. Here, the maximum of the form RSH — can afford quickly for intermediates like RSOH rate constants indicate the order − − − These are many products. From least to most to be spotted and may also afford of reactivity: RSO > RS >> RSO2 . common oxidized, these include disulfides intractable mixtures. Addressing When the reactions are carried out (RSSR), as well as sulfenic (RSOH), the first problem, Chauvin and Pratt in methanol-d , the obtained kinetic reactions, 1 sulfinic (RSO2H) and sulfonic slowed the reactions down by using isotope effect values (kH/kD) are all but have (RSO3H) acids. Such chemistry “very sterically bulky thiols, whose in the range 1.1–1.2, indicating that historically is pervasive in nature, in which corresponding sulfenic acids were no acidic proton is transferred in the been very disulfide bonds between cysteine known to be isolable but were yet rate-determining step. Rather, the residues stabilize protein structures, to be thoroughly explored in terms oxidations involve a specific base- difficult to and where thiols and thiolates often of reactivity”. The second problem catalysed mechanism wherein an study undergo oxidation by H2O2 or O2 in was tackled by modifying the model acid–base equilibrium precedes the order to protect important biological system, 9-mercaptotriptycene, by rate-determining nucleophilic attack − − − structures from damage. Among including a fluorine substituent to of RS , RSO or RSO2 on H2O2. the oxidation products, sulfenic serve as a spectroscopic handle.
    [Show full text]
  • Aldehydes Can React with Alcohols to Form Hemiacetals
    340 14 . Nucleophilic substitution at C=O with loss of carbonyl oxygen You have, in fact, already met some reactions in which the carbonyl oxygen atom can be lost, but you probably didn’t notice at the time. The equilibrium between an aldehyde or ketone and its hydrate (p. 000) is one such reaction. O HO OH H2O + R1 R2 R1 R2 When the hydrate reverts to starting materials, either of its two oxygen atoms must leave: one OPh came from the water and one from the carbonyl group, so 50% of the time the oxygen atom that belonged to the carbonyl group will be lost. Usually, this is of no consequence, but it can be useful. O For example, in 1968 some chemists studying the reactions that take place inside mass spectrometers needed to label the carbonyl oxygen atom of this ketone with the isotope 18 O. 16 18 By stirring the ‘normal’ O compound with a large excess of isotopically labelled water, H 2 O, for a few hours in the presence of a drop of acid they were able to make the required labelled com- í In Chapter 13 we saw this way of pound. Without the acid catalyst, the exchange is very slow. Acid catalysis speeds the reaction up by making a reaction go faster by raising making the carbonyl group more electrophilic so that equilibrium is reached more quickly. The the energy of the starting material. We 18 also saw that the position of an equilibrium is controlled by mass action— O is in large excess.
    [Show full text]
  • 3 Alkenes from 1,2-Diols
    REVISTA BOLIVIANA DE QUÍMICA (Rev.Bol.Quim.) Vol. 32, No.5, pp. 121-125, Nov./Dic. 2015 Bolivian Journal of Chemistry 32(5) 121-125, Nov./Dec. 2015 Received 12 14 2015 Accepted 12 23 2015 Published 12 30 2015 Bravo et Vila . STEREOSPECIFIC SYNTHESIS OF ALKENES FROM 1,2-DIOLS; MECHANISTIC VIEWS; THE ORGANIC CHEMISTRY NOTEBOOK SERIES, A DIDACTICAL APPROACH, Nº 8 José A. Bravo 1,*, José L. Vila 2 1Department of Chemistry, Laboratorio de Fitoquímica, Instituto de Investigaciones en Productos Naturales IIPN, Universidad Mayor de San Andrés UMSA, P.O. Box 303, Calle Andrés Bello s/n, Ciudad Universitaria Cota Cota, Phone 59122792238, La Paz, Bolivia, [email protected] 2Department of Chemistry, Laboratorio de Síntesis y Hemisíntesis, Instituto de Investigaciones en Productos Naturales IIPN, Universidad Mayor de San Andrés UMSA, P.O. Box 303, Calle Andrés Bello s/n, Ciudad Universitaria Cota Cota, Phone 59122795878, La Paz, Bolivia, [email protected] Keywords: Organic Chemistry, Alkenes, 1,2-diols, Stereospecific synthesis, Mechanisms of Reactions, W. Carruthers. ABSTRACT This is the eighth chapter in the series: “The Organic Chemistry Notebook Series, a Didactical Approach”. The aim of this series of studies is to help students to have a graphical view of organic synthesis reactions of diverse nature. Here we discuss, from a mechanistic stand point, some methods for the stereospecific synthesis of alkenes from 1,2-diols. One of the best ones utilizes as precursors, the cyclic thionocarbonates obtained from the diol with thiophosgene. We describe by mechanisms, the use of 1,3-dimethyl-2-phenyl-1,3,2-diazophospholidine as an alternative for the decomposition of thionocarbonates into alkenes.
    [Show full text]
  • Thiolated Polymers: Stability of Thiol Moieties Under Different Storage Conditions
    Scientia Pharmaceutica (Sci. Pharm.) 70, 331-339 (2002) 0 Osterreichische Apotheker-Verlagsgesellschaftm.b.H., Wien, Printed in Austria Thiolated polymers: Stability of thiol moieties under different storage conditions A. ~ernko~-schnijrchi*,M.D. ~ornof'*,C.E. ~ast'and N. ~angoth' 'institute of Pharmaceutical Technology and Biopharmaceutics, Center of Pharmacy, University of Vienna, Althanstr. 14, 1090 Vienna, Austria 2~romaPharma GmbH, lndustriezeile 6, 2100 Leobendorf, Austria Abstract: The purpose of this study was to evaluate the stability of thiolated polymers - so-called thiomers. A polycarbophil-cysteine conjugate and a chitosan-thioglycolic acid conjugate were chosen as representative anionic and cationic thiomer. The thiol group bearing compounds L-cysteine and thioglycolic acid were introduced to polycarbophil and chitosan, respectively with a coupling reaction mediated by a carbodiimide. The resulting thiolated polymers were freeze-dried and the amount of thiol groups on the thiomer was determined spectrophotometrically. Each kind of polymer was directly used or compressed into 1 mg matrix-tablets. Polymers were stored for a period of six months at four different storage conditions, namely at -20°C (56% relative humidity; RH), 4°C (53% RH), at 20°C (70% RH), and at 22°C (25% RH). Samples were taken after 6 months to determine the formation of disulfide bonds and the remaining thiol groups on the polymer. When the polycarbophil-cysteine and chitosan-thioglycolic acid conjugate were stored as powder a decrease of free thiol groups was observed only after storage at 20°C and 70% RH. Both polymers were found to be stable under all storage conditions when compressed into matrix tablets.
    [Show full text]
  • In This Handout, All of Our Functional Groups Are Presented As Condensed Line Formulas, 2D and 3D Formulas and with Nomenclature Prefixes and Suffixes (If Present)
    In this handout, all of our functional groups are presented as condensed line formulas, 2D and 3D formulas and with nomenclature prefixes and suffixes (if present). Organic names are built on a foundation of alkanes, alkenes and alkynes. Those examples are presented first and you need to know those rules. The strategies can be found in Chapter 4 of our textbook (alkanes: pages 93-98, cycloalkanes 102-104, alkenes: pages 104-110, alkynes: pages 112-113 and combinations of all of them 113-115). After introducing examples of alkanes, alkenes, alkynes and combinations of them, the functional groups are presented in order of priority. A few nomenclature examples are provided for each of the functional groups. Examples of the various functional groups are presented on pages 115-135 in the textbook. Two overview pages are on pages 136-137. Some functional groups have a suffix name when they are the highest priority functional group and a prefix name when they are not the highest priority group, and these are added to the skeletal names with identifying numbers and stereochemistry terms (E and Z for alkenes, R and S for chiral centers and cis and trans for rings). Several low priority functional groups only have a prefix name. A few additional special patterns are shown on pages 98-102. The only way to learn this topic is practice (over and over). The best practice approach is to actually write out the names (on an extra piece of paper or on a white board, and then do it again). The same functional groups are used throughout the entire course.
    [Show full text]
  • Naming Ethers and Thiols (Naming and Properties)
    Ethers • Contain an ─O─ between two carbon groups. • That are simple are named by listing the alkyl names in alphabetical order followed by ether Cyclic ethers (heterocyclic compounds) are often given common names. DO NOT memorize! IUPAC Names for Ethers The shorter alkyl group and the oxygen are named as an alkoxy group attached to the longer hydrocarbon. methoxy propane CH3—O—CH2—CH2—CH3 1 2 3 Numbering the longer alkane gives: 1-methoxypropane Treat all R-O- groups that you find in a molecule as alkoxy groups or branches (substituents), and follow the previous rules we’ve covered for all other families. Properties of Ethers • Slightly polar. • Cannot be H-bond donors. • Are H-bond acceptors (soluble in water up to 4 C’s). • Simple ethers are highly flammable (many form explosive peroxides). Anesthetics • Inhibit pain signals to the brain. • Such as ethyl ether CH3─CH2─O─CH2─CH3 were used for over a century, but caused nausea and were flammable. • Developed by 1960s were nonflammable. Cl F F Cl F H │ │ │ │ │ │ H─C─C─O─C─H H─C─C─O─C─H │ │ │ │ │ │ F F F H F H Ethane(enflurane) Penthrane Methyl tert-butyl ether (MTBE) • Is one of the most produced organic chemicals. • Is a fuel additive used to improve gasoline combustion. • Use is questioned since the discovery that MTBE has contaminated water supplies. Reyes Free to copy for educational purposes Thiols Thiols or mercaptans, are sulfur analogs of alcohols. (The –SH group is called the mercapto, or sulfhydryl group.) The IUPAC nomenclature system adds the ending –thiol to the name of the alkane, but without dropping the final –e.
    [Show full text]
  • Interplay of Hydrophobic Thiol and Polar Epoxy Silicate Groups on Microstructural Development in Low-Alcohol, Crosslinked Sol–Gel Coatings for Corrosion Prevention
    coatings Article Interplay of Hydrophobic Thiol and Polar Epoxy Silicate Groups on Microstructural Development in Low-Alcohol, Crosslinked Sol–Gel Coatings for Corrosion Prevention Shegufa Shetranjiwalla * , Andrew J. Vreugdenhil and Oliver Strong Department of Chemistry, Inorganic Materials Research Laboratory, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada; [email protected] (A.J.V.); [email protected] (O.S.) * Correspondence: [email protected]; Tel.: +1-705-748-1011 (ext. 7319) Abstract: We have demonstrated that our patented, crosslinked, sol–gel, epoxy–thiol silicates made from the combination of (a) tetraethoxysilane (TEOS, T), 3-glycidoxypropyltrimethoxysilane (GPTMS, G), and the (b) sulfur-containing 3-mercaptopropyltrimethoxysilane (MPTMS, S) with TEOS in a 1:1 stoichiometric ratio form the 1:1 TGST (crosslinked epoxy and thiol silicates) coating, which can be successfully utilized for the corrosion protection of low-carbon steel. Alcohols that are a by-product of sol–gel reactions influence the network formation, crosslinking density, and formulation stability, are volatile organic contents, and are regulated in the coatings industry. To improve environmental sustainability, a series of low-alcohol (LA) formulations with TG:ST ratios of 3:1 to 1:3 was prepared to investigate the microstructural development and crosslinking reactions emerging from the interplay of the hydrophobic thiol and polar epoxy silicates induced by the low-alcohol environment. The Citation: Shetranjiwalla, S.; impact on crosslinking density was characterized by Fourier Transform Infrared (FTIR), Raman, XPS, Vreugdenhil, A.J.; Strong, O. Interplay viscosity, and pot-life measurements. Low-alcohol TGST (LA(TGST)) formulations were compared, of Hydrophobic Thiol and Polar Epoxy Silicate Groups on using the example of 1:1 TGST, to corresponding TGST formulations where alcohols were retained.
    [Show full text]
  • Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols Focus Review †,‡ †,‡ ‡,§ ‡,§ ∥ Ari Zeida, Madia Trujillo, Gerardo Ferrer-Sueta, Ana Denicola, Darío A
    Review Cite This: Chem. Rev. 2019, 119, 10829−10855 pubs.acs.org/CR Catalysis of Peroxide Reduction by Fast Reacting Protein Thiols Focus Review †,‡ †,‡ ‡,§ ‡,§ ∥ Ari Zeida, Madia Trujillo, Gerardo Ferrer-Sueta, Ana Denicola, Darío A. Estrin, and Rafael Radi*,†,‡ † ‡ § Departamento de Bioquímica, Centro de Investigaciones Biomedicaś (CEINBIO), Facultad de Medicina, and Laboratorio de Fisicoquímica Biologica,́ Facultad de Ciencias, Universidad de la Republica,́ 11800 Montevideo, Uruguay ∥ Departamento de Química Inorganica,́ Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2160 Buenos Aires, Argentina ABSTRACT: Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs.
    [Show full text]