Nemertea Background

Total Page:16

File Type:pdf, Size:1020Kb

Nemertea Background 11/5/2012 Nemertea Origin: Greek sea-nymph Nemertes, daughter of Nereus & Doris Nereis of “wise” “unerring" counsel, wisest of 50 sisters Old names: Nemertinea Nemertini Nemertinia Rhynchocoela Common names: ribbon worms proboscis worms Background # Species described: ~1500 Lengths: Steve Trewhella Tubulanus annulatus < 1 mm to 54 meters longest invertebrates Colors: Basiodiscus mexicanus yellow, orange, red & green coloration UNA.edu ODFW 1 11/5/2012 Nemertea Origin: Greek sea-nymph Nemertes, daughter of Nereus & Doris Nereis of “wise” “unerring" counsel, wisest of 50 sisters Old names: Nemertinea NemertiniNemertea Nemertinia Rhynchocoela Nemertea Background Nemertean Feature I. Proboscis hollow organ everting from rhyncochoel to capture prey proboscis capturing prey Ronald L. Shimek Ronald L. Shimek 2 11/5/2012 NemerteanBackground Feature II. Stylets barb at end of proboscis to pierce/puncture prey 50 µm 50 µm 0 5 10 µm Stricker & Cloney 1982 Background III. Venom William Kem early 1970s isolated anabaseine Paranemertes peregrina Nicotinoid alkaloid similar to compounds from tobacco Suntory Whisky similar to venom from 2 ant species (Aphaenogaster spp.) stimulate vertebrate neuromuscular nicotinic receptors cholinergenic transmission synthetic analog DMXBA (GTS-21) memory enhancing effects treating Alzheimer's disease 3 11/5/2012 Nemertean Feature Similarities to Platyhelminthes IV. Protonephridia Differences to Platyhelminthes V. Advanced Circulatory System VI. Complete Gut VII. Rhynochocoelom & Blood Vessels Coelomic Background Taxonomy anoplan Class: Anopla = unarmed (no stylets) Order: Paleonemertea ~100 spp. Order: Heteronemertea ~400 spp. Class: Enopla = armed (stylets) enoplan Order: Bdellonemertea ~ 7 spp. Order: Hoplonemertea ~650 spp. 4 11/5/2012 Ecological Importance marine Ecology:--intertidal-rocks, sand, mudflats --benthic- Antarctica --pelagic fresh water Norbert Wu freshwater 22 spp. Parborlasia corrugatus semi-terrestrial UNA.edu Pantinonemertes sp terrestrial Ng & Sivasothi Geonemertes sp J. Bohne Ecological Importance carnivores: worms, small crustaceans & clams scavengers: feeding on dead organisms commensals: in bivalves/tunicates Malacobdella sp 5 11/5/2012 Ecological Importance ectosymbionts: decapod crustaceans caviar 1 mm Ovicides sp. (Carcinonemertidae): Pacific hydrothermal vent crab Austinograea alayseae Shields & Segonzac 2007 Ecological Importance Host rafting crab, Plagusia immaculata Lamarck 1818 Bay of Panama Torchin 2007 Smithsonian Tropical Research Institute 6 11/5/2012 From host Callinectes arcuatus (Golfo de Nicoya) From Callinectes arcuatus (Golfo de Nicoya) Costa Rica Carcinonemertes Sheath Eye spots worm egg string Costa Rica Carcinonemertes Stylet 7 11/5/2012 Ecological Importance Host Crabs & Decapods Paralithodes camtschatica (red king crab) C. regicides Chionoectes bairdi (tanner crab) C. regicides Hemigrapsus oregonensis C. epialti Portunus pelagicus C. mitsukurii Callinectes sapidus C. carcinophilia Carcinus maenas C. carcinophilia Loxorynchus grandis Carcinonemertes sp. undescribed Ovalipes trimaculatus Carcinonemertes sp. undescribed Randallia ornatus Carcinonemertes sp. undescribed Chlorodiella nigra & C. xishaensis Ovicides julieace Libinia spinosa C. divae Callinectes danae & C. ornatus C. carcinophila imminuta Hepatus pudibundus C. caissarum Menippe nodifrons C. sebastianensis Austinograea alayseae Ovicides sp. Homarus americanus (American lobster) Pseudocarcinonemertes homari Panilurus cygnus (Australian spiny lobster) C. australiensis Panilurus interruptus (California spiny lobster) C. wickhamni Ecological Importance Host Crabs from Panama Pacific* Bocas del Toro** Euphylax Cataleptodius floridanus Iliacantha Macrocoeloma trispinosum Paraxanthus Mithraculus cinctimanus Portunus Mithraculus forceps Randallia Mithrax caribbaeus Mithrax spinosissimus Panopeus lacustris Pilumnus pannosus *Norenburg 2007 Smithsonian Institution **Santos 2004 Smithsonian Institution 8.
Recommended publications
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Nemertean Taxonomy—Implementing Changes in the Higher Ranks, Dismissing Anopla and Enopla
    Received: 27 August 2018 | Accepted: 28 August 2018 DOI: 10.1111/zsc.12317 LETTER TO THE EDITOR Nemertean taxonomy—Implementing changes in the higher ranks, dismissing Anopla and Enopla Dear Editor, José E. Alfaya3 Nemertean classification has closely followed Stiasny‐ Fernando Ángel Fernández‐Álvarez4 Wijnhoff’s scheme (1936) that was based on Schultze’s Håkan S Andersson5 (1851) division of the taxon into the two classes Anopla and Sonia C. S. Andrade6 Enopla. In August 2018, the 9th International Conference of Thomas Bartolomaeus7 Nemertean Biology took place in the Wadden Sea Station of Patrick Beckers7 the Alfred Wegener Institute in List auf Sylt, Germany. At Gregorio Bigatti3 this meeting, the community reached consensus to revise ne- Irina Cherneva8 mertean taxonomy at the class level, based on the compiled Alexey Chernyshev9,10 evidence from studies on nemertean systematics published Brian M. Chung11 in the last 15 years (Andrade et al., 2014, 2012 ; Thollesson Jörn von Döhren7 & Norenburg, 2003). Previous classifications (e.g., Stiasny‐ Gonzalo Giribet12 Wijnhoff, 1936) are not based on phylogenetic grounds, and Jaime Gonzalez‐Cueto13 the use of these names is therefore nowadays not wholly in- Alfonso Herrera‐Bachiller14 formative. With the purpose of facilitating the practical use Terra Hiebert15 of the nemertean taxonomy and also making nemertean tax- Natsumi Hookabe16 onomy reflect a wealth of more recent information, we con- Juan Junoy14 clude that the ranks Anopla and Enopla should be eliminated Hiroshi Kajihara16 with the following argumentation: “Enopla” has for long Daria Krämer7 held no more information than the name “Hoplonemertea”. Sebastian Kvist17,18 “Anopla” is paraphyletic and the name usually corresponds Timur Yu Magarlamov9 to the following traits: (a) not bearing stylet; and (b) mouth Svetlana Maslakova15 and proboscis having separate openings.
    [Show full text]
  • Phylum Nemertea)
    THE BIOLOGY AND SYSTEMATICS OF A NEW SPECIES OF RIBBON WORM, GENUS TUBULANUS (PHYLUM NEMERTEA) By Rebecca Kirk Ritger Submitted to the Faculty of the College of Arts and Sciences of American University in Partial Fulfillment of the Requirements for the Degree of Master of Science In Biology Chair: Dr. Qiristopher'Tudge m Dr.David C r. Jon L. Norenburg Dean of the College of Arts and Sciences JuK4£ __________ Date 2004 American University Washington, D.C. 20016 AMERICAN UNIVERSITY LIBRARY 1 1 0 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 1421360 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 1421360 Copyright 2004 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. THE BIOLOGY AND SYSTEMATICS OF A NEW SPECIES OF RIBBON WORM, GENUS TUBULANUS (PHYLUM NEMERTEA) By Rebecca Kirk Ritger ABSTRACT Most nemerteans are studied from poorly preserved museum specimens.
    [Show full text]
  • Comparative Neuroanatomy of Mollusks and Nemerteans in the Context of Deep Metazoan Phylogeny
    Comparative Neuroanatomy of Mollusks and Nemerteans in the Context of Deep Metazoan Phylogeny Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologin Simone Faller aus Frankfurt am Main Berichter: Privatdozent Dr. Rudolf Loesel Universitätsprofessor Dr. Peter Bräunig Tag der mündlichen Prüfung: 09. März 2012 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Contents 1 General Introduction 1 Deep Metazoan Phylogeny 1 Neurophylogeny 2 Mollusca 5 Nemertea 6 Aim of the thesis 7 2 Neuroanatomy of Minor Mollusca 9 Introduction 9 Material and Methods 10 Results 12 Caudofoveata 12 Scutopus ventrolineatus 12 Falcidens crossotus 16 Solenogastres 16 Dorymenia sarsii 16 Polyplacophora 20 Lepidochitona cinerea 20 Acanthochitona crinita 20 Scaphopoda 22 Antalis entalis 22 Entalina quinquangularis 24 Discussion 25 Structure of the brain and nerve cords 25 Caudofoveata 25 Solenogastres 26 Polyplacophora 27 Scaphopoda 27 i CONTENTS Evolutionary considerations 28 Relationship among non-conchiferan molluscan taxa 28 Position of the Scaphopoda within Conchifera 29 Position of Mollusca within Protostomia 30 3 Neuroanatomy of Nemertea 33 Introduction 33 Material and Methods 34 Results 35 Brain 35 Cerebral organ 38 Nerve cords and peripheral nervous system 38 Discussion 38 Peripheral nervous system 40 Central nervous system 40 In search for the urbilaterian brain 42 4 General Discussion 45 Evolution of higher brain centers 46 Neuroanatomical glossary and data matrix – Essential steps toward a cladistic analysis of neuroanatomical data 49 5 Summary 53 6 Zusammenfassung 57 7 References 61 Danksagung 75 Lebenslauf 79 ii iii 1 General Introduction Deep Metazoan Phylogeny The concept of phylogeny follows directly from the theory of evolution as published by Charles Darwin in The origin of species (1859).
    [Show full text]
  • A Phylum-Wide Survey Reveals Multiple Independent Gains of Head Regeneration Ability in Nemertea
    bioRxiv preprint doi: https://doi.org/10.1101/439497; this version posted October 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A phylum-wide survey reveals multiple independent gains of head regeneration ability in Nemertea Eduardo E. Zattara1,2,5, Fernando A. Fernández-Álvarez3, Terra C. Hiebert4, Alexandra E. Bely2 and Jon L. Norenburg1 1 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA 2 Department of Biology, University of Maryland, College Park, MD, USA 3 Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain 4 Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA 5 INIBIOMA, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Bariloche, RN, Argentina Corresponding author: E.E. Zattara, [email protected] Abstract Animals vary widely in their ability to regenerate, suggesting that regenerative abilities have a rich evolutionary history. However, our understanding of this history remains limited because regeneration ability has only been evaluated in a tiny fraction of species. Available comparative regeneration studies have identified losses of regenerative ability, yet clear documentation of gains is lacking. We surveyed regenerative ability in 34 species spanning the phylum Nemertea, assessing the ability to regenerate heads and tails either through our own experiments or from literature reports. Our sampling included representatives of the 10 most diverse families and all three orders comprising this phylum.
    [Show full text]
  • Tubulanus Polymorphus Class: Anopla Order: Paleonemertea an Orange Ribbon Worm Family: Tubulanidae
    Phylum: Nemertea Tubulanus polymorphus Class: Anopla Order: Paleonemertea An orange ribbon worm Family: Tubulanidae “Such a worm when seen crawling in long and Palaeonemertea) but with lateral graceful curves over the bottom in clear water transverse grooves (Fig. 2a, b, c). earns for itself a place among the most Head cannot completely withdraw into body (Kozloff 1974). beautiful of all marine invertebrates” (Coe Posterior: No caudal cirrus. 1905) Eyes/Eyespots: None. Mouth: A long slit-like opening (Fig. 2c) Taxonomy: Tubulanus polymorphous was a posterior to the brain, separate from name assigned in unpublished work by proboscis pore (Fig. 2c) and positioned just Renier (1804). The genera Tubulanus and behind transverse furrows (Coe 1901). Carinella were described by Renier (1804) Proboscis: Eversible (phylum Nemertea) and Johnston (1833), respectively, and were and, when not everted, coiled inside synonymized by Bürger in 1904 (Gibson rhynchocoel (cavity). The proboscis in 1995). Melville (1986) and the International Tubulanus polymorphus is short with the Code of Zoological Nomenclature (ICZN) rhynchocoel reaching one third total worm determined that the family name Tubulanidae body length. Proboscis bears no stylets and take precedence over its senior subjective the proboscis pore almost terminal (Fig. 2c). synonym Carinellidae (Ritger and Norenburg Tube/Burrow: As is true for most Tubulanus 2006) and the name Tubulanus polymorphus species, T. polymorphus individuals live in was deemed published and available (ICZN thin parchment tubes that are attached to 1988). Previous names for T. polymorphus rocks or shells and made of hardened include C. polymorpha, C. rubra and C. mucous secretions (Coe 1943). speciosa. Possible Misidentifications Description The genus Tubulanus is slender, soft, Size: A large nemertean, up to three meters extensible without ocelli or cephalic grooves when extended.
    [Show full text]
  • A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments Haydn Rubelmann III University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 11-12-2014 A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments Haydn Rubelmann III University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Marine Biology Commons, and the Microbiology Commons Scholar Commons Citation Rubelmann, Haydn III, "A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments" (2014). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5432 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments by Haydn Rubelmann III A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Cell Biology, Microbiology and Molecular Biology College of Arts and Sciences University of South Florida Major Professor: James R. Garey, Ph.D. Randy Larsen, Ph.D. Kathleen Scott, Ph.D. David Merkler, Ph.D. Date of Approval: November 12, 2014 Keywords: environmental microbiology, extremophiles, shallow-water hydrothermal vents, anoxic marine pits Copyright © 2014, Haydn Rubelmann III DEDICATION I would like to dedicate this dissertation to three of my personal champions: my grandfather, Haydn Rubelmann Sr. (1929 - 2004), who encouraged me to pursue an academic career; my stepfather, Dale Jones (1954 - 2008), who was the best father anyone could ever hope for, and my husband, Eduardo Godoy, who suffered through not only 8 years of my doctoral tenure, but a grueling civil liberty injustice that almost wedged the Caribbean Sea between us.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • R E S E a R C H / M a N a G E M E N T Aquatic and Terrestrial Flatworm (Platyhelminthes, Turbellaria) and Ribbon Worm (Nemertea)
    RESEARCH/MANAGEMENT FINDINGSFINDINGS “Put a piece of raw meat into a small stream or spring and after a few hours you may find it covered with hundreds of black worms... When not attracted into the open by food, they live inconspicuously under stones and on vegetation.” – BUCHSBAUM, et al. 1987 Aquatic and Terrestrial Flatworm (Platyhelminthes, Turbellaria) and Ribbon Worm (Nemertea) Records from Wisconsin Dreux J. Watermolen D WATERMOLEN Bureau of Integrated Science Services INTRODUCTION The phylum Platyhelminthes encompasses three distinct Nemerteans resemble turbellarians and possess many groups of flatworms: the entirely parasitic tapeworms flatworm features1. About 900 (mostly marine) species (Cestoidea) and flukes (Trematoda) and the free-living and comprise this phylum, which is represented in North commensal turbellarians (Turbellaria). Aquatic turbellari- American freshwaters by three species of benthic, preda- ans occur commonly in freshwater habitats, often in tory worms measuring 10-40 mm in length (Kolasa 2001). exceedingly large numbers and rather high densities. Their These ribbon worms occur in both lakes and streams. ecology and systematics, however, have been less studied Although flatworms show up commonly in invertebrate than those of many other common aquatic invertebrates samples, few biologists have studied the Wisconsin fauna. (Kolasa 2001). Terrestrial turbellarians inhabit soil and Published records for turbellarians and ribbon worms in leaf litter and can be found resting under stones, logs, and the state remain limited, with most being recorded under refuse. Like their freshwater relatives, terrestrial species generic rubric such as “flatworms,” “planarians,” or “other suffer from a lack of scientific attention. worms.” Surprisingly few Wisconsin specimens can be Most texts divide turbellarians into microturbellarians found in museum collections and a specialist has yet to (those generally < 1 mm in length) and macroturbellari- examine those that are available.
    [Show full text]
  • Phylum Nemertea Or Rhynchocoela (Minor Phyla)
    Animal Diversity: (Non-Chordates) Phylum Nemertea or Rhynchocoela (Minor Phyla) Hardeep Kaur Assistant Professor, Department of Zoology, Ramjas College, University of Delhi Delhi – 110 007 CONTENTs: ¾ Introduction ¾ External Structure ¾ Body Wall and Locomotion ¾ Nutrition and Digestive System ¾ Circulatory System ¾ Excretory System ¾ Nervous System and Sense Organs ¾ Regeneration ¾ Reproductive System ¾ Embryogeny ¾ Classification of Nemerteans ¾ General Characters of Nemerteans ¾ Affinities of Nemerteans ¾ Glossary ¾ References / Suggested Readings PHYLUM NEMERTEA / PHYLUM RHYNCHOCOELA INTRODUCTION: Phylum Nemertea comprises approximately 1200 species of ¾ elongated and often flattened worms, called ribbon worms (many have flattened body) or ¾ bottle worms (because of narrow anterior end) ¾ proboscis worms, (because of the presence of a remarkable proboscis apparatus used in capturing food). The Nemerteans are named for Nemertes, one of the Nereids, sea-nymph of Greek mythology. They are commonly looked upon related to the Turbellaria and were formerly included in them, but the fact that they possess a complete digestive system with anus and also a blood vascular system makes them higher in organization than the Turbellaria. However, presence of a protrusible proboscis with a separate proboscis pore, other than mouth, is the most characteristic feature of the phylum. Almost all nemerteans are free living, bottom-dwelling, marine animals. Few commensal and parasitic species have been described. Nemertopsis actinophila is a slender form living beneath the pedal disc of sea anemones. Carcinonmertes may be found on gills and egg masses of crabs. Some species of Tetrastemma live in the branchial cavity of tunicates. Only few exibit commensal mode of life eg. Gonomertes parasitica is a commensal species found on crustaceans,.
    [Show full text]
  • South Bay 2003
    THE CITY OF SAN DIEGO Annual Receiving Waters Monitoring Report for the South Bay Ocean Outfall (South Bay Water Reclamation Plant) 2003 Ocean Monitoring Program Metropolitan Wastewater Department Environmental Monitoring and Technical Services Division July 2004 July 1, 2004 THE CITY OF SAN DIEGO Mr. John Robertus Executive Officer Regional Water Quality Control Board San Diego Region 9174 Sky Park Court, Suite 100 San Diego, CA 92123 Attention: POTW Compliance Unit Dear Sir: Enclosed is the 2003 Annual Receiving Waters Monitoring Report for NPDES Permit No. CAO109045, Order No. 2000-129, for the City ofSan Diego South Bay Water Reclamation Plant (SBWRP) discharge to the Pacific Ocean through the South Bay Ocean Outfall. This report contains data summaries and statistical analyses for the various portions ofthe ocean monitoring program, including oceanographic conditions, microbiology, sediment characteristics, macro benthic communities, demersal fishes and megabenthic invertebrates, and bioaccumulation ofcontaminants in fish tissues. These data are also presented in the International Boundary and Water Commission's annual report for discharge from the International Wastewater Treatment Plant (NPDES Permit No. ·cA0108928, Order No. 96-50). I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry ofthe person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best ofmy knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility offine and imprisonment for knowing violations.
    [Show full text]