The Economics of a Tragedy at Sea

Total Page:16

File Type:pdf, Size:1020Kb

The Economics of a Tragedy at Sea The Economics of a Tragedy at Sea Costs of overfishing of cod from the North Sea and the Baltic The Economics of a Tragedy at Sea Content 1. SUMMARY............................................................................................................................................................................. 3 2. INTRODUCTION ................................................................................................................................................................... 3 3. FUNDAMENTALS ................................................................................................................................................................. 3 4. MODEL COSTING ................................................................................................................................................................. 6 4.1. Baltic Cod.................................................................................................................................................................... 6 4.2. North Sea Cod ............................................................................................................................................................. 9 EXAMPLE OF THE ECONOMIC EFFECTS OF OVERFISHING......................................................................................... 12 LITERATURE AND WEBSITES USED.................................................................................................................................. 13 FURTHER LITERATURE ON THE ECONOMICS OF THE FISHING INDUSTRY............................................................ 13 A report prepared for WWF-Germany, October 2002 Authors: Ralf Döring and Henning Holst LedA: the agency for agriculture and nature conservancy Fischstr. 20-21 17489 Greifswald Germany Telephone: +49 3834 88 45 22 Fax: +49 3834 88 45 24 2 WWF Germany The Economics of a Tragedy at Sea 1. Summary 2. Introduction Overexploitation of fish stocks represents not only Seldom has fishing been the subject of such ex- a major ecological problem, but a major economic tensive public discussion. After 30 years of EU problem as well, because low stocks mean the loss fisheries policy we are still far from a sustainable of catch possibilities. This produces high opportu- use of stocks. Nor is it only the recovery plan for nity costs, from the global economic viewpoint. North Sea cod – long overdue and constantly de- On the one hand there is the revenue loss, on the layed for two years already – that has shown how other hand the knock-on cost of the necessary serious the situation has become. The EU Com- departure of fishermen from the industry. In addi- mission has had to state the sobering fact that tion, the fishing technology employed frequently many fish stocks in EU water present a biomass of brings about external costs, which can lead to a mature fish of just 10% of the level of the early reduction of catch possibilities in the future. 1970s (European Commission 2001). The fol- We cannot continue to afford the further loss of lowing study sets out to make clear, with the help revenue potential in Europe’s fisheries. Every year of simple economic calculations, the magnitude of the EU pays out around € 1.4 billion in subsidies the financial loss not only for fishing enterprises, (IEEP 1999) for a sector that itself loses millions but also and in particular for the overall economy. upon millions of euros every year through overex- ploitation of its stocks. Simple model costings 3. Fundamentals have shown the high costs of overfishing in both Exploiting a renewable resource always involves the Baltic and North Sea cod fisheries. Merely for arbitrating between short and long-term returns. the two stocks examined here, a cautious estimate The problem for fish stocks is that, in the absence suggests a loss of around € 400 million. On top of of individual ownership rights, short-term profit this come the costs that cannot be expressed in maximisation is the optimal solution for the user. monetary terms, like the negative consequences For fishermen this means: “Catch the fish today, for the ecosystem, which among other things will or someone else will catch it tomorrow”. Even so reduce future productivity. this fundamental economic problem does not ap- Overfishing and the loss of revenues is not only ply today to the full extent, as the state has taken ecologically problematic, but also produces major over management of fish stocks and issued rules social problems. The arguments put forward stat- governing how much can be withdrawn from ing that consistent stock protection measures rep- stocks. Since the 1950s, attempts have been made resent a danger for fishing carry little weight in to regulate the exploitation of individual stocks, the light of the above scenarios. On the contrary: with fishery biologists calculating stock sizes and it is repeated decisions not to sufficiently reduce then setting catch amounts. In the opinion of catch volumes that have produced today’s prob- Pauly and others this attempt has failed for four lems. If we do not wish to totally lose certain fish- reasons (Pauly et al. 2002): eries in the coming years, it is once and for all 1. The results of scientific assessments that could time to act. have helped conserve fish stocks were often ignored on the excuse that they were not pre- cise enough to serve as a basis of tough eco- nomic cuts. WWF Germany 3 The Economics of a Tragedy at Sea 2. The assessment methods (models) have in a of the individual countries. Hannesson (1996) few key cases totally failed. For example, with writes of Norwegian fisheries policy: The amount respect to the inclusion of natural rapid de- of the subsidies has much more to do with the clines in stocks. The assessment has led in state’s ability to pay than with any perceived need particular to a situation where the severity of for support. Currently the EU is paying out around the decline and the growing influence of fish- € 700 million of subsidies a year (Myers and Kent ing during this process of decline were badly 2001). underestimated. For this reason, despite the apparently optimal 3. No short-term regulatory systems were devel- solutions frequently found in models, fishing pol- oped or introduced, which could have served icy to date (national management) has not pre- to achieve the objectives. vented excessive use of the resource. Through 4. Our understanding of the marine ecosystem is intensive investment support over the past 30 still too incomplete, leading us to inaccurately years the EU has built up major overcapacities in estimate the recovery potential of fish stocks. the fishing fleets. Fisherman are now forced by the loans they have taken out to continue fishing Today it is clear that earlier fisheries policy – at any cost, thereby further harming the already aimed at short-term economic successes – has acutely threatened stocks even further in order to produced undesired results. Worldwide fish stocks be able to service their loans. Fishing enterprises are limited – the number of fishing vessels, on the end up seeking to maximise short-term revenue, at other hand, can be increased “endlessly”. The EU the expense of long-term revenue security, in or- has for 30 years provided subsidies for the build- der to secure the continued existence of their en- ing and modernisation of fishing vessels – but the terprises. Hence it was frequently argued in public statistics show no investments for the conserva- that it was the decisive measures to maintain tion and increase of fish stocks. However, it is stocks that imperilled the existence of fishing en- vital that the use of fish stocks be subject to regu- terprises. This argument was frequently followed lations that first of all follow the objective of per- in the bodies tasked with setting fishing volumes, manent maintenance of the resource and only sec- which set excessively high maximum fishing vol- ondarily national political or individual economic umes. In fact this did not secure the existence of goals. the enterprises in question. In the following years, The goal of state “management” has until now, as stocks continued to fall, further enterprises and in particular between 1950 and 1990, not been went out of business and fishermen left the indus- the sustainable and sparing use of fish stocks, de- try, helped on their way with expensive and subsi- spite declarations to the contrary. The objectives dised wrecking programmes. have borne the stamp – and continue to do so – of From the economic viewpoint the question has short-term national interests. Appropriate terms therefore to be raised how the current situation of for describing fisheries policy are – in analogy to overexploitation can be modified, in order, for agricultural policy – increasing efficiency and example, to achieve higher returns in the longer productivity, securing the wage structure or term, as would be desirable from an economic maintaining jobs. It comes therefore as no surprise viewpoint (see illustration 1, page 5 ) that the amount of financial support has depended in the first instance on the economic possibilities 4 WWF Germany The Economics of a Tragedy at Sea extensive environmental requirements and the Benefit to society term - “polluter-pays” principle have been introduced short revenues Until leading to a situation where (at least theoretically) now the washing plant is required to make good the Future consequential costs of the death of the fish. At the same time attempts are
Recommended publications
  • The Dutch Case
    The Dutch Case A Network of Marine Protected Areas The Dutch Case – A Network of Marine ProtectedEmilie Areas Hugenholtz Abbreviations BALANCE Baltic Sea Management: Nature Conservation and Sustainable Development of the Ecosystem through Spatial Planning BPA(s) Benthic Protection Areas CFP Common Fisheries Policy EEZ Exclusive Economic Zone EC European Commission EU European Union HP Horse Power HELCOM Regional Sea Convention for the Baltic Area IBN 2015 The Integrated Management Plan for the North Sea 2015 ICES International Council for the Exploration of the Sea IMARES Institute for Marine Resources and Ecosystem Studies IUCN International Union for Conservation of Nature Lundy MNR Lundy Marine Nature Reserve MESH (Development of a Framework for) Mapping European Seabed Habitats MPA(s) Marine Protected Area(s) NM Nautical Mile (1.852 km) NGO(s) Non-Governmental Organisation(s) OSPAR Convention on the Protection of the Marine Environment of the North-East Atlantic RFMOs Regional Fisheries Management Organisations SACs Special Areas of Conservation under 92/43 Habitats Directive SCI Site of Community Importance SPAs Special Protected Area under 79/409 Birds Directive SSB Spawning Stock Biomass t Ton (1,000 kilo) TRAC Transboundary Resources Assessment Committee (USA/Canada) WWF World Wide Fund for Nature Cover Illustration (left) North Sea wave breakers in Cadzand, The Netherlands Cover Illustration (right) White-bellied monkfish (Lophius piscatorius) is a predominant species in the northern North Sea. Common along the entire Norwegian
    [Show full text]
  • Probable Discards of Cod in the Barents Sea and Ajacent Waters During Russian Bottom Trawl
    unuftp.is Final Project 2002 PROBABLE DISCARDS OF COD IN THE BARENTS SEA AND AJACENT WATERS DURING RUSSIAN BOTTOM TRAWL Konstantin Sokolov Knipovich Polar Research Institute of Marine Fisheries and Oceanography (PINRO) Murmansk, Russia [email protected] Supervisor Dr. Palsson, O.K. Marine Research Institute Reykjavik, Iceland ABSTRACT Unaccounted discarding of small-sized fish is an important and acute problem in many fisheries because it affects the condition of stocks and reduces the reliability of fishery statistics. Such discards are regarded as a threat to intensively exploited species, such as the North-East Arctic cod (Gadus morhua morhua L.) which inhabits the Barents Sea and adjacent waters. In the present study an attempt is made to estimate of the quantity of small-sized cod discarded in the Russian bottom trawl fishery in 1996-2001. This work is based on cod length measurements onboard Russian commercial vessels in the period 1996-2001 and distributional features, such as density and size composition inferred from catch statistics. The calculated annual discards of small cod were estimated to be in the range of 3-80 million individuals. Discards appeared to be highest in 1998 and lowest in 1996 and 2001. This was found to be related to the abundance of cod recruits and the portion of total catch taken in the Eastern-Central part of the Barents Sea. The features of spatial and seasonal distribution of small-sized cod, the depth and duration of trawling and catch of cod influence the catch of small cod per unit of effort and, as a consequence, discards of such fish.
    [Show full text]
  • Ecological Modelling 321 (2016) 35–45
    Ecological Modelling 321 (2016) 35–45 Contents lists available at ScienceDirect Ecological Modelling journa l homepage: www.elsevier.com/locate/ecolmodel Modelling the effects of fishing on the North Sea fish community size composition a,∗ b a Douglas C. Speirs , Simon P.R. Greenstreet , Michael R. Heath a Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK b Marine Scotland Science, Marine Laboratory, PO Box 101, 375 Victoria Road, Aberdeen AB11 9DB, UK a r a t i b s c t l e i n f o r a c t Article history: Ecosystem-based management of the North Sea demersal fish community uses the large fish indicator Received 18 March 2015 (LFI), defined as the proportion by weight of fish caught in the International Bottom Trawl Survey (IBTS) Received in revised form 23 October 2015 exceeding a length of 40 cm. Current values of the LFI are ∼0.15, but the European Union (EU) Marine Accepted 27 October 2015 Strategy Framework Directive (MSFD) requires a value of 0.3 be reached by 2020. An LFI calculated from an eight-species subset correlated closely with the full community LFI, thereby permitting an exploration Keywords: of the effects of various fishing scenarios on projected values of the LFI using an extension of a previously Length-structured population model published multi-species length-structured model that included these key species. The model replicated Multi-species model historical changes in biomass and size composition of individual species, and generated an LFI that was North Sea ∼ Fisheries significantly correlated with observations.
    [Show full text]
  • EUROPEAN COMMISSION Brussels, 18.9.2020 SWD(2020)
    EUROPEAN COMMISSION Brussels, 18.9.2020 SWD(2020) 206 final COMMISSION STAFF WORKING DOCUMENT REGIONAL SEA BASIN ANALYSES REGIONAL CHALLENGES IN ACHIEVING THE OBJECTIVES OF THE COMMON FISHERIES POLICY – A SEA BASIN PERSPECTIVE TO GUIDE EMFF PROGRAMMING EN EN Contents INTRODUCTION ...................................................................................................................................... 5 1 Reducing the impacts of fishing on ecosystems ............................................................................. 7 1.1 Reducing fishing pressure ........................................................................................................... 7 1.2 Managing the landing obligation on board and on land............................................................. 8 1.3 Preserving ecosystems through environmental legislation ........................................................ 8 2 Providing conditions for an economically viable and competitive fishing sector and contributing to a fair standard of living for those who depend on fishing activities ................................................ 10 2.1 Addressing overcapacity ........................................................................................................... 10 2.2 Consolidating economic and social performance ..................................................................... 10 2.3 Estimation of the impact of COVID-19 crisis on the fisheries sector ........................................ 11 3 Improving enforcement and control
    [Show full text]
  • The Landing Obligation and Its Implications on the Control of Fisheries
    DIRECTORATE-GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT B: STRUCTURAL AND COHESION POLICIES FISHERIES THE LANDING OBLIGATION AND ITS IMPLICATIONS ON THE CONTROL OF FISHERIES STUDY This document was requested by the European Parliament's Committee on Fisheries. AUTHORS Ocean Governance Consulting: Christopher Hedley Centre for Environment, Fisheries and Aquaculture Science: Tom Catchpole, Ana Ribeiro Santos RESPONSIBLE ADMINISTRATOR Marcus Breuer Policy Department B: Structural and Cohesion Policies European Parliament B-1047 Brussels E-mail: [email protected] EDITORIAL ASSISTANCE Adrienn Borka Lyna Pärt LINGUISTIC VERSIONS Original: EN ABOUT THE PUBLISHER To contact the Policy Department or to subscribe to its monthly newsletter please write to: [email protected] Manuscript completed in September 2015. © European Union, 2015. Print ISBN 978-92-823-7938-7 doi:10.2861/694624 QA-02-15-709-EN-C PDF ISBN 978-92-823-7939-4 doi:10.2861/303902 QA-02-15-709-EN-N This document is available on the Internet at: http://www.europarl.europa.eu/studies DISCLAIMER The opinions expressed in this document are the sole responsibility of the author and do not necessarily represent the official position of the European Parliament. Reproduction and translation for non-commercial purposes are authorized, provided the source is acknowledged and the publisher is given prior notice and sent a copy. DIRECTORATE-GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT B: STRUCTURAL AND COHESION POLICIES FISHERIES THE LANDING OBLIGATION AND ITS IMPLICATIONS ON THE CONTROL OF FISHERIES STUDY Abstract This study reviews the impacts of the new Common Fisheries Policy (CFP) rules requiring catches in regulated fisheries to be landed and counted against quotas of each Member State ("the landing obligation and requiring that catch of species subject to the landing obligation below a minimum conservation reference size be restricted to purposes other than direct human consumption.
    [Show full text]
  • Report of the Working Group on Fish Technology and Fish
    ICES WGFTFB REPORT 2016 SCICOM/ACOM STEERING GROUP ON INTEGRATED ECOSYSTEM OBSERVATION AND MONITORING ICES CM 2016/SSGIEOM:22 REF. ACOM AND SCICOM Report of the Working Group on Fishing Technology and Fish Behaviour (WGFTFB) 25-29 April 2016 Merida, Mexico International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2016. Report of the Working Group on Fishing Technology and Fish Behaviour (WGFTFB), 25-29 April 2016, Merida, Mexico. ICES CM 2016/SSGIEOM:22. 183 pp. For permission to reproduce material from this publication, please apply to the Gen- eral Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2016 International Council for the Exploration of the Sea ICES WGFTFB REPORT 2016 | i Contents Executive Summary ............................................................................................................... 1 1 Administrative details .................................................................................................... 4 2 Introduction ...................................................................................................................... 5 3 Terms of Reference.........................................................................................................
    [Show full text]
  • Wholesale Market Profiles for Alaska Groundfish and Crab Fisheries
    JANUARY 2020 Wholesale Market Profiles for Alaska Groundfish and FisheriesCrab Wholesale Market Profiles for Alaska Groundfish and Crab Fisheries JANUARY 2020 JANUARY Prepared by: McDowell Group Authors and Contributions: From NOAA-NMFS’ Alaska Fisheries Science Center: Ben Fissel (PI, project oversight, project design, and editor), Brian Garber-Yonts (editor). From McDowell Group, Inc.: Jim Calvin (project oversight and editor), Dan Lesh (lead author/ analyst), Garrett Evridge (author/analyst) , Joe Jacobson (author/analyst), Paul Strickler (author/analyst). From Pacific States Marine Fisheries Commission: Bob Ryznar (project oversight and sub-contractor management), Jean Lee (data compilation and analysis) This report was produced and funded by the NOAA-NMFS’ Alaska Fisheries Science Center. Funding was awarded through a competitive contract to the Pacific States Marine Fisheries Commission and McDowell Group, Inc. The analysis was conducted during the winter of 2018 and spring of 2019, based primarily on 2017 harvest and market data. A final review by staff from NOAA-NMFS’ Alaska Fisheries Science Center was completed in June 2019 and the document was finalized in March 2016. Data throughout the report was compiled in November 2018. Revisions to source data after this time may not be reflect in this report. Typically, revisions to economic fisheries data are not substantial and data presented here accurately reflects the trends in the analyzed markets. For data sourced from NMFS and AKFIN the reader should refer to the Economic Status Report of the Groundfish Fisheries Off Alaska, 2017 (https://www.fisheries.noaa.gov/resource/data/2017-economic-status-groundfish-fisheries-alaska) and Economic Status Report of the BSAI King and Tanner Crab Fisheries Off Alaska, 2018 (https://www.fisheries.noaa.
    [Show full text]
  • The Decline of Atlantic Cod – a Case Study
    The Decline of Atlantic Cod – A Case Study Author contact information Wynn W. Cudmore, Ph.D., Principal Investigator Northwest Center for Sustainable Resources Chemeketa Community College P.O. Box 14007 Salem, OR 97309 E-mail: [email protected] Phone: 503-399-6514 Published 2009 DUE # 0757239 1 NCSR curriculum modules are designed as comprehensive instructions for students and supporting materials for faculty. The student instructions are designed to facilitate adaptation in a variety of settings. In addition to the instructional materials for students, the modules contain separate supporting information in the "Notes to Instructors" section, and when appropriate, PowerPoint slides. The modules also contain other sections which contain additional supporting information such as assessment strategies and suggested resources. The PowerPoint slides associated with this module are the property of the Northwest Center for Sustainable Resources (NCSR). Those containing text may be reproduced and used for any educational purpose. Slides with images may be reproduced and used without prior approval of NCSR only for educational purposes associated with this module. Prior approval must be obtained from NCSR for any other use of these images. Permission requests should be made to [email protected]. Acknowledgements We thank Bill Hastie of Northwest Aquatic and Marine Educators (NAME), and Richard O’Hara of Chemeketa Community College for their thoughtful reviews. Their comments and suggestions greatly improved the quality of this module. We thank NCSR administrative assistant, Liz Traver, for the review, graphic design and layout of this module. 2 Table of Contents NCSR Marine Fisheries Series ....................................................................................................... 4 The Decline of Atlantic Cod – A Case Study ................................................................................
    [Show full text]
  • Hypotheses for the Decline of Cod in the North Atlantic*
    MARINE ECOLOGY PROGRESS SERIES Vol. 138: 293-308, 1996 Published July 25 Mar Ecol Prog Ser REVIEW Hypotheses for the decline of cod in the North Atlantic* Ransom A. ~yers'#**,Jeffrey A. ~utchings~,N. J. Barrowman' 'Northwest Atlantic Fisheries Centre, Science Branch, PO Box 5667, St. John's, Newfoundland, Canada AlC 5x1 'Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 451 ABSTRACT We examine alternative hypotheses for the decllne of 20 cod Gadus morhua stocks in the North Atlantlc The year of the lowest observed biomass of spawners did not correspond to low juve- nile survival for the cohorts that should have contnbuted to the stock in that year However, fishing mortdl~tywas very high for the years preceding the collapse The collapse of the cod stocks was not caused by a lack of resilience at low population abundance because all spawners were able to produce many potential replacements at low population size We show that as populations collapsed, flshlng mortality increased untll the populations were reduced to very low levels We conclude that increased fishing mortality caused the population decl~nes,and often the collapses, of the cod stocks KEY WORDS Gadus morhua Cod North Atlantic Decline Stocks Tlme serles Spawners Recru~tment Catch Mortality Collapse Density-dependent mortality Fishlng INTRODUCTION a fishery. We have reformulated these questions as follows: During the last few years many of the world's cod (1)What was the extent and timing of the population Gadus morhua stocks have rapidly declined to the decline? point where fishing has been effectively eliminated.
    [Show full text]
  • Seals and Fisheries Interactions
    Seals and Fisheries Interaction s “The collapse of the cod stocks was due to over-fishing. It had nothing to do with the environment and nothing to do with seals.” - Ransom Myers, former Canadian Department of Fisheries and Oceans scientist When European explorers first arrived off the east coast of Canada, they described an ocean teaming with fish—of cod stocks so plentiful they literally impeded the progress of boats. These images stand in sharp contrast to the grim realities of today: cod populations on the brink of extinction, and no prospects for recovery in sight. The collapse of northern cod stock has been called the greatest resource management disaster in history. Close to two decades after the moratorium was imposed on the cod fishery, there are no signs that the stock is rebuilding. And with northern cod at one percent of their historic population, scientists are beginning to grasp that the ecological damage caused by decades of overfishing just might be irreversible. Back in the 1990s, as the public demanded answers, fisheries managers searched for scapegoats for their own misconduct. And despite a scientific consensus to the contrary, seal predation on cod was at the top of their list. Today, calls for an expanded seal hunt echo throughout Atlantic Canada, and myths about seal interactions with ground fish stocks abound. But a careful examination of the facts reveals that harp seals were not a factor in the collapse of the cod stocks, and there is no evidence that culling seals will bring fish stocks back. The eradication of the cod Until the 1950s, Newfoundland’s fishery was conducted in a “When you fish a species to relatively sustainable fashion with small, inshore boats.
    [Show full text]
  • 5.2 Barents Sea Ecoregion – Fisheries Overview
    ICES Fisheries Overviews Barents Sea Ecoregion Published 29 November 2019 5.2 Barents Sea Ecoregion – Fisheries overview Table of contents Executive summary ...................................................................................................................................................................................... 1 Introduction .................................................................................................................................................................................................. 1 Who is fishing ............................................................................................................................................................................................... 2 Catches over time ......................................................................................................................................................................................... 6 Description of the fisheries........................................................................................................................................................................... 8 Fisheries management ............................................................................................................................................................................... 12 Status of the fishery resources ..................................................................................................................................................................
    [Show full text]
  • 6 North Sea 6.1 Ecosystem Overview 6.1.1 Ecosystem Components
    6 North Sea 6.1 Ecosystem overview 6.1.1 Ecosystem components Seabed topography and substrates The topography of the North Sea can be broadly described as having a shallow (<50 m) southeastern part, which is sharply separated by the Dogger Bank from a much deeper (50–100 m) central part that runs north along the British coast. The central northern part of the shelf gradually slopes down to 200 m before reaching the shelf edge. Another main feature is the Norwegian Trench running east along the Norwegian coast into the Skagerrak with depths up to 500 m. Further to the east, the Norwegian Trench ends abruptly, and the Kattegat is of depths similar to the main part of the North Sea (Figure 6.1.1). The substrates are dominated by sands in the southern and coastal regions and fine muds in deeper and more central parts (Figure 6.1.2). Sands become generally coarser to the east and west, with patches of gravel and stones existing as well. In the shallow southern part, concentrations of boulders may be found locally, originating from transport by glaciers during the ice ages. This specific hard-bottom habitat has become scarcer, because boulders caught in beam trawls are often brought ashore. The area around, and to the west of the Orkney/Shetland archipelago is dominated by coarse sand and gravel. The deep areas of the Norwegian Trench are covered with extensive layers of fine muds, while some of the slopes have rocky bottoms. Several underwater canyons extend further towards the coasts of Norway and Sweden.
    [Show full text]