The Landing Obligation and Its Implications on the Control of Fisheries
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recipes for Your Sustainable Seafood
Recipes for your sustainable seafood Not sure how to cook what’s on offer at your local fish merchant? Here we recommend the fish that are sustainable to buy and suggest some recipes to try with them. Brown crab Cancer pagurus Brown crab, also known as edible crab, is the heaviest British crab. About a third of the weight of the crab is meat, two thirds is white and third is brown. It's used to make 'dressed crab' where the shell is cleaned out and used as the dish. Crab is also used to make fish cakes, crab sticks and paste. Brown crabs mature at about 10 years and averagely lives for 30 years, but some have been known to go on till they're 100! The vast majority of brown crabs in the UK are caught by potting. This is a low impact and relatively selective method of fishing, any bycatch or discards can be returned alive to the sea with high survival rates. Brown crab from the Inshore Potting Agreement Area in Devon, the Western Channel or Cornwall are the best choices for crab in the UK. Avoid eating crabs below the minimum landing size (13-14 cm in most areas of the UK) and crab claws, unless it is certain they have been removed from the animal after landing. Egg-bearing or "berried" females should be avoided at all times to allow them to spawn. (Information source: MSC Good Fish Guide) Brown crab Recipes - These four recipes from The Guardian include jungle curry with crab and a spring salad. -
Probable Discards of Cod in the Barents Sea and Ajacent Waters During Russian Bottom Trawl
unuftp.is Final Project 2002 PROBABLE DISCARDS OF COD IN THE BARENTS SEA AND AJACENT WATERS DURING RUSSIAN BOTTOM TRAWL Konstantin Sokolov Knipovich Polar Research Institute of Marine Fisheries and Oceanography (PINRO) Murmansk, Russia [email protected] Supervisor Dr. Palsson, O.K. Marine Research Institute Reykjavik, Iceland ABSTRACT Unaccounted discarding of small-sized fish is an important and acute problem in many fisheries because it affects the condition of stocks and reduces the reliability of fishery statistics. Such discards are regarded as a threat to intensively exploited species, such as the North-East Arctic cod (Gadus morhua morhua L.) which inhabits the Barents Sea and adjacent waters. In the present study an attempt is made to estimate of the quantity of small-sized cod discarded in the Russian bottom trawl fishery in 1996-2001. This work is based on cod length measurements onboard Russian commercial vessels in the period 1996-2001 and distributional features, such as density and size composition inferred from catch statistics. The calculated annual discards of small cod were estimated to be in the range of 3-80 million individuals. Discards appeared to be highest in 1998 and lowest in 1996 and 2001. This was found to be related to the abundance of cod recruits and the portion of total catch taken in the Eastern-Central part of the Barents Sea. The features of spatial and seasonal distribution of small-sized cod, the depth and duration of trawling and catch of cod influence the catch of small cod per unit of effort and, as a consequence, discards of such fish. -
Wholesale Market Profiles for Alaska Groundfish and Crab Fisheries
JANUARY 2020 Wholesale Market Profiles for Alaska Groundfish and FisheriesCrab Wholesale Market Profiles for Alaska Groundfish and Crab Fisheries JANUARY 2020 JANUARY Prepared by: McDowell Group Authors and Contributions: From NOAA-NMFS’ Alaska Fisheries Science Center: Ben Fissel (PI, project oversight, project design, and editor), Brian Garber-Yonts (editor). From McDowell Group, Inc.: Jim Calvin (project oversight and editor), Dan Lesh (lead author/ analyst), Garrett Evridge (author/analyst) , Joe Jacobson (author/analyst), Paul Strickler (author/analyst). From Pacific States Marine Fisheries Commission: Bob Ryznar (project oversight and sub-contractor management), Jean Lee (data compilation and analysis) This report was produced and funded by the NOAA-NMFS’ Alaska Fisheries Science Center. Funding was awarded through a competitive contract to the Pacific States Marine Fisheries Commission and McDowell Group, Inc. The analysis was conducted during the winter of 2018 and spring of 2019, based primarily on 2017 harvest and market data. A final review by staff from NOAA-NMFS’ Alaska Fisheries Science Center was completed in June 2019 and the document was finalized in March 2016. Data throughout the report was compiled in November 2018. Revisions to source data after this time may not be reflect in this report. Typically, revisions to economic fisheries data are not substantial and data presented here accurately reflects the trends in the analyzed markets. For data sourced from NMFS and AKFIN the reader should refer to the Economic Status Report of the Groundfish Fisheries Off Alaska, 2017 (https://www.fisheries.noaa.gov/resource/data/2017-economic-status-groundfish-fisheries-alaska) and Economic Status Report of the BSAI King and Tanner Crab Fisheries Off Alaska, 2018 (https://www.fisheries.noaa. -
Case Study Price Structure in the Supply Chain for Plaice in the Netherlands
Case study Price structure in the supply chain for plaice in the Netherlands Last update: May 2016 Maritime Affairs and Fisheries Contents SUMMARY ...................................................................................................................................... 1 0 TASK REMINDER – SCOPE AND CONTENT .................................................................................. 2 0.1 CASE STUDY SCOPE ............................................................................................................................. 2 0.2 CONTENT OF THE DOCUMENT ............................................................................................................... 2 1 DESCRIPTION OF THE PRODUCT................................................................................................ 3 1.1 BIOLOGICAL AND COMMERCIAL CHARACTERISTICS .................................................................................... 3 1.2 CATCHES AND AVAILABILITY OF PLAICE ................................................................................................... 5 2 THE EU MARKETS FOR PLAICE ................................................................................................... 9 2.1 STRUCTURE OF THE EU MARKET ........................................................................................................... 9 Apparent market by Member State ....................................................................................... 9 Imports ................................................................................................................................ -
The Decline of Atlantic Cod – a Case Study
The Decline of Atlantic Cod – A Case Study Author contact information Wynn W. Cudmore, Ph.D., Principal Investigator Northwest Center for Sustainable Resources Chemeketa Community College P.O. Box 14007 Salem, OR 97309 E-mail: [email protected] Phone: 503-399-6514 Published 2009 DUE # 0757239 1 NCSR curriculum modules are designed as comprehensive instructions for students and supporting materials for faculty. The student instructions are designed to facilitate adaptation in a variety of settings. In addition to the instructional materials for students, the modules contain separate supporting information in the "Notes to Instructors" section, and when appropriate, PowerPoint slides. The modules also contain other sections which contain additional supporting information such as assessment strategies and suggested resources. The PowerPoint slides associated with this module are the property of the Northwest Center for Sustainable Resources (NCSR). Those containing text may be reproduced and used for any educational purpose. Slides with images may be reproduced and used without prior approval of NCSR only for educational purposes associated with this module. Prior approval must be obtained from NCSR for any other use of these images. Permission requests should be made to [email protected]. Acknowledgements We thank Bill Hastie of Northwest Aquatic and Marine Educators (NAME), and Richard O’Hara of Chemeketa Community College for their thoughtful reviews. Their comments and suggestions greatly improved the quality of this module. We thank NCSR administrative assistant, Liz Traver, for the review, graphic design and layout of this module. 2 Table of Contents NCSR Marine Fisheries Series ....................................................................................................... 4 The Decline of Atlantic Cod – A Case Study ................................................................................ -
Hypotheses for the Decline of Cod in the North Atlantic*
MARINE ECOLOGY PROGRESS SERIES Vol. 138: 293-308, 1996 Published July 25 Mar Ecol Prog Ser REVIEW Hypotheses for the decline of cod in the North Atlantic* Ransom A. ~yers'#**,Jeffrey A. ~utchings~,N. J. Barrowman' 'Northwest Atlantic Fisheries Centre, Science Branch, PO Box 5667, St. John's, Newfoundland, Canada AlC 5x1 'Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 451 ABSTRACT We examine alternative hypotheses for the decllne of 20 cod Gadus morhua stocks in the North Atlantlc The year of the lowest observed biomass of spawners did not correspond to low juve- nile survival for the cohorts that should have contnbuted to the stock in that year However, fishing mortdl~tywas very high for the years preceding the collapse The collapse of the cod stocks was not caused by a lack of resilience at low population abundance because all spawners were able to produce many potential replacements at low population size We show that as populations collapsed, flshlng mortality increased untll the populations were reduced to very low levels We conclude that increased fishing mortality caused the population decl~nes,and often the collapses, of the cod stocks KEY WORDS Gadus morhua Cod North Atlantic Decline Stocks Tlme serles Spawners Recru~tment Catch Mortality Collapse Density-dependent mortality Fishlng INTRODUCTION a fishery. We have reformulated these questions as follows: During the last few years many of the world's cod (1)What was the extent and timing of the population Gadus morhua stocks have rapidly declined to the decline? point where fishing has been effectively eliminated. -
Canales Et Al 2015
Fisheries Research 161 (2015) 261–268 Contents lists available at ScienceDirect Fisheries Research j ournal homepage: www.elsevier.com/locate/fishres Changes in the size-structure of a multispecies pelagic fishery off Northern Chile a,∗ b c,d e T. Mariella Canales , Richard Law , Rodrigo Wiff , Julia L. Blanchard a Instituto de Fomento Pesquero, Departamento de Evaluación de Recursos, Blanco 839, Valparaíso, Chile b The University of York, York Centre for Complex Systems Analysis, Ron Cooke Hub, York YO10 5EG, UK c Copas Sur-Austral, Universidad de Concepción, Departamento de Oceanografía, Barrio Universitario s/n, Chile d Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile e The University of Sheffield, Department of Animal and Plant Sciences, Sheffield S10 2TN, UK a r t i c l e i n f o a b s t r a c t Article history: Size-based indicators are important tools for understanding how environmental variability and fishing Received 13 February 2014 impact on marine populations and communities. Ideally, they would standardise fishery-independent Received in revised form 8 August 2014 survey data. However, this is not possible in many of the world’s ecosystems with important commercial Accepted 9 August 2014 fisheries. Using fishery-dependent data we investigated changes in the size–structure of pelagic catches off Northern Chile and whether or not these changes are influenced by the environment. We computed Keywords: single- and multispecies, size-based fishery indicators (SBFIs) from 1990 to 2008 for the main commercial Body size species, anchovy (Engraulis ringens), sardine (Sardinops sagax), jack mackerel (Trachurus murphyi) and Fishery Multispecies mackerel (Scomber japonicus). -
Plaice (Pleuronectes Platessä) Contents
1-group plaice (Pleuronectes platessä) Contents Acknowledgements:............................................................................................................ 1 Abstract:.............................................................................................................................3 Chapter 1: General introduction.....................................................................................................4 Chapter 2: Fin-ray count variation in 0-group flatfish: plaice (Pleuronectesplatessa (L.)) and flounder (Platichthys flesus ( L.)) on the west coast of Ireland..............................15 Chapter 3: Variation in the fin ray counts of 0-group turbot (Psetta maxima L.) and brill (Scophthalmus rhombus L.) on the west coast of Ireland: 2006-2009.......................... 28 Chapter 4: Annual and spatial variation in the abundance length and condition of turbot (.Psetta maxima L.) on nursery grounds on the west coast of Ireland: 2000-2007.........41 Chapter 5: Variability in the early life stages of juvenile plaice (.Pleuronectes platessa L.) on west of Ireland nursery grounds; 2000 - 2007........................................................64 Chapter 6: The early life history of turbot (Psetta maxima L.) on nursery grounds along the west coast of Ireland: 2007 -2009, as described by otolith microstructure.............85 Chapter 7: The feeding ecology of 0-group turbot (Psetta maxima L.) and brill (Scophthalmus rhombus L.) on Irish west coast nursery grounds.................................96 Chapter -
Seals and Fisheries Interactions
Seals and Fisheries Interaction s “The collapse of the cod stocks was due to over-fishing. It had nothing to do with the environment and nothing to do with seals.” - Ransom Myers, former Canadian Department of Fisheries and Oceans scientist When European explorers first arrived off the east coast of Canada, they described an ocean teaming with fish—of cod stocks so plentiful they literally impeded the progress of boats. These images stand in sharp contrast to the grim realities of today: cod populations on the brink of extinction, and no prospects for recovery in sight. The collapse of northern cod stock has been called the greatest resource management disaster in history. Close to two decades after the moratorium was imposed on the cod fishery, there are no signs that the stock is rebuilding. And with northern cod at one percent of their historic population, scientists are beginning to grasp that the ecological damage caused by decades of overfishing just might be irreversible. Back in the 1990s, as the public demanded answers, fisheries managers searched for scapegoats for their own misconduct. And despite a scientific consensus to the contrary, seal predation on cod was at the top of their list. Today, calls for an expanded seal hunt echo throughout Atlantic Canada, and myths about seal interactions with ground fish stocks abound. But a careful examination of the facts reveals that harp seals were not a factor in the collapse of the cod stocks, and there is no evidence that culling seals will bring fish stocks back. The eradication of the cod Until the 1950s, Newfoundland’s fishery was conducted in a “When you fish a species to relatively sustainable fashion with small, inshore boats. -
How Benthic Habitats and Bottom Trawling Affect Trait Composition in the Diet of European Plaice (Pleuronectes Platessa) in the North Sea
HOW BENTHIC HABITATS AND BOTTOM TRAWLING AFFECT TRAIT COMPOSITION IN THE DIET OF EUROPEAN PLAICE (PLEURONECTES PLATESSA) IN THE NORTH SEA Jacqueline Eggleton, Kenny A.J., Bolam S.G., Depestele J., Garcia C. IFS10, Saint Malo 11th-16th November 2017 ‘Integrating the role of marine benthic ecosystems in fisheries management’ Two fundamental questions confronted by fisheries scientists: 1. To what extent do commercial fish target their prey? 2. Do the impacts of bottom trawling on benthic assemblages contribute to sustaining these populations ? Need to understand links (as trophic interactions) between populations of demersal fish species and potential benthic invertebrate prey (food) which live on or in the seabed Our questions 1. Do commercial fish species target different benthic prey? 2. Do commercial fish species target benthic prey differently in different habitats? 3. Do commercial fish species target benthic prey that are resistant or favoured by fishing pressure? To provide functional links between predator and prey we use biological traits analysis (BTA) What data do we need? 1. What fish are eating Fish stomachs 2. Habitat information at the scale of the fishery Habitat map What data do we need? 1. What fish are eating Fish stomachs 2. Habitat information at the scale of the fishery Habitat map 3. An indication of fishing pressure VMS/Logbook 4. Information on the benthic fauna living in and on the seabed Fish stomachs ICES year of the stomach 1991 North Sea, Skagerrak and Kattegat ICES rectangle scale (30 x 30 nautical miles) -
Seafood Watch® Standard for Fisheries
1 Seafood Watch® Standard for Fisheries Table of Contents Table of Contents ............................................................................................................................... 1 Introduction ...................................................................................................................................... 2 Seafood Watch Guiding Principles ...................................................................................................... 3 Seafood Watch Criteria and Scoring Methodology for Fisheries ........................................................... 5 Criterion 1 – Impacts on the Species Under Assessment ...................................................................... 8 Factor 1.1 Abundance .................................................................................................................... 9 Factor 1.2 Fishing Mortality ......................................................................................................... 19 Criterion 2 – Impacts on Other Capture Species ................................................................................ 22 Factor 2.1 Abundance .................................................................................................................. 26 Factor 2.2 Fishing Mortality ......................................................................................................... 27 Factor 2.3 Modifying Factor: Discards and Bait Use .................................................................... 29 Criterion -
5.2 Barents Sea Ecoregion – Fisheries Overview
ICES Fisheries Overviews Barents Sea Ecoregion Published 29 November 2019 5.2 Barents Sea Ecoregion – Fisheries overview Table of contents Executive summary ...................................................................................................................................................................................... 1 Introduction .................................................................................................................................................................................................. 1 Who is fishing ............................................................................................................................................................................................... 2 Catches over time ......................................................................................................................................................................................... 6 Description of the fisheries........................................................................................................................................................................... 8 Fisheries management ............................................................................................................................................................................... 12 Status of the fishery resources ..................................................................................................................................................................