Aristolochiaceae) of Hispaniola
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lepidoptera Argentina - Parte Vii: Papilionidae
LEPIDOPTERA ARGENTINA Catálogo ilustrado y comentado de las mariposas de Argentina Parte VII: PAPILIONIDAE Fernando César Penco Osvaldo Di Iorio 2014 PLAN GENERAL DE LA OBRA Parte I CASTNIIDAE Parte II COSSIDAE & LIMACODIDAE Parte III TORTRICIDAE Parte IV SEMATURIDAE & URANIIDAE Parte V GEOMETRIDAE Parte VI HESPERIIDAE Parte VII PAPILIONIDAE Parte VIII PIERIDAE Parte IX LYCAENIDAE Parte X RIODINIDAE Parte XI NYMPHALIDAE & LIBYTHEIDAE Parte XII MEGALOPYGIDAE Parte XIII APATELODIDAE, MIMALLONIDAE & LASIOCAMPIDAE Parte XIV SATURNIIDAE Parte XV SPHINGIDAE Parte XVI EREBIDAE: ARCTIINAE & EREBINAE Parte XVII NOTODONTIDAE Parte XVIII NOCTUIDAE Parte XIX TAXONOMIA DE LEPIDOPTERA Parte XX BIBLIOGRAFIA LEPIDOPTERA ARGENTINA Catálogo ilustrado y comentado de las mariposas de Argentina Parte VII: PAPILIONIDAE Fernando César Penco Osvaldo R. Di Iorio 2014 Copyright © 2014 Fernando César Penco Ninguna parte de esta publicación, incluido el diseño de la portada y de las páginas interiores puede ser reproducida, almacenadas o transmitida de ninguna forma ni por ningún medio, sea éste electrónico, mecánico, grabación, fotocopia o cualquier otro sin la previa autorización escrita del autor. LEPIDOPTERA ARGENTINA - PARTE VII: PAPILIONIDAE Autores: Fernando César Penco Area de Biodiversidad, Fundación de Historia Natural Félix de Azara, Departamento de Ciencias Naturales y Antropológicas CEBBAD, Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina. E-mail: [email protected] Osvaldo R. Di Iorio Entomología, Departamento de Biodiversidad -
Andressa Caporale De Castro Mecanismos De Indução E
ANDRESSA CAPORALE DE CASTRO MECANISMOS DE INDUÇÃO E QUEBRA DE DIAPAUSA EM Euryades corethrus (LEPIDOPTERA: PAPILIONIDAE, TROIDINI). Dissertação apresentada ao Programa de Pós- Graduação em Biologia Animal, Instituto de Biociências da Universidade Federal do Rio Grande do Sul, como requisito parcial à obtenção do título de mestre em Biologia Animal. Área de concentração: Biodiversidade Orientador: Nicolás Oliveira Mega UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Porto Alegre, fevereiro de 2016 MECANISMOS DE INDUÇÃO E QUEBRA DE DIAPAUSA EM Euryades corethrus (LEPIDOPTERA: PAPILIONIDAE, TROIDINI). ANDRESSA CAPORALE DE CASTRO Aprovada em _____ de _____________ de 2016 ____________________________________________ Dr. Lucas Augusto Kaminski ____________________________________________ Dr. Aldo Mellender de Araujo ____________________________________________ Dr. André Victor Lucci Freitas Dedico esse trabalho a todos que, assim como eu, amam borboletas, e que acham que a melhor parte do conhecimento é poder compartilhá-lo. Agradecimentos Esses últimos dois anos não foram fáceis, muitos obstáculos apareceram. A minha sorte é que tive muitas pessoas queridas ao meu lado, me ajudando em diversas áreas da vida. Agradeço a todos que de alguma forma me ajudaram. A Helena, por abrir espaço no laboratório para que pudesse realizar meus experimentos e, além disso, por me iniciar nesse mundo tão fantástico das borboletas. Ao meu orientador, Nicolás, pela assembleia permanente, por me fazer sair da minha zona de conforto e por sempre estar pronto para ajudar. Agradeço a Profa. Paula Araújo pelo empréstimo da BOD para realizar meus experimentos. Ao pessoal do Laboratório de Ecologia de Insetos que faziam com que meus dias fossem mais divertidos e cheios de amizade (Gui, Scalco, Pedrotti, Ju, Lidi, Dinego, Carlota, Rafa, Roni, Fabi). -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
European Journal of Biomedical and Pharmaceutical Sciences
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/341894994 A Review on Pharmacological Activities of Aristolochia Species Article · June 2020 CITATIONS READS 6 328 3 authors: Subbiah Latha Palanisamy Selvamani Anna University, Chennai Anna University, BIT Campus, Tiruchirappalli 107 PUBLICATIONS 510 CITATIONS 125 PUBLICATIONS 634 CITATIONS SEE PROFILE SEE PROFILE Dhivya Sundaram Anna University of Technology, Tiruchirappalli 6 PUBLICATIONS 13 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Natural Polymers View project All content following this page was uploaded by Palanisamy Selvamani on 15 July 2020. The user has requested enhancement of the downloaded file. ejbps, 2015, Volume 2, Issue 5, 160-167. Review Article SJIF Impact Factor 2.062 ISSN 2349-8870 Latha et al. European European Journal Journal of Biomedical of Biomedical and Pharmac eutical Sciences Volume: 2 AND Issue: 5 Pharmaceutical sciences 160-167 http://www.ejbps.com Year: 2015 A REVIEW ON PHARMACOLOGICAL ACTIVITIES OF ARISTOLOCHIA SPECIES S. Latha*, P. Selvamani, P. S. Dhivya and R. Benaseer Begam Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli– 24, Tamil Nadu, India. Article Received on 27/07/2015 Article Revised on 18/08/2015 Article Accepted on 09/09/2015 *Correspondence for ABSTRACT Author Aristolochia is a significant genus in the family of Aristolochiaceae. S. Latha The genus Aristolochia includes about 400 species of herbaceous Department of perennials, under shrubs or shrubs bearing essential oils and is Pharmaceutical Technology, Anna University, BIT extensive across Tropical Asia, Africa and South America. Campus, Tiruchirappalli–24, Aristolochia species has been used widely in the traditional Chinese Tamil Nadu, India. -
Wild Ginger, Asarum Spp
A Horticulture Information article from the Wisconsin Master Gardener website, posted 27 June 2005 Wild Ginger, Asarum spp. There are 60-70 species of woodland perennials in the genus Asarum. These great foliage plants in the family Aristolochiaceae make excellent ground covers for shady sites. Their leaves vary considerably in texture, colors of green and patterning. They all need rich organic soil with plenty of moisture to thrive. Under favorable conditions they spread quickly and vigorously. Of these numerous species, European wild ginger, A. europaeum, and wild ginger, A. ca- nadense, are the most commonly available to Asarum europeaum has at- tractive glossy leaves. American gardeners. Both spread slowly to form dense colonies once established. The interest- ing but inconspicuous, dark brown, reddish or purple, bell-shaped fl owers are produced near the ground in spring, hidden by the leaves and blending in with The fl owers of wild gin- soil and leaf litter. ger, Asarum canadense, are small, dark-colored European Wild Ginger (A. europeaum) and hidden by the foliage. This elegant plant with glossy, dark green, nearly rounded leaves makes an excellent ground cover. Plants form neat clumps up to 6 inches high and remain evergreen where winters are not too harsh; in Wisconsin the leaves generally die back to the ground. The leaves are produced in pairs and the small, greenish-brown drooping fl owers are rarely noticed, being hidden by the foliage. This plant prefers part to full shade and rich, moist soil – but has done very well in my garden on clay soil with summer sun until about 2:00 p.m. -
Aristolochia Serpentaria L
New England Plant Conservation Program Aristolochia serpentaria L. Virginia Snakeroot Conservation and Research Plan for New England Prepared by: Dorothy J. Allard, Ph.D. Analytical Resources, LLC P.O. Box 279 East Montpelier, VT 05651 For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, 2002 SUMMARY Aristolochia serpentaria L., commonly known as Virginia Snakeroot, is a perennial herb in the Aristolochiaceae. Several varieties have been described in the past, but they are no longer recognized in most taxonomic manuals. Aristolochia serpentaria occurs in 26 eastern states and is common in the southern and central part of its range, while becoming rare along its northern periphery. It is listed as a Division 2 species in Flora Conservanda (Brumback and Mehrhoff et al. 1996). Connecticut is the only New England state in which it is found, where it occurs at 12 known sites in ten towns. It grows in a variety of upland forest communities, but is more likely to be found in dry, somewhat rich, rocky, deciduous or mixed deciduous-coniferous woods in Connecticut. Farther south, it also has broad environmental requirements, occupying many upland soil and forest types. Population trends for the species in Connecticut are unclear. One new population was discovered in 2001. Monitoring in 2001 of eight extant sites found that two populations had decreased, three had increased, and one had stayed the same. Several known populations are threatened by habitat modification, invasive species, or site fragility. Two extant populations have not been surveyed for several years. -
Piperaceae) Revealed by Molecules
Annals of Botany 99: 1231–1238, 2007 doi:10.1093/aob/mcm063, available online at www.aob.oxfordjournals.org From Forgotten Taxon to a Missing Link? The Position of the Genus Verhuellia (Piperaceae) Revealed by Molecules S. WANKE1 , L. VANDERSCHAEVE2 ,G.MATHIEU2 ,C.NEINHUIS1 , P. GOETGHEBEUR2 and M. S. SAMAIN2,* 1Technische Universita¨t Dresden, Institut fu¨r Botanik, D-01062 Dresden, Germany and 2Ghent University, Department of Biology, Research Group Spermatophytes, B-9000 Ghent, Belgium Downloaded from https://academic.oup.com/aob/article/99/6/1231/2769300 by guest on 28 September 2021 Received: 6 December 2006 Returned for revision: 22 January 2007 Accepted: 12 February 2007 † Background and Aims The species-poor and little-studied genus Verhuellia has often been treated as a synonym of the genus Peperomia, downplaying its significance in the relationships and evolutionary aspects in Piperaceae and Piperales. The lack of knowledge concerning Verhuellia is largely due to its restricted distribution, poorly known collection localities, limited availability in herbaria and absence in botanical gardens and lack of material suitable for molecular phylogenetic studies until recently. Because Verhuellia has some of the most reduced flowers in Piperales, the reconstruction of floral evolution which shows strong trends towards reduction in all lineages needs to be revised. † Methods Verhuellia is included in a molecular phylogenetic analysis of Piperales (trnT-trnL-trnF and trnK/matK), based on nearly 6000 aligned characters and more than 1400 potentially parsimony-informative sites which were partly generated for the present study. Character states for stamen and carpel number are mapped on the combined molecular tree to reconstruct the ancestral states. -
Aristolochic Acids Tract Urothelial Cancer Had an Unusually High Incidence of Urinary- Bladder Urothelial Cancer
Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc Aristolochic Acids tract urothelial cancer had an unusually high incidence of urinary- bladder urothelial cancer. CAS No.: none assigned Additional case reports and clinical investigations of urothelial Known to be human carcinogens cancer in AAN patients outside of Belgium support the conclusion that aristolochic acids are carcinogenic (NTP 2008). The clinical stud- First listed in the Twelfth Report on Carcinogens (2011) ies found significantly increased risks of transitional-cell carcinoma Carcinogenicity of the urinary bladder and upper urinary tract among Chinese renal- transplant or dialysis patients who had consumed Chinese herbs or Aristolochic acids are known to be human carcinogens based on drugs containing aristolochic acids, using non-exposed patients as sufficient evidence of carcinogenicity from studies in humans and the reference population (Li et al. 2005, 2008). supporting data on mechanisms of carcinogenesis. Evidence of car- Molecular studies suggest that exposure to aristolochic acids is cinogenicity from studies in experimental animals supports the find- also a risk factor for Balkan endemic nephropathy (BEN) and up- ings in humans. per-urinary-tract urothelial cancer associated with BEN (Grollman et al. 2007). BEN is a chronic tubulointerstitial disease of the kidney, Cancer Studies in Humans endemic to Serbia, Bosnia, Croatia, Bulgaria, and Romania, that has The evidence for carcinogenicity in humans is based on (1) findings morphology and clinical features similar to those of AAN. It has been of high rates of urothelial cancer, primarily of the upper urinary tract, suggested that exposure to aristolochic acids results from consump- among individuals with renal disease who had consumed botanical tion of wheat contaminated with seeds of Aristolochia clematitis (Ivic products containing aristolochic acids and (2) mechanistic studies 1970, Hranjec et al. -
Floristic Quality Assessment Report
FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al. -
New York State Museum Associates Richard S
New York Flora Association - New York State Museum Associates Richard S. Mitchell, Editor, New York State Museum Correspondence to NYFA, 3140 CEC, Albany, NY 12230 Vol. 13 No. 4 - Sept. 2002 e-mail: [email protected] Join $15 - Dues $10/Yr Skirting Schunnemunk – by Richard Mitchell, N.Y. State Museum Please forgive the high degree enthusiasm that prompted me to devote the lead article to the same old mountain for two issues in a row. But, trust me, this is mostly not about Schunnemunk, but some fascinating botanical areas we visited in the immediate vicinity – alkaline sites such as Round Hill and Moodna Creek. Round Hill - Perhaps the oddest but most productive of our days of exploration was the one spent on Round Hill. Located on the west side of Schunnemunk, this hill is marked by gently ascending slopes that face abrupty on a steep knob of conglomerate rock, apparently high in alkaline pebbles and sand. First visited by David Werrier weeks before, the slope offered little of interest until the ascent increased sharply at the base of the knob; then, we noticed quite a bit of a white boneset in the open-canopy woods – nearly all Eupatorium sessilifolium. The chalky-looking talus was weathering to a fine, grayish-brown soil on which just a few plants of serpentary, Aristolochia serpentaria (a State Arabis drummondii A. Gray DRUMMOND’S ROCK-CRESS A New York endangered species now known Endangered species) lurked. Other indicators of the from Orange County near Schunnemunk Mountain alkaline aspect of the slope were hop hornbeam (Ostrya virginica), hackberry (Celtis occidentalis slippery and circuitous journey around the steepest and sweet pignut (Carya ovalis) occurring in some cliffs below the summit, some of which were sheer, abundance. -
Updated Angiosperm Family Tree for Analyzing Phylogenetic Diversity and Community Structure
Acta Botanica Brasilica - 31(2): 191-198. April-June 2017. doi: 10.1590/0102-33062016abb0306 Updated angiosperm family tree for analyzing phylogenetic diversity and community structure Markus Gastauer1,2* and João Augusto Alves Meira-Neto2 Received: August 19, 2016 Accepted: March 3, 2017 . ABSTRACT Th e computation of phylogenetic diversity and phylogenetic community structure demands an accurately calibrated, high-resolution phylogeny, which refl ects current knowledge regarding diversifi cation within the group of interest. Herein we present the angiosperm phylogeny R20160415.new, which is based on the topology proposed by the Angiosperm Phylogeny Group IV, a recently released compilation of angiosperm diversifi cation. R20160415.new is calibratable by diff erent sets of recently published estimates of mean node ages. Its application for the computation of phylogenetic diversity and/or phylogenetic community structure is straightforward and ensures the inclusion of up-to-date information in user specifi c applications, as long as users are familiar with the pitfalls of such hand- made supertrees. Keywords: angiosperm diversifi cation, APG IV, community tree calibration, megatrees, phylogenetic topology phylogeny comprising the entire taxonomic group under Introduction study (Gastauer & Meira-Neto 2013). Th e constant increase in knowledge about the phylogenetic The phylogenetic structure of a biological community relationships among taxa (e.g., Cox et al. 2014) requires regular determines whether species that coexist within a given revision of applied phylogenies in order to incorporate novel data community are more closely related than expected by chance, and is essential information for investigating and avoid out-dated information in analyses of phylogenetic community assembly rules (Kembel & Hubbell 2006; diversity and community structure. -
Characterization of the Basal Angiosperm Aristolochia Fimbriata: a Potential Experimental System for Genetic Studies Bliss Et Al
Characterization of the basal angiosperm Aristolochia fimbriata: a potential experimental system for genetic studies Bliss et al. Bliss et al. BMC Plant Biology 2013, 13:13 http://www.biomedcentral.com/1471-2229/13/13 Bliss et al. BMC Plant Biology 2013, 13:13 http://www.biomedcentral.com/1471-2229/13/13 RESEARCH ARTICLE Open Access Characterization of the basal angiosperm Aristolochia fimbriata: a potential experimental system for genetic studies Barbara J Bliss1,2*†, Stefan Wanke3†, Abdelali Barakat1,4, Saravanaraj Ayyampalayam5, Norman Wickett1,6, P Kerr Wall1,7, Yuannian Jiao1, Lena Landherr1, Paula E Ralph1,YiHu1, Christoph Neinhuis3, Jim Leebens-Mack5, Kathiravetpilla Arumuganathan8, Sandra W Clifton9,10, Siela N Maximova11, Hong Ma1,12,13 and Claude W dePamphilis1* Abstract Background: Previous studies in basal angiosperms have provided insight into the diversity within the angiosperm lineage and helped to polarize analyses of flowering plant evolution. However, there is still not an experimental system for genetic studies among basal angiosperms to facilitate comparative studies and functional investigation. It would be desirable to identify a basal angiosperm experimental system that possesses many of the features found in existing plant model systems (e.g., Arabidopsis and Oryza). Results: We have considered all basal angiosperm families for general characteristics important for experimental systems, including availability to the scientific community, growth habit, and membership in a large basal angiosperm group that displays a wide spectrum of phenotypic diversity. Most basal angiosperms are woody or aquatic, thus are not well-suited for large scale cultivation, and were excluded. We further investigated members of Aristolochiaceae for ease of culture, life cycle, genome size, and chromosome number.