Integrative and Comparative Biology Integrative and Comparative Biology, volume 52, number 2, pp. 235–244 doi:10.1093/icb/ics081 Society for Integrative and Comparative Biology SYMPOSIUM Effects of Oceanic Salinity on Body Condition in Sea Snakes Franc¸ois Brischoux,1,*,† Virginie Rolland,‡ Xavier Bonnet,* Matthieu Caillaud§ and Richard Shineô *Centre d’Etudes Biologiques de Chize´, CEBC-CNRS UPR 1934, 79360 Villiers en Bois, France; †Department of Biology, University of Florida, Gainesville, FL 32611, USA; ‡Department of Biological Sciences, PO Box 599, State University, Jonesboro, AR 72467, USA; §IFREMER Nouvelle Cale´donie, LEADNC, Campus IRD, BP 2059, 98846 Noume´a Cedex, Nouvelle Cale´donie, France; ôSchool of Biological Sciences A08, University of Sydney, Sydney, NSW 2006, Australia From the symposium ‘‘New Frontiers from Marine Snakes to Marine Ecosystems’’ presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2012 at Charleston, South Carolina. 1E-mail:
[email protected] Downloaded from Synopsis Since the transition from terrestrial to marine environments poses strong osmoregulatory and energetic chal- lenges, temporal and spatial fluctuations in oceanic salinity might influence salt and water balance (and hence, body condition) in marine tetrapods. We assessed the effects of salinity on three species of sea snakes studied by mark– http://icb.oxfordjournals.org/ recapture in coral-reef habitats in the Neo-Caledonian Lagoon. These three species include one fully aquatic hydrophiine (Emydocephalus annulatus), one primarily aquatic laticaudine (Laticauda laticaudata), and one frequently terrestrial laticaudine (Laticauda saintgironsi). We explored how oceanic salinity affected the snakes’ body condition across various temporal and spatial scales relevant to each species’ ecology, using linear mixed models and multimodel inference.