Snake Venom Potency and Yield Are Associated with Prey-Evolution, Predator Metabolism and Habitat Structure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
6. Terrestrial Fauna
Moura Link - Aldoga Rail Project Queensland Rail Environmental Impact Statement Terrestrial fauna 6. Terrestrial fauna This section describes the existing environment, potential impacts and mitigation measures for the Project in terms of the terrestrial fauna values. The assessment has been based on a review of existing information and the outcomes of supporting field investigations. It should be noted that the information regarding legislation is current at the time of writing this section but may be subject to change in the future. Legislation requirements covered in the EIS have been cited from: • Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) • Nature Conservation Act 1992 (NC Act) • Nature Conservation (Wildlife) Regulation 2006 (NC Regulation) • Vegetation Management Act 1999 (VM Act) • Land Protection (Pest and Stock Route Management) Act 2002 • Land Protection (Pest and Stock Route Management) Regulation 2003 The currency of such information will be checked during the detailed design phase of the Project and prior to commencement of construction activities within the project area. Currently the designation of threatened species under the NC Act and NC Regulation is being reviewed to conform with international classification and as such species listed as rare will be reassessed and classified as either least concern, vulnerable, near threatened, endangered or critically endangered. 6.1 Existing environment 6.1.1 Methodology In March 2007, Connell Hatch prepared a desktop ecological assessment to support the development of an Initial Advice Statement, EPBC Referral for determination of the Project’s controlled action status under the EPBC Act and ultimately assist in the EIS process. The Project was deemed a not controlled action under Section 75 of the EPBC Act. -
Nyika and Vwaza Reptiles & Amphibians Checklist
LIST OF REPTILES AND AMPHIBIANS OF NYIKA NATIONAL PARK AND VWAZA MARSH WILDLIFE RESERVE This checklist of all reptile and amphibian species recorded from the Nyika National Park and immediate surrounds (both in Malawi and Zambia) and from the Vwaza Marsh Wildlife Reserve was compiled by Dr Donald Broadley of the Natural History Museum of Zimbabwe in Bulawayo, Zimbabwe, in November 2013. It is arranged in zoological order by scientific name; common names are given in brackets. The notes indicate where are the records are from. Endemic species (that is species only known from this area) are indicated by an E before the scientific name. Further details of names and the sources of the records are available on request from the Nyika Vwaza Trust Secretariat. REPTILES TORTOISES & TERRAPINS Family Pelomedusidae Pelusios rhodesianus (Variable Hinged Terrapin) Vwaza LIZARDS Family Agamidae Acanthocercus branchi (Branch's Tree Agama) Nyika Agama kirkii kirkii (Kirk's Rock Agama) Vwaza Agama armata (Eastern Spiny Agama) Nyika Family Chamaeleonidae Rhampholeon nchisiensis (Nchisi Pygmy Chameleon) Nyika Chamaeleo dilepis (Common Flap-necked Chameleon) Nyika(Nchenachena), Vwaza Trioceros goetzei nyikae (Nyika Whistling Chameleon) Nyika(Nchenachena) Trioceros incornutus (Ukinga Hornless Chameleon) Nyika Family Gekkonidae Lygodactylus angularis (Angle-throated Dwarf Gecko) Nyika Lygodactylus capensis (Cape Dwarf Gecko) Nyika(Nchenachena), Vwaza Hemidactylus mabouia (Tropical House Gecko) Nyika Family Scincidae Trachylepis varia (Variable Skink) Nyika, -
Charles Darwin University Death Adder Envenoming Causes
Charles Darwin University Death Adder Envenoming Causes Neurotoxicity Not Reversed by Antivenom - Australian Snakebite Project (ASP-16) Johnston, Christopher; O'Leary, Margaret; Brown, Simon; Currie, Bart; Halkidis, Lambros; Whitaker, Richard; Close, Benjamin; Isbister, Geof Published in: PLoS Neglected Tropical Diseases DOI: 10.1371/journal.pntd.0001841 Published: 01/01/2012 Document Version Publisher's PDF, also known as Version of record Link to publication Citation for published version (APA): Johnston, C., O'Leary, M., Brown, S., Currie, B., Halkidis, L., Whitaker, R., Close, B., & Isbister, G. (2012). Death Adder Envenoming Causes Neurotoxicity Not Reversed by Antivenom - Australian Snakebite Project (ASP-16). PLoS Neglected Tropical Diseases, 6(9), 1-8. https://doi.org/10.1371/journal.pntd.0001841 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 03. Oct. 2021 Death Adder Envenoming Causes Neurotoxicity Not Reversed by Antivenom - Australian Snakebite Project (ASP-16) Christopher I. -
Sea Snakes Lose Their Stripes to Deal with Pollution : Nature News
NATURE | NEWS Sea snakes lose their stripes to deal with pollution Melanin pigment in darkened skin binds to pollutants and helps animals rid themselves of chemicals. Rachael Lallensack 10 August 2017 Klaus Stiefel The melanin pigment in the turtle-headed sea snake's dark bands binds to pollutants. Sea snakes that live in polluted waters have evolved to ‘fill in’ their light stripes, darkening their skins to cope with pollution. The finding1 adds turtle-headed sea snakes (Emydocephalus annulatus) to the diverse list of creatures that exhibit ‘industrial melanism’, when darker animal varieties become dominant in polluted environments. The phenomenon is a classic example of natural selection, and one of the best-known cases — the spread of the dark version of the peppered moth in sooty nineteenth-century Britain — is often quoted in biology textbooks. For decades, evolutionary ecologist Rick Shine has snorkelled in the bays of Nouméa in the South Pacific island of New Caledonia to study the sea snake species and collect their shed skins. Over the years, while studying the Related stories Related stories snakes in the Indo–Pacific, he • Dark satanic wings • Dark satanic wings noticed something curious: in some populations, most snakes were jet • Evolution sparks silence • Evolution sparks silence black, whereas in others, most of the crickets of the crickets sported pale banding or blotchy • The peppered moth's • The peppered moth's white markings. dark genetic past dark genetic past revealed revealed In 2014, Claire Goiran, a marine biologist at the University of New More related stories More related stories Caledonia in Nouméa who sometimes helped Shine to collect sea snakes, came across a study about Parisian pigeons2. -
The Medical Threat of Mamba Envenoming in Sub-Saharan Africa
Downloaded from orbit.dtu.dk on: Oct 06, 2021 The medical threat of mamba envenoming in sub-Saharan Africa revealed by genus- wide analysis of venom composition, toxicity and antivenomics profiling of available antivenoms Ainsworth, Stuart; Petras, Daniel; Engmark, Mikael; Süssmuth, Roderich D.; Whiteley, Gareth; Albulescu, Laura-Oana; Kazandjian, Taline D.; Wagstaff, Simon C.; Rowley, Paul; Wüster, Wolfgang Total number of authors: 16 Published in: Journal of Proteomics Link to article, DOI: 10.1016/j.jprot.2017.08.016 Publication date: 2018 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Ainsworth, S., Petras, D., Engmark, M., Süssmuth, R. D., Whiteley, G., Albulescu, L-O., Kazandjian, T. D., Wagstaff, S. C., Rowley, P., Wüster, W., Dorrestein, P. C., Arias, A. S., M. Gutierrez, J., Harrison, R., Casewell, N. R., & Calvete, J. J. (2018). The medical threat of mamba envenoming in sub-Saharan Africa revealed by genus-wide analysis of venom composition, toxicity and antivenomics profiling of available antivenoms. Journal of Proteomics, 172, 173-189. https://doi.org/10.1016/j.jprot.2017.08.016 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. -
Morphology, Reproduction and Diet of the Greater Sea Snake, Hydrophis Major (Elapidae, Hydrophiinae)
Coral Reefs https://doi.org/10.1007/s00338-019-01833-5 REPORT Morphology, reproduction and diet of the greater sea snake, Hydrophis major (Elapidae, Hydrophiinae) 1 1 2 R. Shine • T. Shine • C. Goiran Received: 5 January 2019 / Accepted: 9 June 2019 Ó Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Although widespread, the large Hydrophiinae relatives in some respects, other characteristics (such as sea snake Hydrophis major is poorly known ecologically. scale rugosity, low proportion of juveniles in collections, We dissected 119 preserved specimens in museum col- frequent production of small litters of large offspring) may lections to quantify body sizes and proportions, sexual reflect adaptation to marine habitats. dimorphism, reproductive biology and diet. The sexes mature at similar snout–vent lengths (SVLs, about 75 cm) Keywords Dietary specialisation Á Disteira major Á and attain similar maximum sizes (females 123 cm vs. Elapidae Á Life-history Á Olive-headed sea snake Á Trophic males 122 cm SVL), but females in our sample exhibited ecology larger mean sizes than did males (means 98.8 vs. 93.1 cm SVL). The adult sex ratio in museum specimens was highly female-biased (64:30), and the high proportion of repro- Introduction ductive females during the austral summer suggests annual reproduction. At the same SVL, females had shorter tails Rates of speciation are higher in the viviparous sea snakes and wider bodies than did males, but sex differences in (Hydrophiinae) than in any other extant group of reptiles. other body proportions (e.g. tail shape, head dimensions, In particular, one clade of sea snakes—the Hydrophis eye diameter) were minimal. -
Early German Herpetological Observations and Explorations in Southern Africa, with Special Reference to the Zoological Museum of Berlin
Bonner zoologische Beiträge Band 52 (2003) Heft 3/4 Seiten 193–214 Bonn, November 2004 Early German Herpetological Observations and Explorations in Southern Africa, With Special Reference to the Zoological Museum of Berlin Aaron M. BAUER Department of Biology, Villanova University, Villanova, Pennsylvania, USA Abstract. The earliest herpetological records made by Germans in southern Africa were casual observations of common species around Cape Town made by employees of the Dutch East India Company (VOC) during the mid- to late Seven- teenth Century. Most of these records were merely brief descriptions or lists of common names, but detailed illustrations of many reptiles were executed by two German illustrators in the employ of the VOC, Heinrich CLAUDIUS and Johannes SCHUMACHER. CLAUDIUS, who accompanied Simon VAN DER STEL to Namaqualand in 1685, left an especially impor- tant body of herpetological illustrations which are here listed and identified to species. One of the last Germans to work for the Dutch in South Africa was Martin Hinrich Carl LICHTENSTEIN who served as a physician and tutor to the last Dutch governor of the Cape from 1802 to 1806. Although he did not collect any herpetological specimens himself, LICHTENSTEIN, who became the director of the Zoological Museum in Berlin in 1813, influenced many subsequent workers to undertake employment and/or expeditions in southern Africa. Among the early collectors were Karl BERGIUS and Ludwig KREBS. Both collected material that is still extant in the Berlin collection today, including a small number of reptile types. Because of LICHTENSTEIN’S emphasis on specimens as items for sale to other museums rather than as subjects for study, many species first collected by KREBS were only described much later on the basis of material ob- tained by other, mostly British, collectors. -
Brigalow Belt Bioregion – a Biodiversity Jewel
Brigalow Belt bioregion – a biodiversity jewel Brigalow habitat © Craig Eddie What is brigalow? including eucalypt and cypress pine forests and The term ‘brigalow’ is used simultaneously to refer to; woodlands, grasslands and other Acacia dominated the tree Acacia harpophylla; an ecological community ecosystems. dominated by this tree and often found in conjunction with other species such as belah, wilga and false Along the eastern boundary of the Brigalow Belt are sandalwood; and a broader region where this species scattered patches of semi-evergreen vine thickets with and ecological community are present. bright green canopy species that are highly visible among the more silvery brigalow communities. These The Brigalow Belt bioregion patches are a dry adapted form of rainforest, relics of a much wetter past. The Brigalow Belt bioregion is a large and complex area covering 36,400 000ha. The region is thus recognised What are the issues? by the Australian Government as a biodiversity hotspot. Nature conservation in the region has received increasing attention because of the rapid and extensive This hotspot contains some of the most threatened loss of habitat that has occurred. Since World War wildlife in the world, including populations of the II the Brigalow Belt bioregion has become a major endangered bridled nail-tail wallaby and the only agricultural and pastoral area. Broad-scale clearing for remaining wild population of the endangered northern agriculture and unsustainable grazing has fragmented hairy-nosed wombat. The area contains important the original vegetation in the past, particularly on habitat for rare and threatened species including the, lowland areas. glossy black-cockatoo, bulloak jewel butterfl y, brigalow scaly-foot, red goshawk, little pied bat, golden-tailed geckos and threatened community of semi evergreen Biodiversity hotspots are areas that support vine thickets. -
Lizards & Snakes: Alive!
LIZARDSLIZARDS && SNAKES:SNAKES: ALIVE!ALIVE! EDUCATOR’SEDUCATOR’S GUIDEGUIDE www.sdnhm.org/exhibits/lizardsandsnakeswww.sdnhm.org/exhibits/lizardsandsnakes Inside: • Suggestions to Help You Come Prepared • Must-Read Key Concepts and Background Information • Strategies for Teaching in the Exhibition • Activities to Extend Learning Back in the Classroom • Map of the Exhibition to Guide Your Visit • Correlations to California State Standards Special thanks to the Ellen Browning Scripps Foundation and the Nordson Corporation Foundation for providing underwriting support of the Teacher’s Guide KEYKEY CONCEPTSCONCEPTS Squamates—legged and legless lizards, including snakes—are among the most successful vertebrates on Earth. Found everywhere but the coldest and highest places on the planet, 8,000 species make squamates more diverse than mammals. Remarkable adaptations in behavior, shape, movement, and feeding contribute to the success of this huge and ancient group. BEHAVIOR Over 45O species of snakes (yet only two species of lizards) An animal’s ability to sense and respond to its environment is are considered to be dangerously venomous. Snake venom is a crucial for survival. Some squamates, like iguanas, rely heavily poisonous “soup” of enzymes with harmful effects—including on vision to locate food, and use their pliable tongues to grab nervous system failure and tissue damage—that subdue prey. it. Other squamates, like snakes, evolved effective chemore- The venom also begins to break down the prey from the inside ception and use their smooth hard tongues to transfer before the snake starts to eat it. Venom is delivered through a molecular clues from the environment to sensory organs in wide array of teeth. -
Substrate Thermal Properties Influence Ventral Brightness Evolution In
ARTICLE https://doi.org/10.1038/s42003-020-01524-w OPEN Substrate thermal properties influence ventral brightness evolution in ectotherms ✉ Jonathan Goldenberg 1 , Liliana D’Alba 1, Karen Bisschop 2,3, Bram Vanthournout1 & Matthew D. Shawkey 1 1234567890():,; The thermal environment can affect the evolution of morpho-behavioral adaptations of ectotherms. Heat is transferred from substrates to organisms by conduction and reflected radiation. Because brightness influences the degree of heat absorption, substrates could affect the evolution of integumentary optical properties. Here, we show that vipers (Squa- mata:Viperidae) inhabiting hot, highly radiative and superficially conductive substrates have evolved bright ventra for efficient heat transfer. We analyzed the brightness of 4161 publicly available images from 126 species, and we found that substrate type, alongside latitude and body mass, strongly influences ventral brightness. Substrate type also significantly affects dorsal brightness, but this is associated with different selective forces: activity-pattern and altitude. Ancestral estimation analysis suggests that the ancestral ventral condition was likely moderately bright and, following divergence events, some species convergently increased their brightness. Vipers diversified during the Miocene and the enhancement of ventral brightness may have facilitated the exploitation of arid grounds. We provide evidence that integument brightness can impact the behavioral ecology of ectotherms. 1 Evolution and Optics of Nanostructures group, Department -
North American Save the Rhinos Campaign
NORTH AMERICAN SAVE THE RHINOS CAMPAIGN AZA RAG/SSP CONTENTS Foreword Evan Blumer, John Lukas, and Tom Foose 1 Introduction to the Info Pack Julie Anton Dunn 5 Section I: Campaign Guidelines 9 Participation and Registration 10 Registration Form 12 Use of Images 13 List of Images and Additional Information on the CD-ROM 14 Use of Logos and Font 15 Fundraising Money Transfer Details 17 Sharing Information and Materials 19 Certificates and Awards 20 Rhino Campaigners 22 Thanks and Acknowledgements 23 Section II: Beneficiary Projects 25 Selecting the Beneficiary Projects 26 Expressing a Preference 27 The Common Need to Protect Rhinos 28 Sumatran Rhino Program 29 Indian Rhino Program 32 Black Rhino Program 35 EAZA Campaign Projects 39 EAZA’s Waiting-list Projects 40 Section III: Awareness, Education and Fundraising 41 Awareness: 42 • 10 good reasons to get involved in the North American Save the Rhinos Campaign 42 • We do not have rhinos; how can we get involved? 44 Education: 45 • Suggested education activities 45 • Rhino Rangers 48 • Rhino Cards Zimbabwe 49 • Catch the Poacher 51 Fundraising: 53 • Suggested fundraising activities 53 • How will my money be used? 55 Section IV: Rhino Information 57 The Evolution of the Rhinoceros 58 The Discovery of African Rhinos 62 First Sightings of Asian Rhinos 63 The Five Species of Rhino and their Subspecies: 64 • Rhino Population Numbers and Distribution 64 • White Rhinoceros 66 • Black Rhinoceros 70 • Greater One-Horned or Indian Rhinoceros 75 • Sumatran Rhinoceros 79 • Javan Rhinoceros 84 The Web -
Death Adder (Deaf Adder)
Death Adder (Deaf Adder) There are three major death adder species that occur in Australia, some more species have been described and named in Australia and are awaiting official acceptances; whatever that might mean. Death adders are found in all states of Australia excepting Victoria and Tasmania. In the early days of European settlement they were probably in Northern Victoria though perhaps no longer. Death adders also occur in New Guinea and some adjacent islands. The Common Death Adder (Acanthophis antarcticus) The Northern Death Adder (Acanthophis praelongus) The Desert Death Adder (Acanthophis pyrrhus) The death adder is not a true adder; it belongs to the family of snakes called the elapids (elapidae). Elapids are snakes that are usually described as having short, front fixed (not hinged) fangs. Death Adders are live bearers or viviparous (not egg layers). They never grow very long; a death adder of one meter in length would be classed as a monster. Their venom is primarily neurotoxic (effecting mostly the nervous system). The only antivenom to be used is specific Death Adder antivenom and in emergencies only would you use polyvalent antivenom (Australian universal antivenom). It is possible that the name Death Adder is a corruption of the term Deaf Adder. This snake was in days gone by, called also by this name. Most snakes in the world are totally deaf. The name given by the inhabitants of the Island of Crete to a snake is kouphos’, which means deaf in Greek, (kouphos’ is pronounced with the accent or emphasis on the last vowel). In Greek proper, a snake is called phidi and the plural is phidia.