Annual Report of the Board of Regents of the Smithsonian Institution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Clothes Moths ENTFACT-609 by Michael F
Clothes Moths ENTFACT-609 By Michael F. Potter, Extension Entomologist, University of Kentucky Clothes moths are pests that can destroy fabric and other materials. They feed exclusively on animal fibers, especially wool, fur, silk, feathers, felt, and leather. These materials contain keratin, a fibrous protein that the worm-like larvae of the clothes moth can digest. (In nature, the larvae feed on the nesting materials or carcasses of birds and mam- mals.) Cotton and synthetic fabrics such as poly- ester and rayon are rarely attacked unless blended with wool, or heavily soiled with food stains or body oils. Serious infestations of clothes moths Fig. 1b: Indianmeal moth can develop undetected in dwellings, causing ir- Two different types of clothes moths are common reparable harm to vulnerable materials. in North America — the webbing clothes moth Facts about Clothes Moths (Tineola bisselliella) and the casemaking clothes moth (Tinea pellionella). Adult webbing clothes Clothes moths are small, 1/2-inch moths that are moths are a uniform, buff-color, with a small tuft beige or buff-colored. They have narrow wings of reddish hairs on top of the head. Casemaking that are fringed with small hairs. They are often clothes moths are similar in appearance, but have mistaken for grain moths infesting stored food dark specks on the wings. Clothes moth adults do items in kitchens and pantries. Unlike some other not feed so they cause no injury to fabrics. How- types of moths, clothes moths are seldom seen be- ever, the adults lay about 40-50 pinhead-sized cause they avoid light. -
Clothes Moths
Clothes Moths Integrated Pest Management in the Home The webbing clothes moth, Tineola bisselliella, (Figure 1) and casemaking clothes moth, Tinea pellionella, (Figure 2) can be fabric pests in California. They tend to hide when disturbed, so you might not notice you have an infestation until after the moths have already dam- aged your fabric, fur, or feathered items. Close examination of the objects will reveal silken webs the larvae have spun. Figure 1. Webbing clothes moth. Figure 3. Casemaking clothes moth with IDENTIFICATION its case attached. The webbing clothes moth is the most common fabric moth. The adult is gold with reddish-golden hairs on the top of its head. A row of golden hairs fringes its wings, which have a span of about 1/2 inch. Because these moths are weak flyers that aren’t attracted to lights, you’ll usually find them close to the infested items, such as in a dark area of the closet. Figure 2. Casemaking clothes moth. The Don’t confuse the clothes moth with dark spots on the wings distinguish it common food- and grain-infesting from the webbing clothes moth. Figure 4. Cases from the casemaking moths, which frequently fly around clothes moth. Cases take on the color of the house. At rest, clothes moths are the fabric being consumed. only about 1/4 inch long, while most head are lighter colored than those of food-infesting moths are about double the web bing clothes moth. that length. Clothes moths usually fly around only the immediate area of Larvae of both spe cies are nearly identi- the house where the infestation has cal, except the larvae of the casemaking occurred, and their flight pattern is clothes moth always carry a silken case dis tinctive—they tend to flutter about with them as they feed (Figure 3). -
Stored Product Pests
L-2046 2-02 Pantry and Fabric Pests in the Home Michael Merchant and Grady J. Glenn* often found on crape myrtles and other orna- ood and fabric pests can be found in nearly mental shrubs and flowers. Should they come every home. They are usually no more than indoors, carpet beetles or clothes moths may lay an occasional inconvenience. If an infesta- their eggs on woolen carpets or stored fabric Ftion develops in your home, the information in items. this publication should help you control it. Some insects feed primarily on plant materials Pests of seeds, grains and and are usually found in stored foods in kitchens and pantries. Other insects feed primarily on spices products containing animal proteins, such as The Indian meal moth is a common and dis- woolen fabrics, leather and hides, hair, feathers, tinctive pantry pest. It is the most common pest powdered milk and some pet foods. Animal of dried fruit, nuts, cereals and oilseeds. It also product pests are more likely to be found in infests powdered milk, chocolate and other can- closets and areas other than kitchens. Either kind dies, bird seed and dog food. The adult Indian of pest can be found almost anywhere in a home, meal moth has wings that are whitish-gray at the however. If you find the same kind of insect base and deep pink or copper colored on the repeatedly in a kitchen or closet it is good evi- outer two-thirds. The wingspan is about 3/4-inch. dence of a pest problem. The caterpillars, or immature stage of the Indian meal moth, are often noticed crawling up walls How did they get in my and spinning cocoons on textured walls or ceil- ings. -
Sea Snakes Lose Their Stripes to Deal with Pollution : Nature News
NATURE | NEWS Sea snakes lose their stripes to deal with pollution Melanin pigment in darkened skin binds to pollutants and helps animals rid themselves of chemicals. Rachael Lallensack 10 August 2017 Klaus Stiefel The melanin pigment in the turtle-headed sea snake's dark bands binds to pollutants. Sea snakes that live in polluted waters have evolved to ‘fill in’ their light stripes, darkening their skins to cope with pollution. The finding1 adds turtle-headed sea snakes (Emydocephalus annulatus) to the diverse list of creatures that exhibit ‘industrial melanism’, when darker animal varieties become dominant in polluted environments. The phenomenon is a classic example of natural selection, and one of the best-known cases — the spread of the dark version of the peppered moth in sooty nineteenth-century Britain — is often quoted in biology textbooks. For decades, evolutionary ecologist Rick Shine has snorkelled in the bays of Nouméa in the South Pacific island of New Caledonia to study the sea snake species and collect their shed skins. Over the years, while studying the Related stories Related stories snakes in the Indo–Pacific, he • Dark satanic wings • Dark satanic wings noticed something curious: in some populations, most snakes were jet • Evolution sparks silence • Evolution sparks silence black, whereas in others, most of the crickets of the crickets sported pale banding or blotchy • The peppered moth's • The peppered moth's white markings. dark genetic past dark genetic past revealed revealed In 2014, Claire Goiran, a marine biologist at the University of New More related stories More related stories Caledonia in Nouméa who sometimes helped Shine to collect sea snakes, came across a study about Parisian pigeons2. -
Physical Mapping of 18S Rdna and Heterochromatin in Species of Family Lygaeidae (Hemiptera: Heteroptera)
Physical mapping of 18S rDNA and heterochromatin in species of family Lygaeidae (Hemiptera: Heteroptera) V.B. Bardella1,2, T.R. Sampaio1, N.B. Venturelli1, A.L. Dias1, L. Giuliano-Caetano1, J.A.M. Fernandes3 and R. da Rosa1 1Laboratório de Citogenética Animal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brasil 2Instituto de Biociências, Letras e Ciências Exatas, Departamento de Biologia, Universidade Estadual Paulista, São José do Rio Preto, SP, Brasil 3Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil Corresponding author: R. da Rosa E-mail: [email protected] Genet. Mol. Res. 13 (1): 2186-2199 (2014) Received June 17, 2013 Accepted December 5, 2013 Published March 26, 2014 DOI http://dx.doi.org/10.4238/2014.March.26.7 ABSTRACT. Analyses conducted using repetitive DNAs have contributed to better understanding the chromosome structure and evolution of several species of insects. There are few data on the organization, localization, and evolutionary behavior of repetitive DNA in the family Lygaeidae, especially in Brazilian species. To elucidate the physical mapping and evolutionary events that involve these sequences, we cytogenetically analyzed three species of Lygaeidae and found 2n (♂) = 18 (16 + XY) for Oncopeltus femoralis; 2n (♂) = 14 (12 + XY) for Ochrimnus sagax; and 2n (♂) = 12 (10 + XY) for Lygaeus peruvianus. Each species showed different quantities of heterochromatin, which also showed variation in their molecular composition by fluorochrome Genetics and Molecular Research 13 (1): 2186-2199 (2014) ©FUNPEC-RP www.funpecrp.com.br Physical mapping in Lygaeidae 2187 staining. Amplification of the 18S rDNA generated a fragment of approximately 787 bp. -
Clothes Moth.Pub
CORNELL COOPERATIVE EXTENSION OF ONEIDA COUNTY 121 Second Street Oriskany, NY 13424-9799 (315) 736-3394 or (315) 337-2531 FAX: (315) 736-2580 CLOTHES MOTHS INJURY: There are two species of clothes moths that commonly infest homes, the case-making clothes moth (Tineola pellionella) and the webbing clothes moth (Tineola bisselliella). It is the caterpillar (larval stage) of these insects that does the actual feeding. Clothes moths feed on all kinds of dry materials of animal origin including woolens, mohair, hair, bristles, fur and feathers. Holes are chewed in items or threadbare spots caused where fibers are chewed in carpeting. Household items that may be attacked include clothing, drapes, pillows, hair mattresses, brushes, upholstery, furs, piano felts or other natural or synthetic fabrics mixed with wool. Silken feeding tubes or hard pro- Case-making Clothes Moth tective cases are often found on infested fabrics. DESCRIPTION: The adult moths of these two species look very much alike. They are yellow- ish-tan to buff-colored with a wingspread of about ½ inch. The larvae are white with brown to black heads, and are also about ½ inch long. The case-making clothes moth larvae spin a protec- tive case out of silk and material fibers, often blending in with the fabric so damage is not noticed until a bare spot or hole is produced. The webbing clothes moth spins silk over the fibers it is feeding on but does not form a case around itself until ready to enter the pupa (resting stage). Webbing Clothes Moth Adult & Larvae LIFE HISTORY: Female clothes moths deposit soft white eggs in clothing and household furnishings. -
Two Coreidae (Hemiptera), Chelinidea Vittiger and Anasa Armigera, New for Arkansas, U.S.A. Stephen W
Journal of the Arkansas Academy of Science Volume 62 Article 23 2008 Two Coreidae (Hemiptera), Chelinidea vittiger and Anasa armigera, New for Arkansas, U.S.A. Stephen W. Chordas III The Ohio State University, [email protected] Peter W. Kovarik Columbus State Community College Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Entomology Commons Recommended Citation Chordas, Stephen W. III and Kovarik, Peter W. (2008) "Two Coreidae (Hemiptera), Chelinidea vittiger and Anasa armigera, New for Arkansas, U.S.A.," Journal of the Arkansas Academy of Science: Vol. 62 , Article 23. Available at: http://scholarworks.uark.edu/jaas/vol62/iss1/23 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This General Note is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected]. Journal of the Arkansas Academy of Science, Vol. 62 [2008], Art. 23 Two Coreidae (Hemiptera), Chelinidea vittiger and Anasa armigera, New for Arkansas, U.S.A. S. Chordas III1 and P. Kovarik2 1Center for Life Sciences Education, The Ohio State University, 260 Jennings Hall, 1735 Neil Avenue, Columbus, Ohio 43210 2 Columbus State Community College 239 Crestview Road, Columbus, Ohio 43202 1Correspondence: [email protected] Most leaf-footed bugs (Hemiptera: Coreidae) Herring (1980) and Froeschner (1988) in not occurring north of Mexico are essentially generalist recognizing subspecies of Chelinidea vittiger (which phytophagous insects feeding on tender shoots or were almost solely based on color variations). -
Vienna IPM Intro
Integrated Pest Management (IPM) in Museums, Archives and Historic Houses - Proceedings of the International Conference in Vienna, Austria 2013 Edited by: Pascal Querner, David Pinniger and Astrid Hammer Section III: Treatment Methods - Contents - Section III Treatment methods ................................................................................................................ 205 The New EU Biocides Regulations 528/2012 and the effect it will have on museum IPM Child, Robert E. ....................................................................................................................................... 206 Anoxia treatment using oxygen scavengers for disinfestations of large museum objects Biebl, Stephan & Landsberger, Bill ........................................................................................................ 210 Biological control of cultural heritage pests – a review Schöller, Matthias & Prozell, Sabine ...................................................................................................... 218 Parasitoids against insect pests - a future for IPM? Anheuser, Kilian ...................................................................................................................................... 233 IPM at the V&A Museum and preventive treatments using Thermo Lignum™ Blyth, Val ................................................................................................................................................ 240 Investigation of the use of freezing against insect pests -
Squash Bugs of South Dakota Burruss Mcdaniel South Dakota State University
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Agricultural Experiment Station Technical Bulletins SDSU Agricultural Experiment Station 1989 Squash Bugs of South Dakota Burruss McDaniel South Dakota State University Follow this and additional works at: http://openprairie.sdstate.edu/agexperimentsta_tb Part of the Entomology Commons, and the Plant Sciences Commons Recommended Citation McDaniel, Burruss, "Squash Bugs of South Dakota" (1989). Agricultural Experiment Station Technical Bulletins. 12. http://openprairie.sdstate.edu/agexperimentsta_tb/12 This Book is brought to you for free and open access by the SDSU Agricultural Experiment Station at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Agricultural Experiment Station Technical Bulletins by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. T B 92 quash Agricultural Experiment Station South Dakota State University U.S. Department of Agriculture T B 92 of South Dakota Burruss McDaniel Professor, Plant Science Department South Dakota State University COREi DAE (HEMIPTERA: HETEROPTERA) Agriopocorinae (this latter extrazimital) . Baranowski and Slater ( 1986), in their Coreidae of Florida, listed The family Coreidae is best known because of the 120 species dispersed among 18 genera, 9 tribes and 3 destructive habit of the squash bug, Anasa tristis, on subfamilies. squash, pumpkin, cucumber, and other members of the cucurbit family in the United States. The family, The material examined in this work is deposited in represented by various species, is found throughout the the SDSU H.C. -
Hagerty Udel 0060M 14258.Pdf
LIFE HISTORY INVESTIGATIONS OF HEMIPTERANS SELECTED FOR NON-TARGET HOST-SUITABILITY STUDIES OF THE SPOTTED LANTERNFLY (LYCORMA DELICATULA) BIOCONTROL AGENT ANASTATUS ORIENTALIS, WITH MOLECULAR INVESTIGATIONS OF LOCAL ANASTATUS TAXA by Tyler Hagerty A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Master of Science in Entomology Summer 2020 © 2020 Tyler Hagerty All Rights Reserved LIFE HISTORY INVESTIGATIONS OF HEMIPTERANS SELECTED FOR NON-TARGET HOST-SUITABILITY STUDIES OF THE SPOTTED LANTERNFLY (LYCORMA DELICATULA) BIOCONTROL AGENT ANASTATUS ORIENTALIS, WITH MOLECULAR INVESTIGATIONS OF LOCAL ANASTATUS TAXA by Tyler Hagerty Approved: __________________________________________________________ Charles Bartlett, Ph.D. Professor in charge of thesis on behalf of the Advisory Committee Approved: __________________________________________________________ Jacob L. Bowman, Ph.D. Chair of the Department of Entomology and Wildlife Ecology Approved: __________________________________________________________ Mark W. Rieger, Ph.D. Dean of the College of Agriculture and Natural Resources Approved: __________________________________________________________ Douglas J. Doren, Ph.D. Interim Vice Provost for Graduate and Professional Education and Dean of the Graduate College ACKNOWLEDGMENTS I would first like to thank my advisor, Dr. Charles Bartlett, for his continuous help and support through my time at the University of Delaware. His help and guidance helped shape and push my research forward, and his knowledge of Hemiptera was indispensable. His door was always open, and he was happy to listen to me complain about insects not laying eggs whenever I needed to. I would like to thank my committee members, Dr. Debbie Delaney of the University of Delaware, and Dr. Kim Hoelmer of the USDA ARS. Each helped me in numerous ways and offered assistance and support whenever I needed it. -
Vol. 14, No. 1 Spring 1981 the GREAT LAKES ENTOMOLOGIST Published by the Michigan Entomological Society Volume 14 No
The GREAT LAKES ENTOMOLOGIST Vol. 14, No. 1 Spring 1981 THE GREAT LAKES ENTOMOLOGIST Published by the Michigan Entomological Society Volume 14 No. 1 ISSN 0090-0222 TABLE OF CONTENTS Annotated List of Indiana Scolytidae (Coleoptera) Mark Deyrup .................................................. Seasonal Flight Patterns of Hemiptera in a North Carolina Black Walnut Plantation. 2. Coreoida J. E. McPherson and B. C. Weber .......................................... 11 Seasonal Flight Patterns of Hemiptera in a North Carolina Black Walnut Plantation. 3. Reduvioidea J. E. McPherson and B. C. Weber .......................................... 15 Seasonal Flight Patterns of Hemiptera in a North Carolina Black Walnut Plantation. 4. Cimicoidea J. E. McPherson and B. C. Weber .......................................... 19 Fourlined Plant Bug (Hemiptera: Miridae), A Reappraisal: Life History, Host Plants, and Plant Response to Feeding A. G. Wheeler, Jr. and Gary L. Miller.. ..................................... 23 Hawthorn Lace Bug (Hemiptera: Tingidae), First Record of Injury to Roses, with a Review of Host Plants A. G. Wheeler, Jr. ........................................................ 37 Notes on the Biology of Nersia florens (Homoptera: Fulgoroidea: Dictyopharidae) with Descriptions of Eggs, and First, Second, and Fifth Instars S. W. Wilson and J. E. McPherson.. ...................... Ontogeny of the Tibial Spur in Megamelus davisi (Homoptera: Delphacidae) and its Bearing on Delphacid Classification S. W. Wilson and J. E. McPherson.. ..................... -
Classical and Molecular Cytogenetics in Heteroptera
1 CLASSICAL AND MOLECULAR CYTOGENETICS IN HETEROPTERA Papeschi A.G & M.J. Bressa Laboratorio de Citogenética y Evolución, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón II, C1428EHA, Buenos Aires, Argentina. E-mail: [email protected] Running title: Cytogenetics in Heteroptera Author for correspondence: Dra. Alba Graciela Papeschi Laboratorio de Citogenética y Evolución, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Int. Güiraldes y Costanera Norte, C1428EHA, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina. Phone: +54 11 4576 3354 Fax: +54 11 4576 3384 E-mail: [email protected] 2 Abstract chromosomes, the distribution, composition and size of Cytogenetic studies in Heteroptera began more hetero and euchromatic chromosome segments, and the than a hundred years ago and classical and molecular total genomic DNA content. In most species the cytogenetic techniques have contributed to get a deeper karyotype remains remarkably stable, and closely insight into the organization, function and evolution of related species have generally more similar karyotypes the holokinetic chromosomes in this insect group. In than distantly related ones. Species evolve by multiple this article we describe the general cytogenetic features mechanisms, and changes in karyotype are of Heteroptera and give some examples of evolutionary characteristic of the evolutionary process (4-6). trends within some families. Changes in karyotype are Karyotype analysis may be limited by the intimately related to the evolutionary process, and techniques and the material itself. In general, the study karyotype analyses can give us valuable clues to of insect chromosomes is difficult due to the small phylogeny, evolution and taxonomic relationships.