Lessons Learned from Eagle Lake Rainbow Trout
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lake Tahoe Fish Species
Description: o The Lohonton cutfhroot trout (LCT) is o member of the Solmonidqe {trout ond solmon) fomily, ond is thought to be omong the most endongered western solmonids. o The Lohonton cufihroot wos listed os endongered in 1970 ond reclossified os threotened in 1975. Dork olive bdcks ond reddish to yellow sides frequently chorocterize the LCT found in streoms. Steom dwellers reoch l0 inches in length ond only weigh obout I lb. Their life spon is less thon 5 yeors. ln streoms they ore opportunistic feeders, with diets consisting of drift orgonisms, typicolly terrestriol ond oquotic insects. The sides of loke-dwelling LCT ore often silvery. A brood, pinkish stripe moy be present. Historicolly loke dwellers reoched up to 50 inches in length ond weigh up to 40 pounds. Their life spon is 5-14yeors. ln lokes, smoll Lohontons feed on insects ond zooplonkton while lorger Lohonions feed on other fish. Body spots ore the diognostic chorocter thot distinguishes the Lohonion subspecies from the .l00 Poiute cutthroot. LCT typicolly hove 50 to or more lorge, roundish-block spots thot cover their entire bodies ond their bodies ore typicolly elongoted. o Like other cufihroot trout, they hove bosibronchiol teeth (on the bose of tongue), ond red sloshes under their iow (hence the nome "cutthroot"). o Femole sexuol moturity is reoch between oges of 3 ond 4, while moles moture ot 2 or 3 yeors of oge. o Generolly, they occur in cool flowing woier with ovoiloble cover of well-vegetoted ond stoble streom bonks, in oreos where there ore streom velocity breoks, ond in relotively silt free, rocky riffle-run oreos. -
The Walker Basin, Nevada and California: Physical Environment, Hydrology, and Biology
EXHIBIT 89 The Walker Basin, Nevada and California: Physical Environment, Hydrology, and Biology Dr. Saxon E. Sharpe, Dr. Mary E. Cablk, and Dr. James M. Thomas Desert Research Institute May 2007 Revision 01 May 2008 Publication No. 41231 DESERT RESEARCH INSTITUTE DOCUMENT CHANGE NOTICE DRI Publication Number: 41231 Initial Issue Date: May 2007 Document Title: The Walker Basin, Nevada and California: Physical Environment, Hydrology, and Biology Author(s): Dr. Saxon E. Sharpe, Dr. Mary E. Cablk, and Dr. James M. Thomas Revision History Revision # Date Page, Paragraph Description of Revision 0 5/2007 N/A Initial Issue 1.1 5/2008 Title page Added revision number 1.2 “ ii Inserted Document Change Notice 1.3 “ iv Added date to cover photo caption 1.4 “ vi Clarified listed species definition 1.5 “ viii Clarified mg/L definition and added WRPT acronym Updated lake and TDS levels to Dec. 12, 2007 values here 1.6 “ 1 and throughout text 1.7 “ 1, P4 Clarified/corrected tui chub statement; references added 1.8 “ 2, P2 Edited for clarification 1.9 “ 4, P2 Updated paragraph 1.10 “ 8, Figure 2 Updated Fig. 2007; corrected tui chub spawning statement 1.11 “ 10, P3 & P6 Edited for clarification 1.12 “ 11, P1 Added Yardas (2007) reference 1.13 “ 14, P2 Updated paragraph 1.14 “ 15, Figure 3 & P3 Updated Fig. to 2007; edited for clarification 1.15 “ 19, P5 Edited for clarification 1.16 “ 21, P 1 Updated paragraph 1.17 “ 22, P 2 Deleted comma 1.18 “ 26, P1 Edited for clarification 1.19 “ 31-32 Clarified/corrected/rearranged/updated Walker Lake section 1.20 -
A List of Common and Scientific Names of Fishes from the United States And
t a AMERICAN FISHERIES SOCIETY QL 614 .A43 V.2 .A 4-3 AMERICAN FISHERIES SOCIETY Special Publication No. 2 A List of Common and Scientific Names of Fishes -^ ru from the United States m CD and Canada (SECOND EDITION) A/^Ssrf>* '-^\ —---^ Report of the Committee on Names of Fishes, Presented at the Ei^ty-ninth Annual Meeting, Clearwater, Florida, September 16-18, 1959 Reeve M. Bailey, Chairman Ernest A. Lachner, C. C. Lindsey, C. Richard Robins Phil M. Roedel, W. B. Scott, Loren P. Woods Ann Arbor, Michigan • 1960 Copies of this publication may be purchased for $1.00 each (paper cover) or $2.00 (cloth cover). Orders, accompanied by remittance payable to the American Fisheries Society, should be addressed to E. A. Seaman, Secretary-Treasurer, American Fisheries Society, Box 483, McLean, Virginia. Copyright 1960 American Fisheries Society Printed by Waverly Press, Inc. Baltimore, Maryland lutroduction This second list of the names of fishes of The shore fishes from Greenland, eastern the United States and Canada is not sim- Canada and the United States, and the ply a reprinting with corrections, but con- northern Gulf of Mexico to the mouth of stitutes a major revision and enlargement. the Rio Grande are included, but those The earlier list, published in 1948 as Special from Iceland, Bermuda, the Bahamas, Cuba Publication No. 1 of the American Fisheries and the other West Indian islands, and Society, has been widely used and has Mexico are excluded unless they occur also contributed substantially toward its goal of in the region covered. In the Pacific, the achieving uniformity and avoiding confusion area treated includes that part of the conti- in nomenclature. -
Lake Tahoe Region Aquatic Invasive Species Management Plan CALIFORNIA ‐ NEVADA
Lake Tahoe Region Aquatic Invasive Species Management Plan CALIFORNIA ‐ NEVADA DRAFT September 2009 Pending approval by the Aquatic Nuisance Species Task Force This Aquatic Invasive Species Management Plan is part of a multi-stakeholder collaborative effort to minimize the deleterious effects of nuisance and invasive aquatic species in the Lake Tahoe Region. This specific product is authorized pursuant to Section 108 of Division C of the Consolidated Appropriations Act of 2005, Public Law 108-447 and an interagency agreement between the U.S. Army Corps of Engineers and the California Tahoe Conservancy. This product was prepared by: Suggested citation: USACE. 2009. Lake Tahoe Region Aquatic Invasive Species Management Plan, California - Nevada. 84 pp + Appendices. Cover photo credits: Lake Tahoe shoreline, Toni Pennington (Tetra Tech, Inc.); curlyleaf pondweed, Steve Wells (PSU); Asian clams, Brant Allen (UCD); bullfrog (USGS), zebra mussels (USGS); bluegill and largemouth bass (USACE) ii i Table of Contents Acknowledgements................................................................................................................ iii Acronyms ............................................................................................................................... iv Glossary.................................................................................................................................. vi Executive Summary ........................................................................................................... -
Microsoft Outlook
Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA). -
Proceedings Template
Canadian Science Advisory Secretariat (CSAS) Research Document 2019/033 Central and Arctic Region Information in support of a Recovery Potential Assessment of Redside Dace (Clinostomus elongatus) in Canada Dominique E. Lebrun, Lynn D. Bouvier, Monica Choy, David W. Andrews, and D. Andrew R. Drake Fisheries and Oceans Canada Great Lakes Laboratory for Fisheries and Aquatic Sciences 867 Lakeshore Road Burlington, ON, L7S 1A1 September 2020 Foreword This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations. Published by: Fisheries and Oceans Canada Canadian Science Advisory Secretariat 200 Kent Street Ottawa ON K1A 0E6 http://www.dfo-mpo.gc.ca/csas-sccs/ [email protected] © Her Majesty the Queen in Right of Canada, 2020 ISSN 1919-5044 Correct citation for this publication: Lebrun, D.E., Bouvier, L.D., Choy, M., Andrews, D.W., and Drake, D. Andrew R. 2020. Information in support of a Recovery Potential Assessment of Redside Dace (Clinostomus elongatus) in Canada. DFO Can. Sci. Advis. Sec. Res. Doc. 2019/033. v + 49 p. Aussi disponible en français : Lebrun, D.E., Bouvier, L.D., Choy, M., Andrews, D.W., and Drake, D. Andrew R. 2020. Information à l’appui d’une évaluation du potentiel de rétablissement du méné long (Clinostomus elongatus) au Canada. Secr. can. de consult. sci. du MPO. Doc. de rech. -
Joseph R. Tomelleri 28 27
Nevada 29 34 35 32 2 31 30 3 1 33 20 18 6 4 19 5 8 17 16 12 7 23 15 24 9 21 25 22 10 26 14 13 11 41 36 39 40 38 37 Illustrations by JOSEPH R. TOMELLERI 28 27 N A T I V E F I S H E S O F N E V A D A G R O U P IN G S B Y F A M ILY KILLIFISHES ∙ Cyprinodontidae 11. Big Spring spinedace ∙ Lepidomeda mollispinis pratensis† POOLFISHES ∙ Empetrichthyidae 31. Mountain sucker ∙ Catostomus platyrhynchus 1. Devils Hole pupfish ∙ Cyprinodon diabolis* 12. Moapa dace ∙ Moapa coriacea* 22. Preston White River springfish ∙ Crenichthys baileyi albivallis 32. Warner sucker ∙ Catostomus warnerensis† 2. Ash Meadows Amargosa pupfish ∙ Cyprinodon nevadensis mionectes* 13. Woundfin ∙ Plagopterus argentissimus* 23. Hiko White River springfish ∙ Crenichthys baileyi grandis* 33. Wall Canyon sucker ∙ Catostomus sp. 3. Warm Springs Amargosa pupfish ∙ Cyprinodon nevadensis pectoralis* 14. Colorado pikeminnow ∙ Ptychocheilus lucius* 24. Moapa White River springfish ∙ Crenichthys baileyi moapae 34. Cui-ui ∙ Chasmistes cujus* 25. Railroad Valley springfish ∙ Crenichthys nevadae† 35. Razorback sucker ∙ Xyrauchen texanus* MINNOWS ∙ Cyprinidae 15. Northern pikeminnow ∙ Ptychocheilus oregonesis 26. Pahrump poolfish ∙ Empetrichthys latos* 4. Desert dace ∙ Eremichthys acros† 16. Relict dace ∙ Relictus solitarius TROU T S ∙ Salmonidae 17. Moapa speckled dace ∙ Rhinichthys osculus moapae 5. Humpback chub ∙ Gila cypha* S CUL P INS ∙ Cottidae 36. Mountain whitefish ∙ Prosopium williamsoni 18. Ash Meadows speckled dace ∙ Rhinichthys osculus nevadensis* † 6. Bonytail chub ∙ Gila elegans* 27. Mottled sculpin ∙ Cottus bairdii 37. Lahontan cutthroat trout ∙ Onchorhynchus clarkii henshawi 19. White River speckled dace ∙ Rhinichthys osculus ssp. -
Basin-Wide Native Non-Game Fish Assessment
Basin‐wide Native Non‐game Fish Assessment 2011 Annual Report Revised on February 21, 2013 USDA Forest Service, Lake Tahoe Basin Management Unit Written by Christopher Lemmers (Biological Science Technician) and Maura Santora (Aquatic Biologist) Reviewed by Sarah Muskopf (Acting Forest Aquatic Biologist) and Shana Gross (Forest Ecologist) Approved by Holly Eddinger (Biological Program Leader) Original Version: April 19, 2012 Revised Version: February 21, 2013 1 TABLE OF CONTENTS Summary ....................................................................................................................................................... 2 Introduction .................................................................................................................................................. 3 Methods ........................................................................................................................................................ 5 Results ........................................................................................................................................................... 7 Discussion ................................................................................................................................................... 11 Recommendations ...................................................................................................................................... 13 Works Cited ................................................................................................................................................ -
A List of the Freshwater and Anadromous Fishes of California ’
4 CALIFORNIA FISH AND GAME Ca/if. fish and Game 67 ( 1) : 4-38 1981 A LIST OF THE FRESHWATER AND ANADROMOUS FISHES OF CALIFORNIA ’ ’ LEO SHAPOVALOV’, ALMO I. CORDONE, AND WILLIAM A. DILL’ Inland Fisheries Branch California Department of Fish and Game 1416 Ninth Street Sacramento, California 95814 TABLE OF CONTENTS Page ABSTRACT . 4 INTRODUCTION ..: . 4 PURPOSE . 5 SCIENTIFIC NAMES . 5 COMMON NAMES . 7 SCOPE . 9 Marine Fishes Successfully fntroduced into the Salton Sea . 9 Forms and Names New to the Main List Since 1959 . 10 Forms and Names Removed from the Main List Since 1959 . 21 REVISED MAIN LIST . 23 Native Species and Established Exotic Species . 23 REVISED SUPPLEMENTARY LISTS . 27 Native Species-Extinct in California . 27 Exotic Species-Unsuccessfully introduced or of Uncertain Status . ...29 ACKNOWLEDGMENTS . 35 REFERENCES . 35 This list is the second revision of the check list of the freshwater, anadromous, and euryhaline fishes of California published by Shapovalov and Dill (1950) and first revised by Shapovalov, Dill, and Cordone (1959). The present list consists of a main list of native and established exotic species and five supplementary lists: (i) native species extinct in California, (ii) exotic species unsuccessfully introduced or of uncertain status, (iii) marine fishes successfully introduced into the Salton Sea, (iv) forms and names new to the main list since 1959, and (v) forms and names removed from the main list since 1959. The main list is composed of 124 full species, compris- ing 66 native freshwater and anadromous species, 13 native euryhaline or marine species which occasionally penetrate into fresh water, and 45 introduced species. -
Effect of Ultraviolet Radiation (UVR) on the Life Stages of Fish
Effect of ultraviolet radiation (UVR) on the life stages of fish Item Type Article Authors Alves, Ricardo; Agusti, Susana Citation Alves, R. N., & Agustí, S. (2020). Effect of ultraviolet radiation (UVR) on the life stages of fish. Reviews in Fish Biology and Fisheries. doi:10.1007/s11160-020-09603-1 Eprint version Publisher's Version/PDF DOI 10.1007/s11160-020-09603-1 Publisher Springer Nature Journal Reviews in Fish Biology and Fisheries Rights This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. Download date 26/09/2021 00:14:33 Item License https://creativecommons.org/licenses/by/4.0 Link to Item http://hdl.handle.net/10754/662898 Rev Fish Biol Fisheries https://doi.org/10.1007/s11160-020-09603-1 (0123456789().,-volV)( 0123456789().,-volV) REVIEWS Effect of ultraviolet radiation (UVR) on the life stages of fish Ricardo N. Alves . Susana Agustı´ Received: 31 August 2019 / Accepted: 24 April 2020 Ó The Author(s) 2020 Abstract Current levels of Ultraviolet Radiation with excessive UVR exposure are also revised. -
Seasonal Distribution and Habitat Selection by the Redside Shiner, Richardsonius Balteatus, in a Small Oregon Stream
AN ABSTRACT OF THE THESIS OF Kenneth J. Rodnick for the degree of Master of Science in Department of Fisheries presented on March 11, 1983 Title: Seasonal distribution and habitat selection by the redside shiner, Richardsonius balteatus, in a small Oregon stream Redacted for Privacy Abstract approved: Hiram W. Li Seasonal habitat availability, utilization, and selection byyoung of the year (<25 mm) and adult (>25 mm) redside shiner, Richardsonius balteatus, were studied for 1 year in sections of Greasy Creek, Benton County, Oregon. Intensive stream mapping procedures and snorkling observations provided most of the quantitative measures for habitat availability and utilization respectively. A multivariate discriminant analysis and classification suggested spatial segregation of young of the year and adult redside shiners along gradients of water velocity and depth of the water column. Throughout the year, young redside shiners occupied shallower water than adults and utilized areas with lower mean water velocities. Associated with increased winter stream flows and lowered water temperatures (< 100 C), redside shiners were inactive and found in habitats offering the most cover and refuge from current. Overwintering areas populated by redside shiners included undercut banks, root wads, bank failures, fallen trees, and backwaters. During the transitional period between winter andsummer, adult redside shiners shifted from overwintering habitats to the fasterwater of the main channel. Activities related to spawning and aggressive defense of space accompanied this shift. Young redside shiners continued to utilize protected margins. A multivariate discriminant analysis and classification comparing available and utilized stream habitats provided indices ofhabitat selection. Both young of the year and adult redside shinerswere relatively selective in the stream habitats they utilized. -
Biological Condition Index Development for the Lower Truckee River and Eastern Sierra Nevada Rivers: Fish Assemblage
Biological Condition Index Development for the Lower Truckee River and Eastern Sierra Nevada Rivers: Fish Assemblage Prepared by: Robert M. Hughes and Thomas R. Whittier Department of Fisheries and Wildlife Oregon State University 200 SW 35th Street Corvallis, Oregon 97333 541 754 4516 [email protected] Gregg A. Lomnicky Dynamac Corporation 200 SW 35th Street Corvallis, Oregon 97333 Prepared for: Pyramid Lake Paiute Tribe Nevada Division of Environmental Protection April 2005 Executive Summary We developed a fish assemblage IBI for western Nevada rivers and applied it to the Truckee River. Available state and federal fish assemblage data from the Carson, Walker, and upper Truckee rivers were analyzed to select and score metrics. Selected metrics included number of native species, % sculpin individuals, % mountain whitefish individuals, evidence of sculpin and whitefish reproduction, % cutthroat trout individuals, % sensitive individuals, % mountain sucker individuals, % omnivorous individuals, % highly tolerant individuals, % alien individuals, and % external anomalies. Metrics were scored continuously from 0-1 and the IBI was scored from 0-10 by summing the metrics. Those metrics and scoring criteria were then applied to existing fish assemblage data for the lower Truckee River. The IBI declined from the Nevada border to Wadsworth, with sharp declines at river miles 57 (Oxbow), 69 (Mustang), and 87 (Painted Rock). Revisits to the same sites indicated that IBI scores may vary by 1.0 as a result of temporal and sampling variation. We consider median IBI scores >7.5 as acceptable, 5.0-7.4 as marginally damaged, and <5.0 as damaged. However, these are only guidelines and 2.0 changes in IBI scores over space or time are probably biologically significant.