Mountain Sucker (Catostomus Platyrhynchus): a Technical Conservation Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Mountain Sucker (Catostomus Platyrhynchus): a Technical Conservation Assessment Mountain Sucker (Catostomus platyrhynchus): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project August 23, 2006 Laura Thel Belica1 and Nathan P. Nibbelink, Ph.D.2 with a life cycle model by David McDonald, Ph.D.3 11623 Steele Street, Laramie, WY 82070 2University of Georgia, Warnell School of Forestry and Natural Resources, Green St / DW Brooks Drive, Athens, GA 30602-2152 3University of Wyoming, Department of Zoology, 1000 University Ave, Dept 3166, Laramie, WY 82071 Peer Review Administered by American Fisheries Society Belica, L.T. and N.P. Nibbelink. (2006, August 23). Mountain Sucker (Catostomus platyrhynchus): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http:// www.fs.fed.us/r2/projects/scp/assessments/mountainsucker.pdf [date of access]. ACKNOWLEDGMENTS We thank the many biologists and managers from Colorado, Nebraska, South Dakota, and Wyoming and from the national forests within Region 2 who provided information about mountain sucker populations, status, and management in their jurisdictions. We also extend our appreciation to David B. McDonald at the University of Wyoming for the population demographic matrix analysis he provided. We especially thank Richard Vacirca and Gary Patton of the USDA Forest Service for their review of this species assessment and help in bringing this report to completion. We also thank Dr. Edward J. Peters, Professor Emeritus of the University of Nebraska-Lincoln and an anonymous reviewer for their comments and suggestions. AUTHORS’ BIOGRAPHIES Laura Thel Belica received her Master of Science Degree in Zoology and Physiology from the University of Wyoming in 2003 (as L. A. Thel). Her research interests center around the ecology of fishes, hydrology, and watershed management, especially as these are related to the management of aquatic ecosystems and native fishes. Nathan P. Nibbelink received an M.S. in Limnology and Oceanography from the University of Wisconsin- Madison and a Ph.D. in Zoology & Physiology from the University of Wyoming. He is currently an Assistant Professor at the University of Georgia’s Warnell School of Forestry and Natural Resources. His Ph.D. work focused on spatially explicit patterns in fish distributions in the Rocky Mountains. His current research focuses on the use of spatially explicit models for investigating the influence of landscape change on animal populations. COVER ILLUSTRATION CREDIT Mountain sucker (Catostomus platyrhynchus). Illustration by © Joseph Tomelleri. 2 3 SUMMARY OF KEY COMPONENTS FOR CONSERVATION OF THE MOUNTAIN SUCKER Status The mountain sucker (Catostomus platyrhynchus) is found throughout much of western North America, ranging from southern Canada in the north to Utah in the south, and from eastern California in the west to western South Dakota in the east. It is widely distributed in some parts of its range and sparsely distributed in others. In USDA Forest Service, Rocky Mountain Region (Region 2), the mountain sucker occurs throughout Wyoming and in northwestern Colorado and western South Dakota. Information regarding population trends of mountain sucker throughout its range is lacking, but the species appears to be stable in some regions while declining in others. Several state and federal agencies consider the mountain sucker to be a sensitive species, or species of concern, based on its rarity in some areas, apparent population declines, its sensitivity to further habitat loss, and the lack of knowledge of population trends at local and regional scales. Primary Threats The main threats to the mountain sucker generally result from anthropogenic activities, with geographically isolated populations or those that previous anthropogenic activities have adversely affected being the most susceptible to extirpation. Habitat loss due to stream impoundment has been the cause of mountain sucker population declines in some drainages, while habitat degradation from increased sedimentation has also contributed to observed declines in others. Construction of passage barriers, such as dams and culverts, results in population and habitat fragmentation, leaving populations vulnerable to extirpation. Although less well understood, the introduction of non-native fishes also appears to threaten mountain sucker populations, primarily through increased predation, but also via increased competition. Hybridization may be a concern for some populations, but little is known about hybridization between mountain sucker and other sucker species found in Region 2. In the past, fisheries management projects that have used piscicides to control unwanted species have posed a threat to mountain sucker populations. However current practices, which include efforts to salvage native non-game species, have reduced that threat within Region 2. Primary Conservation Elements, Management Implications and Considerations There is insufficient information regarding mountain sucker populations in Region 2 to identify population trends or to assess the impacts of particular land and water management activities on the species. Suggested priorities for conservation and management of the mountain sucker include better documentation of its occurrence in Region 2 and the initiation of long-term monitoring programs for select populations. Coordination with state and other federal agencies would be beneficial in efforts to update mountain sucker distributions at local levels in Region 2 and in establishing monitoring programs. Knowledge of mountain sucker habitat associations and movement patterns, especially dispersal and seasonal movements, is necessary for assessing the impacts of land and water management activities that could result in habitat loss, degradation, or fragmentation. The matrix demographic model suggested that mountain sucker population persistence is vulnerable to variations in survival rates, particularly of young age- classes, age-0 up to the age of female recruitment into the breeding population at around age-3 or age-4. Consequently, a better understanding is needed of mountain sucker habitat requirements, particularly for young and young adults, to understand population persistence in the long term. Considering the limited information available on the mountain sucker, conservation and management efforts should be directed to inventorying populations and maintaining stream habitat quality and connectivity where populations are known to occur on or downstream of National Forest System lands in Region 2. 2 3 TABLE OF CONTENTS ACKNOWLEDGMENTS ..............................................................................................................................................2 AUTHORS’ BIOGRAPHIES .........................................................................................................................................2 COVER ILLUSTRATION CREDIT ..............................................................................................................................2 SUMMARY OF KEY COMPONENTS FOR CONSERVATION OF THE MOUNTAIN SUCKER ...........................3 Status..........................................................................................................................................................................3 Primary Threats..........................................................................................................................................................3 Primary Conservation Elements, Management Implications and Considerations.....................................................3 LIST OF TABLES AND FIGURES ...............................................................................................................................6 INTRODUCTION ..........................................................................................................................................................7 Goal............................................................................................................................................................................7 Scope, Uncertainty, and Limitations ..........................................................................................................................7 Web Publication and Peer Review .............................................................................................................................7 MANAGEMENT STATUS AND NATURAL HISTORY .............................................................................................7 Management Status ....................................................................................................................................................7 Federal Endangered Species Act ...........................................................................................................................7 Natural Heritage Ranks .........................................................................................................................................7 USDA Forest Service ............................................................................................................................................8 Bureau of Land Management................................................................................................................................8 State agencies ........................................................................................................................................................8
Recommended publications
  • Seasonal and Diel Movements and Habitat Use of Robust Redhorses in the Lower Savannah River. Georgia, and South Carolina
    Transactions of the American FisheriesSociety 135:1145-1155, 2006 [Article] © Copyright by the American Fisheries Society 2006 DO: 10.1577/705-230.1 Seasonal and Diel Movements and Habitat Use of Robust Redhorses in the Lower Savannah River, Georgia and South Carolina TIMOTHY B. GRABOWSKI*I Department of Biological Sciences, Clemson University, Clemson, South Carolina,29634-0326, USA J. JEFFERY ISELY U.S. Geological Survey, South Carolina Cooperative Fish and Wildlife Research Unit, Clemson University, Clemson, South Carolina, 29634-0372, USA Abstract.-The robust redhorse Moxostonta robustum is a large riverine catostomid whose distribution is restricted to three Atlantic Slope drainages. Once presumed extinct, this species was rediscovered in 1991. Despite being the focus of conservation and recovery efforts, the robust redhorse's movements and habitat use are virtually unknown. We surgically implanted pulse-coded radio transmitters into 17 wild adults (460-690 mm total length) below the downstream-most dam on the Savannah River and into 2 fish above this dam. Individuals were located every 2 weeks from June 2002 to September 2003 and monthly thereafter to May 2005. Additionally, we located 5-10 individuals every 2 h over a 48-h period during each season. Study fish moved at least 24.7 ± 8.4 river kilometers (rkm; mean ± SE) per season. This movement was generally downstream except during spring. Some individuals moved downstream by as much as 195 rkm from their release sites. Seasonal migrations were correlated to seasonal changes in water temperature. Robust redhorses initiated spring upstream migrations when water temperature reached approximately 12'C. Our diel tracking suggests that robust redhorses occupy small reaches of river (- 1.0 rkm) and are mainly active diumally.
    [Show full text]
  • In the Weber River, Utah
    An International Periodical Promoting Conservation and Biodiversity Southwestern United States—Mexico—Central America Una Revista Internacional para Fomentar la Conservación y Biodiversidad El Suroeste de USA—México—Centroamérica STATUS AND STRUCTURE OF TWO POPULATIONS OF THE BLUEHEAD SUCKER (CATOSTOMUS DISCOBOLUS) IN THE WEBER RIVER, UTAH P. A ARON WEBBER,PAUL D. THOMPSON,* AND PHAEDRA BUDY Colorado River Fishery Project, United States Fish and Wildlife Service, 1380 South 2350 West, Vernal, UT 84078 (PAW) Utah Division of Wildlife Resources, 515 East 5300 South, Ogden, UT 84405 (PDT) United States Geological Survey, Utah Cooperative Fish and Wildlife Research Unit, Department of Watershed Sciences, Utah State University, Logan, UT 8432 (PB) * Correspondent: [email protected] THE SOUTHWESTERN NATURALIST 57(3): 267–276 SEPTEMBER 2012 STATUS AND STRUCTURE OF TWO POPULATIONS OF THE BLUEHEAD SUCKER (CATOSTOMUS DISCOBOLUS) IN THE WEBER RIVER, UTAH P. A ARON WEBBER,PAUL D. THOMPSON,* AND PHAEDRA BUDY Colorado River Fishery Project, United States Fish and Wildlife Service, 1380 South 2350 West, Vernal, UT 84078 (PAW) Utah Division of Wildlife Resources, 515 East 5300 South, Ogden, UT 84405 (PDT) United States Geological Survey, Utah Cooperative Fish and Wildlife Research Unit, Department of Watershed Sciences, Utah State University, Logan, UT 8432 (PB) * Correspondent: [email protected] ABSTRACT—We compared two populations of the bluehead sucker (Catostomus discobolus) during 2007–2009 in the Weber River, Davis, Summit, and Weber counties, Utah. We estimated 225 and 546 individuals in these populations. Based on recaptured, PIT-tagged fish, annual survival of adults (202–575 mm total length) was high (77%); however, our top model indicated mortality increased with size (i.e., senescence).
    [Show full text]
  • Wollaston Road
    WOLLASTON LAKE ROAD ENVIRONMENTAL IMPACT STATEMENT Biophysical Environment 4.0 Biophysical Environment 4.1 INTRODUCTION This section provides a description of the biophysical characteristics of the study region. Topics include climate, geology, terrestrial ecology, groundwater, surface water and aquatic ecology. These topics are discussed at a regional scale, with some topics being more focused on the road corridor area (i.e., the two route options). Information included in this section was obtained in full or part from direct field observations as well as from reports, files, publications, and/or personal communications from the following sources: Saskatchewan Research Council Canadian Wildlife Service Beverly and Qamanirjuaq Caribou Management Board Reports Saskatchewan Museum of Natural History W.P. Fraser Herbarium Saskatchewan Environment Saskatchewan Conservation Data Centre Environment Canada Private Sector (Consultants) Miscellaneous publications 4.2 PHYSIOGRAPHY Both proposed routes straddle two different ecozones. The southern portion is located in the Wollaston Lake Plain landscape area within the Churchill River Upland ecoregion of the Boreal Shield ecozone. The northern portion is located in the Nueltin Lake Plain landscape area within the Selwyn Lake Upland ecoregion of the Taiga Shield ecozone (Figure 4.1). (SKCDC, 2002a; Acton et al., 1998; Canadian Biodiversity, 2004; MDH, 2004). Wollaston Lake lies on the Precambrian Shield in northern Saskatchewan and drains through two outlets. The primary Wollaston Lake discharge is within the Hudson Bay Drainage Basin, which drains through the Cochrane River, Reindeer Lake and into the Churchill River system which ultimately drains into Hudson Bay. The other drainage discharge is via the Fond du Lac River to Lake Athabasca, and thence to the Arctic Ocean.
    [Show full text]
  • Developing Fish Consumption Advice by a Participatory Approach for The
    Associations Between Omega-3 fatty Acids, Selenium Content, and Mercury Levels in Wild-harvested Fish from the Dehcho Region, Northwest Territories, Canada Ellen S. Reyes1, Juan J. Aristizabal Henao2, Katherine M. Kornobis3, Rhona M. Hanning1, Shannon E. Majowicz1, Karsten Liber4, Ken D. Stark2, George Low5, Heidi K. Swanson3, Brian D. Laird1 1School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada; 2Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada; 3Department of Biology, University of Waterloo, Waterloo, ON, Canada; 4Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; 5Aboriginal Aquatic Resources and Ocean Management, Hay River, NWT, Canada INTRODUCTION AND RESEARCH OBJECTIVES RESULTS AND DISCUSSION Fish provide a rich variety of important nutrients [e.g. omega-3 fatty acids (n-3 FAs) and Table 1. Total Mercury and Selenium Concentrations by Fish Species Table 2. Fatty Acid Composition by Fish Species selenium (Se)]. The intake of n-3 FAs from fish consumption promotes healthy growth Mercury Selenium Total Omega-3 Fatty Acids EPA+DHA Omega-6 to Omega-3 Ratios and development in infants and children (SanGiovanni & Chew, 2005), supports optimal Fish Range Range Fish Range Mean ± SD Range Mean ± SD n Mean ± S.D. (ppm) n Mean ± S.D. (ppm) n Range Mean ± SD cognitive health in older adults (Dangour & Uauy, 2008), and reduces the risk of Species (ppm) (ppm) Species (mg/100g) (mg/100g) (mg/100g) (mg/100g) cardiovascular disease (Calder, 2004). The intake of the essential
    [Show full text]
  • Roundtail Chub (Gila Robusta Robusta): a Technical Conservation Assessment
    Roundtail Chub (Gila robusta robusta): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project May 3, 2005 David E. Rees, Jonathan A. Ptacek, and William J. Miller Miller Ecological Consultants, Inc. 1113 Stoney Hill Drive, Suite A Fort Collins, Colorado 80525-1275 Peer Review Administered by American Fisheries Society Rees, D.E., J.A. Ptacek, and W.J. Miller. (2005, May 3). Roundtail Chub (Gila robusta robusta): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http:// www.fs.fed.us/r2/projects/scp/assessments/roundtailchub.pdf [date of access]. ACKNOWLEDGMENTS We would like to thank those people who promoted, assisted, and supported this species assessment for the Region 2 USDA Forest Service. Ryan Carr and Kellie Richardson conducted preliminary literature reviews and were valuable in the determination of important or usable literature. Laura Hillger provided assistance with report preparation and dissemination. Numerous individuals from Region 2 national forests were willing to discuss the status and management of this species. Thanks go to Greg Eaglin (Medicine Bow National Forest), Dave Gerhardt (San Juan National Forest), Kathy Foster (Routt National Forest), Clay Spease and Chris James (Grand Mesa, Uncompahgre, and Gunnison National Forest), Christine Hirsch (White River National Forest), as well as Gary Patton and Joy Bartlett from the Regional Office. Dan Brauh, Lory Martin, Tom Nesler, Kevin Rogers, and Allen Zincush, all of the Colorado Division of Wildlife, provided information on species distribution, management, and current regulations. AUTHORS’ BIOGRAPHIES David E. Rees studied fishery biology, aquatic ecology, and ecotoxicology at Colorado State University where he received his B.S.
    [Show full text]
  • Edna Assay Development
    Environmental DNA assays available for species detection via qPCR analysis at the U.S.D.A Forest Service National Genomics Center for Wildlife and Fish Conservation (NGC). Asterisks indicate the assay was designed at the NGC. This list was last updated in June 2021 and is subject to change. Please contact [email protected] with questions. Family Species Common name Ready for use? Mustelidae Martes americana, Martes caurina American and Pacific marten* Y Castoridae Castor canadensis American beaver Y Ranidae Lithobates catesbeianus American bullfrog Y Cinclidae Cinclus mexicanus American dipper* N Anguillidae Anguilla rostrata American eel Y Soricidae Sorex palustris American water shrew* N Salmonidae Oncorhynchus clarkii ssp Any cutthroat trout* N Petromyzontidae Lampetra spp. Any Lampetra* Y Salmonidae Salmonidae Any salmonid* Y Cottidae Cottidae Any sculpin* Y Salmonidae Thymallus arcticus Arctic grayling* Y Cyrenidae Corbicula fluminea Asian clam* N Salmonidae Salmo salar Atlantic Salmon Y Lymnaeidae Radix auricularia Big-eared radix* N Cyprinidae Mylopharyngodon piceus Black carp N Ictaluridae Ameiurus melas Black Bullhead* N Catostomidae Cycleptus elongatus Blue Sucker* N Cichlidae Oreochromis aureus Blue tilapia* N Catostomidae Catostomus discobolus Bluehead sucker* N Catostomidae Catostomus virescens Bluehead sucker* Y Felidae Lynx rufus Bobcat* Y Hylidae Pseudocris maculata Boreal chorus frog N Hydrocharitaceae Egeria densa Brazilian elodea N Salmonidae Salvelinus fontinalis Brook trout* Y Colubridae Boiga irregularis Brown tree snake*
    [Show full text]
  • Endangered Species (Protection, Conser Va Tion and Regulation of Trade)
    ENDANGERED SPECIES (PROTECTION, CONSER VA TION AND REGULATION OF TRADE) THE ENDANGERED SPECIES (PROTECTION, CONSERVATION AND REGULATION OF TRADE) ACT ARRANGEMENT OF SECTIONS Preliminary Short title. Interpretation. Objects of Act. Saving of other laws. Exemptions, etc., relating to trade. Amendment of Schedules. Approved management programmes. Approval of scientific institution. Inter-scientific institution transfer. Breeding in captivity. Artificial propagation. Export of personal or household effects. PART I. Administration Designahem of Mana~mentand establishment of Scientific Authority. Policy directions. Functions of Management Authority. Functions of Scientific Authority. Scientific reports. PART II. Restriction on wade in endangered species 18. Restriction on trade in endangered species. 2 ENDANGERED SPECIES (PROTECTION, CONSERVATION AND REGULA TION OF TRADE) Regulation of trade in species spec fled in the First, Second, Third and Fourth Schedules Application to trade in endangered specimen of species specified in First, Second, Third and Fourth Schedule. Export of specimens of species specified in First Schedule. Importation of specimens of species specified in First Schedule. Re-export of specimens of species specified in First Schedule. Introduction from the sea certificate for specimens of species specified in First Schedule. Export of specimens of species specified in Second Schedule. Import of specimens of species specified in Second Schedule. Re-export of specimens of species specified in Second Schedule. Introduction from the sea of specimens of species specified in Second Schedule. Export of specimens of species specified in Third Schedule. Import of specimens of species specified in Third Schedule. Re-export of specimens of species specified in Third Schedule. Export of specimens specified in Fourth Schedule. PART 111.
    [Show full text]
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • Three-Species Investigations Kevin Thompson Aquatic Research
    Three-Species Investigations Kevin Thompson Aquatic Research Scientist Job Progress Report Colorado Parks & Wildlife Aquatic Research Section Fort Collins, Colorado May 2017 STATE OF COLORADO John W. Hickenlooper, Governor COLORADO DEPARTMENT OF NATURAL RESOURCES Bob Randall, Executive Director COLORADO PARKS & WILDLIFE Bob Broscheid, Director WILDLIFE COMMISSION Chris Castilian, Chair Robert William Bray Jeanne Horne, Vice-Chair John V. Howard, Jr. James C. Pribyl, Secretary James Vigil William G. Kane Dale E. Pizil Robert “Dean” Wingfield Michelle Zimmerman Alexander Zipp Ex Officio/Non-Voting Members: Don Brown, Bob Randall and Bob Broscheid AQUATIC RESEARCH STAFF George J. Schisler, Aquatic Research Leader Kelly Carlson, Aquatic Research Program Assistant Peter Cadmus, Aquatic Research Scientist/Toxicologist, Water Pollution Studies Eric R. Fetherman, Aquatic Research Scientist, Salmonid Disease Studies Ryan Fitzpatrick, Aquatic Research Scientist, Eastern Plains Native Fishes Eric E. Richer, Aquatic Research Scientist/Hydrologist, Stream Habitat Restoration Matthew C. Kondratieff, Aquatic Research Scientist, Stream Habitat Restoration Dan Kowalski, Aquatic Research Scientist, Stream & River Ecology Adam Hansen, Aquatic Research Scientist, Coldwater Lakes and Reservoirs Kevin B. Rogers, Aquatic Research Scientist, Colorado Cutthroat Studies Kevin G. Thompson, Aquatic Research Scientist, 3-Species and Boreal Toad Studies Andrew J. Treble, Aquatic Research Scientist, Aquatic Data Management and Analysis Brad Neuschwanger, Hatchery Manager,
    [Show full text]
  • Fish Species of Saskatchewan
    Introduction From the shallow, nutrient -rich potholes of the prairies to the clear, cool rock -lined waters of our province’s north, Saskatchewan can boast over 50,000 fish-bearing bodies of water. Indeed, water accounts for about one-eighth, or 80,000 square kilometers, of this province’s total surface area. As numerous and varied as these waterbodies are, so too are the types of fish that inhabit them. In total, Saskatchewan is home to 67 different fish species from 16 separate taxonomic families. Of these 67, 58 are native to Saskatchewan while the remaining nine represent species that have either been introduced to our waters or have naturally extended their range into the province. Approximately one-third of the fish species found within Saskatchewan can be classed as sportfish. These are the fish commonly sought out by anglers and are the best known. The remaining two-thirds can be grouped as minnow or rough-fish species. The focus of this booklet is primarily on the sportfish of Saskatchewan, but it also includes information about several rough-fish species as well. Descriptions provide information regarding the appearance of particular fish as well as habitat preferences and spawning and feeding behaviours. The individual species range maps are subject to change due to natural range extensions and recessions or because of changes in fisheries management. "...I shall stay him no longer than to wish him a rainy evening to read this following Discourse; and that, if he be an honest Angler, the east wind may never blow when he goes a -fishing." The Compleat Angler Izaak Walton, 1593-1683 This booklet was originally published by the Saskatchewan Watershed Authority with funds generated from the sale of angling licences and made available through the FISH AND WILDLIFE DEVELOPMENT FUND.
    [Show full text]
  • Lake Tahoe Fish Species
    Description: o The Lohonton cutfhroot trout (LCT) is o member of the Solmonidqe {trout ond solmon) fomily, ond is thought to be omong the most endongered western solmonids. o The Lohonton cufihroot wos listed os endongered in 1970 ond reclossified os threotened in 1975. Dork olive bdcks ond reddish to yellow sides frequently chorocterize the LCT found in streoms. Steom dwellers reoch l0 inches in length ond only weigh obout I lb. Their life spon is less thon 5 yeors. ln streoms they ore opportunistic feeders, with diets consisting of drift orgonisms, typicolly terrestriol ond oquotic insects. The sides of loke-dwelling LCT ore often silvery. A brood, pinkish stripe moy be present. Historicolly loke dwellers reoched up to 50 inches in length ond weigh up to 40 pounds. Their life spon is 5-14yeors. ln lokes, smoll Lohontons feed on insects ond zooplonkton while lorger Lohonions feed on other fish. Body spots ore the diognostic chorocter thot distinguishes the Lohonion subspecies from the .l00 Poiute cutthroot. LCT typicolly hove 50 to or more lorge, roundish-block spots thot cover their entire bodies ond their bodies ore typicolly elongoted. o Like other cufihroot trout, they hove bosibronchiol teeth (on the bose of tongue), ond red sloshes under their iow (hence the nome "cutthroot"). o Femole sexuol moturity is reoch between oges of 3 ond 4, while moles moture ot 2 or 3 yeors of oge. o Generolly, they occur in cool flowing woier with ovoiloble cover of well-vegetoted ond stoble streom bonks, in oreos where there ore streom velocity breoks, ond in relotively silt free, rocky riffle-run oreos.
    [Show full text]
  • The Walker Basin, Nevada and California: Physical Environment, Hydrology, and Biology
    EXHIBIT 89 The Walker Basin, Nevada and California: Physical Environment, Hydrology, and Biology Dr. Saxon E. Sharpe, Dr. Mary E. Cablk, and Dr. James M. Thomas Desert Research Institute May 2007 Revision 01 May 2008 Publication No. 41231 DESERT RESEARCH INSTITUTE DOCUMENT CHANGE NOTICE DRI Publication Number: 41231 Initial Issue Date: May 2007 Document Title: The Walker Basin, Nevada and California: Physical Environment, Hydrology, and Biology Author(s): Dr. Saxon E. Sharpe, Dr. Mary E. Cablk, and Dr. James M. Thomas Revision History Revision # Date Page, Paragraph Description of Revision 0 5/2007 N/A Initial Issue 1.1 5/2008 Title page Added revision number 1.2 “ ii Inserted Document Change Notice 1.3 “ iv Added date to cover photo caption 1.4 “ vi Clarified listed species definition 1.5 “ viii Clarified mg/L definition and added WRPT acronym Updated lake and TDS levels to Dec. 12, 2007 values here 1.6 “ 1 and throughout text 1.7 “ 1, P4 Clarified/corrected tui chub statement; references added 1.8 “ 2, P2 Edited for clarification 1.9 “ 4, P2 Updated paragraph 1.10 “ 8, Figure 2 Updated Fig. 2007; corrected tui chub spawning statement 1.11 “ 10, P3 & P6 Edited for clarification 1.12 “ 11, P1 Added Yardas (2007) reference 1.13 “ 14, P2 Updated paragraph 1.14 “ 15, Figure 3 & P3 Updated Fig. to 2007; edited for clarification 1.15 “ 19, P5 Edited for clarification 1.16 “ 21, P 1 Updated paragraph 1.17 “ 22, P 2 Deleted comma 1.18 “ 26, P1 Edited for clarification 1.19 “ 31-32 Clarified/corrected/rearranged/updated Walker Lake section 1.20
    [Show full text]