Science at Any Scale Learn More About How

Total Page:16

File Type:pdf, Size:1020Kb

Science at Any Scale Learn More About How Land Imaging & Weather Ball at a Glance As technologies emerge and continue to become smaller, Ball is at the forefront of miniaturizing instruments for air and space-based applications, offering new, affordable solutions to our customers while continuing to We are based in Boulder, Broomfield and deliver the high-quality data they need to perform their missions. Westminster, Colorado, with locations in Greenbelt, Maryland; Dayton, Ball designs and builds innovative remote sensing instruments, spacecraft Ohio; Albuquerque, New Mexico; and and systems that support actionable environmental intelligence. From Arlington and Chantilly, Virgina. enabling more accurate weather forecasts to delivering insightful observations of our planet, we provide decision makers the information Community Involvement they need to protect what matters most: You, your family, our nation and Our employees excel in the fields our planet. Ball Aerospace provides science at any scale. From delivering entire of science and technology to serve Landsat (Present) missions to contributing critical subsystems, engineering support, their communities around the globe. Landsat 8 & 9 NASA/USGS Missions and operations, we value our role as a mission partner and strive to From participating in NASA review • Operational Land Imagers Go Beyond®. panels to donating dollars and hours • Cryogenic Cooler for Thermal Infrared Sensors to STEM outreach – Ball is committed Ball supports the decadal process, and our extensive heritage across Sustainable Land Imaging-Technology (Present) to contributing to the larger aerospace a wide breadth of NASA science and exploration mission classes • Compact Hyperspectral Prism Spectrometer community to ensure a better tomorrow. informs our development of technology that will enable the science • Reduced Envelope Multi-spectral Imager of tomorrow. • NASA review panels • Landsat Calibration Satellite • NASA studies and working groups • TransCal • Decadal and white paper • Reduced Envelope Multi-Spectral Infrared contributions Radiometer • NASA group achievement awards and Polar Satellite Observatories other public service awards Suomi National Polar Orbiting Partnership (Present) • Professional society engagement • Spacecraft • Ozone Mapping & Profiler Suite instrument Joint Polar Satellite System-1 Present) • Spacecraft • Ozone Mapping & Profiler Suite instrument Joint Polar Satellite System-24 Future) • Ozone Mapping & Profiler Suite instruments Compact Infrared Radiometer in Space Mission Present) • Highly-calibrated infrared cubesat-compatible, miniaturized instrument STEM Outreach (2020 Space-Borne Microwave Radar Weather Systems STEM outreach Global Precipitation Measurement (Present) $701K donations • Microwave Imager Images (Left): Hubble Space Weather System Follow-On (Future) Hours volunteered Telescope; Top Right to Bottom 4,072 to STEM outreach* Right): New Horizons – Ralph • Spacecraft Imager; Deep Impact. • Microwave instrument Students impacted • System software 6,900 through outreach* Libera (Future) • Space-based instrument Ball Corp. North $5.8M America donations Space Weather Follow-On (Future) • Solar wind data and coronal mass ejection imagery *North America only Ball Aerospace 3039394000 Fax: 3039396104 [email protected] • www.ball.com/aerospace Copyright 06/2021, Ball Aerospace D3491 The Great Observatories Principal Investigator (PILed Science Ball Aerospace played a variety of roles in all four of NASA’s From major directed missions like Europa Clipper to small ride-share opportunities such as CIRiS and TEMPO, Astrophysics Great Observatories. We continue to leverage or from serving as prime contractor to having a more focused role, we work closely with our partners to ensure innovative technologies developed for these missions for mission success and deliver science at any scale. use in the next-generation of space telescopes, such as the Our customer’s mission is our greatest priority. With a strong focus on PI-led science, we deliver excellence James Webb Space Telescope (Webb), the Nancy Grace across the entire program. From concept to launch, our scientists and engineers are involved every step of the Roman Space Telescope (formerly WFIRST and beyond. way. We deliver innovative space solutions and remain cost conscious, always focused on our customers’ goals. Hubble Space Telescope Europa Clipper Discovery • Goddard High Resolution Spectrograph ETHEMIS Instrument Support Kepler/K2 Complete Flight System • Corrective Optics Space Telescope Axial Replacement • Radiation modeling and instrument • Spacecraft and photometer • Advanced Camera for Surveys radiation mitigation design • Systems integration and testing • Space Telescope Imaging Spectrograph • Radiation testing of two candidate • Operations support • Near Infrared Camera and Multi-Object Spectrograph microbolometer detectors and Deep Impact/EPOXI Complete Flight • Cosmic Origins Spectrograph electronics System • Wide Field Camera 3 • Two spacecraft • Two star trackers New Frontiers • Two imagers • Five major leave-behind equipment subsystems New Horizons – Ralph Imager • One imager/spectrometer • Eight custom tools for servicing • Visible imager and an infrared spectrometer INVEST Compton Gamma Ray Observatory MIDEX CIRiS Compact Infrared Radiometer in • Oriented Scintillation Spectrometer Experiment Space • Two fixed-head standard star trackers SPHEREx: Spectro-Photometer for • Compact Infrared Radiometer in the History of the universe, Epoch of Space instrument Chandra XRay Observatory Reionization and ices Exploration (in • Instrument integration and system • Aspect Camera and Science Instrument Module development) level testing • Spacecraft Spitzer Space Telescope • Telescope LCIRiS Lunar Compact Infrared Radiometer in Space (in development) • Infrared Spectrograph WISE / NEOWISE Near Earth Object • Explore the Moon’s surface, map • Multiband Imaging Photometer NEO Wide-field Infrared Survey temperature distribution • Cryogenic telescope assembly Explorer (WISE • Ball-built instrument, adapting • Spacecraft from CIRiS James Webb Space Telescope • Flight system integration and testing • Designed and built the advanced optical technology and • Mission operations Solar Cruiser & GLIDE lightweight mirror system SMEX • Technology Demo – solar photons for • Designed mirror control electronics and algorithms propulsion in space IXPE Imaging X-ray Polarimetry • Global Lyman-alpha Imagers of the Nancy Grace Roman Space Telescope Explorer (in development) Dynamic Exosphere (Mission of • Spacecraft • Partnered with NASA GSFC to design and develop Opportunity) • Instrument integration and system the Opto-Mechanical Assembly for the Wide Field Images (Top Left to Bottom level testing EVI1 Instrument (WFI Left): Compton, Chandra, • Supporting WFI assembly, integration and test Hubble, Spitzer, James Webb, TEMPO Tropospheric Emissions: and Roman. Images (Top Right to Bottom Monitoring Pollution Ultraviolet Right): Kepler, Deep Impact, ULTRATM Images (Top Right to Bottom Spectrometer CIRiS, Solar Cruiser, and TEMPO. Right): Europa Clipper (Credit: • Instrument • Technology development toward next generation NASA, New Horizons (Credit: astrophysics flagship NASA/JPLCaltech), WISE, and IXPE..
Recommended publications
  • STS-103 Table of Contents Mission Overview
    Refining the Hubble Space Telescope's View of the Universe SPACESPACESPACE SHUTTLESHUTTLESHUTTLE PRESSKITPRESSKITPRESSKIT WWW.SHUTTLEPRESSKIT.COM Updated November 24, 1999 STS-103 Table of Contents Mission Overview ......................................................................................................... 1 Mission Profile .............................................................................................................. 8 Crew.............................................................................................................................. 10 Flight Day Summary Timeline ...................................................................................................14 Rendezvous Rendezvous, Retrieval and Deploy ......................................................................................................18 EVA Hubble Space Telescope Extravehicular Activity ..................................................................................21 EVA Timeline ........................................................................................................................................24 Payloads Fine Guidance Sensor .........................................................................................................................27 Gyroscopes .........................................................................................................................................28 New Advanced Computer .....................................................................................................................30
    [Show full text]
  • Hubble Space Telescope
    HUBBLE SPACE TELESCOPE Pioneering optics made by Ball Aerospace are ® GO BEYOND WITH BALL. responsible for the Hubble Space Telescope’s iconic images and revolutionary discoveries. In total, Ball has built seven instruments for Hubble, including the five currently aboard the telescope. Beginning with the first servicing mission in 1993 through the fourth in 2009, Ball’s advanced optical technologies have extended Hubble’s operational life and enabled the telescope to help us understand our universe as never before. OUR ROLE QUICK FACTS Since scientists began formulating the idea for Hubble, • Ball-built seven science instruments for the first major optical telescope in space, Ball played a Hubble, two star trackers, five major leave- part, providing a total of seven science instruments flown behind equipment subsystems. on Hubble. Today, Ball supports COS, WFC3, ACS, STIS and NICMOS and provides on-orbit mission operations • Each of the five science instruments now support. After the last servicing mission in 2009, Hubble’s operating on the telescope were Ball-designed unprecedented science capabilities made it the premier and built. space-based telescope for ultraviolet, optical and near- • Ball-built COSTAR was installed during infrared astronomy. Servicing Mission 1 in 1993 along with JPL’s Cosmic Origins Spectrograph (COS) WFPC-2 to correct Hubble’s hazy vision. COS is the most sensitive ultraviolet spectrograph ever • Ball developed more than eight custom tools built for space and replaced the Ball-built COSTAR in 2009. to support astronauts during COS improved Hubble’s ultraviolet sensitivity at least 10 servicing missions. times and up to 70 times when observing very faint objects, like distant quasars, massive celestial objects, too faint for previous spectrographs.
    [Show full text]
  • The Solar Cruiser Mission: Demonstrating Large Solar Sails for Deep Space Missions
    The Solar Cruiser Mission: Demonstrating Large Solar Sails for Deep Space Missions Les Johnson*, Frank M. Curran**, Richard W. Dissly***, and Andrew F. Heaton* * NASA Marshall Space Flight Center ** MZBlue Aerospace NASA Image *** Ball Aerospace Solar Sails Derive Propulsion By Reflecting Photons Solar sails use photon “pressure” or force on thin, lightweight, reflective sheets to produce thrust. NASA Image 2 Solar Sail Missions Flown (as of October 2019) NanoSail-D (2010) IKAROS (2010) LightSail-1 (2015) CanX-7 (2016) InflateSail (2017) NASA JAXA The Planetary Society Canada EU/Univ. of Surrey Earth Orbit Interplanetary Earth Orbit Earth Orbit Earth Orbit Deployment Only Full Flight Deployment Only Deployment Only Deployment Only 3U CubeSat 315 kg Smallsat 3U CubeSat 3U CubeSat 3U CubeSat 10 m2 196 m2 32 m2 <10 m2 10 m2 3 Current and Planned Solar Sail Missions CU Aerospace (2018) LightSail-2 (2019) Near Earth Asteroid Solar Cruiser (2024) Univ. Illinois / NASA The Planetary Society Scout (2020) NASA NASA Earth Orbit Earth Orbit Interplanetary L-1 Full Flight Full Flight Full Flight Full Flight In Orbit; Not yet In Orbit; Successful deployed 6U CubeSat 90 Kg Spacecraft 3U CubeSat 86 m2 >1200 m2 3U CubeSat 32 m2 20 m2 4 Near Earth Asteroid Scout The Near Earth Asteroid Scout Will • Image/characterize a NEA during a slow flyby • Demonstrate a low cost asteroid reconnaissance capability Key Spacecraft & Mission Parameters • 6U cubesat (20cm X 10cm X 30 cm) • ~86 m2 solar sail propulsion system • Manifested for launch on the Space Launch System (Artemis 1 / 2020) • 1 AU maximum distance from Earth Leverages: combined experiences of MSFC and JPL Close Proximity Imaging Local scale morphology, with support from GSFC, JSC, & LaRC terrain properties, landing site survey Target Reconnaissance with medium field imaging Shape, spin, and local environment NEA Scout Full Scale EDU Sail Deployment 6 Solar Cruiser Mission Concept Mission Profile Solar Cruiser may launch as a secondary payload on the NASA IMAP mission in October, 2024.
    [Show full text]
  • Solar Sail Propulsion for Deep Space Exploration
    Solar Sail Propulsion for Deep Space Exploration Les Johnson NASA George C. Marshall Space Flight Center NASA Image We tend to think of space as being big and empty… NASA Image Space Is NOT Empty. We can use the environments of space to our advantage NASA Image Solar Sails Derive Propulsion By Reflecting Photons Solar sails use photon “pressure” or force on thin, lightweight, reflective sheets to produce thrust. 4 NASA Image Real Solar Sails Are Not “Ideal” Billowed Quadrant Diffuse Reflection 4 Thrust Vector Components 4 Solar Sail Trajectory Control Solar Radiation Pressure allows inward or outward Spiral Original orbit Sail Force Force Sail Shrinking orbit Expanding orbit Solar Sails Experience VERY Small Forces NASA Image 8 Solar Sail Missions Flown Image courtesy of Univ. Surrey NASA Image Image courtesy of JAXA Image courtesy of The Planetary Society NanoSail-D (2010) IKAROS (2010) LightSail-1 & 2 CanX-7 (2016) InflateSail (2017) NASA JAXA (2015/2019) Canada EU/Univ. of Surrey The Planetary Society Earth Orbit Interplanetary Earth Orbit Earth Orbit Deployment Only Full Flight Earth Orbit Deployment Only Deployment Only Deployment / Flight 3U CubeSat 315 kg Smallsat 3U CubeSat 3U CubeSat 10 m2 196 m2 3U CubeSat <10 m2 10 m2 32 m2 9 Planned Solar Sail Missions NASA Image NASA Image NASA Image Near Earth Asteroid Scout Advanced Composite Solar Solar Cruiser (2025) NASA (2021) NASA Sail System (TBD) NASA Interplanetary Interplanetary Earth Orbit Full Flight Full Flight Full Flight 100 kg spacecraft 6U CubeSat 12U CubeSat 1653 m2 86
    [Show full text]
  • Space Reporter's Handbook Mission Supplement
    CBS News Space Reporter's Handbook - Mission Supplement Page 1 The CBS News Space Reporter's Handbook Mission Supplement Shuttle Mission STS-125: Hubble Space Telescope Servicing Mission 4 Written and Produced By William G. Harwood CBS News Space Analyst [email protected] CBS News 5/10/09 Page 2 CBS News Space Reporter's Handbook - Mission Supplement Revision History Editor's Note Mission-specific sections of the Space Reporter's Handbook are posted as flight data becomes available. Readers should check the CBS News "Space Place" web site in the weeks before a launch to download the latest edition: http://www.cbsnews.com/network/news/space/current.html DATE RELEASE NOTES 08/03/08 Initial STS-125 release 04/11/09 Updating to reflect may 12 launch; revised flight plan 04/15/09 Adding EVA breakdown; walkthrough 04/23/09 Updating for 5/11 launch target date 04/30/09 Adding STS-400 details from FRR briefing 05/04/09 Adding trajectory data; abort boundaries; STS-400 launch windows Introduction This document is an outgrowth of my original UPI Space Reporter's Handbook, prepared prior to STS-26 for United Press International and updated for several flights thereafter due to popular demand. The current version is prepared for CBS News. As with the original, the goal here is to provide useful information on U.S. and Russian space flights so reporters and producers will not be forced to rely on government or industry public affairs officers at times when it might be difficult to get timely responses. All of these data are available elsewhere, of course, but not necessarily in one place.
    [Show full text]
  • Wide Field Camera 3 Instrument Mini-Handbook for Cycle 16
    Version 3.0 October 2006 Wide Field Camera 3 Instrument Mini-Handbook for Cycle 16 For long-term planning only Do not propose for WFC3 in Cycle 16 Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration User Support For prompt answers to any question, please contact the STScI Help Desk. • E-mail: [email protected] • Phone: (410) 338-1082 (800) 544-8125 (U.S., toll free) World Wide Web Information and other resources are available on the WFC3 World Wide Web sites at STScI and GSFC: • URL: http://www.stsci.edu/hst/wfc3 • URL: http://wfc3.gsfc.nasa.gov WFC3 Mini-Handbook Revision History Version Date Editor 3.0 October 2006 Howard E. Bond 2.0 October 2003 Massimo Stiavelli 1.0 October 2002 Mauro Giavalisco Contributors: Sylvia Baggett, Tom Brown, Howard Bushouse, Mauro Giavalisco, George Hartig, Bryan Hilbert, Randy Kimble, Matt Lallo, Olivia Lupie, John MacKenty, Larry Petro, Neill Reid, Massimo Robberto, Massimo Stiavelli. Citation: In publications, refer to this document as: Bond, H. E., et al. 2006, “Wide Field Camera 3 Instrument Mini-Handbook, Version 3.0” (Baltimore: STScI) Send comments or corrections to: Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 E-mail:[email protected] Acknowledgments The WFC3 Science Integrated Product Team (2006) Sylvia Baggett Howard Bond Tom Brown Howard Bushouse George Hartig Bryan Hilbert Robert Hill (GSFC)
    [Show full text]
  • ENGINEERING the FUTURE SINCE 1868 Dean’Sword
    College of Engineering University of California, Berkeley Spring 2018 Universities and the digital Out of the GAIT Solar cruiser Volume 13 transformation of society Digital health tech CalSol’s new ride BerkeleyENGINEER ENGINEERING THE FUTURE SINCE 1868 Dean’sWord Leading our students toward a new future of work For the past decade, I have had the great privilege of serving as dean for one of the top engi- neering colleges in the nation. During this time, I have had a ringside seat to the tremendous growth at Berkeley Engineering during a transformative time in our society. As many traditional The world looks markedly different now than it did when I first assumed the deanship in 2007. The time is coming when we may be driving along the road and turn to see that the vehicle next to us doesn’t have a human being behind the wheel. In these not-too-distant jobs are transformed by scenarios, humans will be living and working closely with robots. Automation and artificial intelligence are revolutionizing nearly every sector of our society and automation, we need altering the landscape of our future workforce. to prepare our students The future of work was on my mind as I looked out at our graduating engineering students at commencement a few weeks ago. As many traditional jobs are transformed by automation, we in academia need to prepare our students for the jobs of the future. for the jobs of the future. We have made huge strides toward this goal by bringing in a blend of technology, entrepre- neurship and design into our instruction, and by offering a professional master’s of engineering degree as well as the Management, Entrepreneurship, & Technology dual degree program with the Haas School of Business.
    [Show full text]
  • Stsci Newsletter: 2011 Volume 028 Issue 02
    National Aeronautics and Space Administration Interacting Galaxies UGC 1810 and UGC 1813 Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) 2011 VOL 28 ISSUE 02 NEWSLETTER Space Telescope Science Institute We received a total of 1,007 proposals, after accounting for duplications Hubble Cycle 19 and withdrawals. Review process Proposal Selection Members of the international astronomical community review Hubble propos- als. Grouped in panels organized by science category, each panel has one or more “mirror” panels to enable transfer of proposals in order to avoid conflicts. In Cycle 19, the panels were divided into the categories of Planets, Stars, Stellar Rachel Somerville, [email protected], Claus Leitherer, [email protected], & Brett Populations and Interstellar Medium (ISM), Galaxies, Active Galactic Nuclei and Blacker, [email protected] the Inter-Galactic Medium (AGN/IGM), and Cosmology, for a total of 14 panels. One of these panels reviewed Regular Guest Observer, Archival, Theory, and Chronology SNAP proposals. The panel chairs also serve as members of the Time Allocation Committee hen the Cycle 19 Call for Proposals was released in December 2010, (TAC), which reviews Large and Archival Legacy proposals. In addition, there Hubble had already seen a full cycle of operation with the newly are three at-large TAC members, whose broad expertise allows them to review installed and repaired instruments calibrated and characterized. W proposals as needed, and to advise panels if the panelists feel they do not have The Advanced Camera for Surveys (ACS), Cosmic Origins Spectrograph (COS), the expertise to review a certain proposal. Fine Guidance Sensor (FGS), Space Telescope Imaging Spectrograph (STIS), and The process of selecting the panelists begins with the selection of the TAC Chair, Wide Field Camera 3 (WFC3) were all close to nominal operation and were avail- about six months prior to the proposal deadline.
    [Show full text]
  • 2012.15186.Pdf
    This work is on a Creative Commons Attribution 4.0 International (CC BY 4.0) license, https:// creativecommons.org/licenses/by/4.0/. Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform. Please provide feedback Please support the ScholarWorks@UMBC repository by emailing [email protected] and telling us what having access to this work means to you and why it’s important to you. Thank you. Solar Physics DOI: 10.1007/•••••-•••-•••-••••-• Deciphering Solar Magnetic Activity. II. The Solar Cycle Clock and the Onset of Solar Minimum Conditions Robert J. Leamon 1,2 · Scott W. McIntosh 3 · Sandra C. Chapman 4 · Nicholas W. Watkins 4,5,6 · Subhamoy Chatterjee 7 · Alan M. Title8 © Springer •••• Abstract The Sun's variability is controlled by the progression and interaction of the magnetized systems that form the 22-year magnetic activity cycle (the \Hale Cycle") as they march from their origin at ∼55◦ latitude to the equator, over ∼19 years. We will discuss the end point of that progression, dubbed \ter- minator" events, and our means of diagnosing them. Based on the terminations of Hale Magnetic Cycles, we construct a new solar activity `clock' which maps all solar magnetic activity onto a single normalized epoch. The Terminators appear at phase 0 ∗ 2π on this clock (by definition), then solar polar field reversals B R.J. Leamon [email protected] 1 University of Maryland{Baltimore County, Goddard Planetary Heliophysics Institute, Baltimore, MD 21250, USA 2 NASA Goddard Space Flight Center, Code 672, Greenbelt, MD 20771, USA.
    [Show full text]
  • The New Heliophysics Division Template
    NASA Heliophysics Division Update Heliophysics Advisory Committee October 1, 2019 Dr. Nicola J. Fox Director, Heliophysics Division Science Mission Directorate 1 The Dawn of a New Era for Heliophysics Heliophysics Division (HPD), in collaboration with its partners, is poised like never before to -- Explore uncharted territory from pockets of intense radiation near Earth, right to the Sun itself, and past the planets into interstellar space. Strategically combine research from a fleet of carefully-selected missions at key locations to better understand our entire space environment. Understand the interaction between Earth weather and space weather – protecting people and spacecraft. Coordinate with other agencies to fulfill its role for the Nation enabling advances in space weather knowledge and technologies Engage the public with research breakthroughs and citizen science Develop the next generation of heliophysicists 2 Decadal Survey 3 Alignment with Decadal Survey Recommendations NASA FY20 Presidential Budget Request R0.0 Complete the current program Extended operations of current operating missions as recommended by the 2017 Senior Review, planning for the next Senior Review Mar/Apr 2020; 3 recently launched and now in primary operations (GOLD, Parker, SET); and 2 missions currently in development (ICON, Solar Orbiter) R1.0 Implement DRIVE (Diversify, Realize, Implemented DRIVE initiative wedge in FY15; DRIVE initiative is now Integrate, Venture, Educate) part of the Heliophysics R&A baseline R2.0 Accelerate and expand Heliophysics Decadal recommendation of every 2-3 years; Explorer mission AO Explorer program released in 2016 and again in 2019. Notional mission cadence will continue to follow Decadal recommendation going forward. Increased frequency of Missions of Opportunity (MO), including rideshares on IMAP and Tech Demo MO.
    [Show full text]
  • The Hubble Legacy Fields (HLF-GOODS-S) V1.5 Data Products: Combining 2442 Orbits of GOODS-S/CDF-S Region ACS and WFC3/IR Images
    !1 The Hubble Legacy Fields (HLF-GOODS-S) v1.5 Data Products: Combining 2442 Orbits of GOODS-S/CDF-S Region ACS and WFC3/IR Images. Garth Illingworth1, Daniel Magee1, Rychard Bouwens2, Pascal Oesch3, Ivo Labbe2, Pieter van Dokkum3, Katherine Whitaker4, Bradford Holden1, Marijn Franx2, and Valentino Gonzalez5 Abstract We have submitted to MAST the 1.5 version data release of the Hubble Legacy Fields (HLF) project covering a 25 x 25 arcmin area over the GOODS-S (ECDF-S) region from the HST archival program AR-13252. The release combines exposures from Hubble's two main cameras, the Advanced Camera for Surveys (ACS/WFC) and the Wide Field Camera 3 (WFC3/IR), taken over more than a decade between mid-2002 to the end of 2016. The HLF includes essentially all optical (ACS/WFC F435W, F606W, F775W, F814W and F850LP filters) and infrared (WFC3/ IR F098M, F105W, F125W, F140W and F160W filters) data taken by Hubble over the original CDF-S region including the GOODS-S, ERS, CANDELS and many other programs (31 in total). The data has been released at https://archive.stsci.edu/prepds/hlf/ as images with a common astrometric reference frame, with corresponding inverse variance weight maps. We provide one image per filter of WFC3/IR images at 60 mas per pixel resolution and two ACS/WFC images per filter, at both 30 and 60 mas per pixel. Since this comprehensive dataset combines data from 31 programs on the GOODS-S/CDF-S, the AR proposal identified the MAST products by the global name "Hubble Legacy Field”, with this region being identified by “HLF-GOODS-S”.
    [Show full text]
  • Heliophysics Division Committee on Solar and Space Physics
    Heliophysics Division Committee on Solar and Space Physics Dr. Nicky Fox Heliophysics Division Director March 24, 2021 1 Update on Heliophysics COVID-19 Impacts We recognize everyone’s enormous personal and professional challenges at this time. Everyone’s physical safety and emotional wellness remains our priority. Missions • Minimal impacts to operating missions • Many missions in formulation or development have already submitted, and amended, re-plans to accommodate COVID impacts Research • NASA instituted a number of grant administration flexibilities to ease the burden on grant recipients during the COVID-19 emergency • Post-COVID-19 Recovery: Heliophysics R&A augmentation requests received in early March and under evaluation 2 2020 Year in Review: Heliophysics is Experiencing Incredible Growth • NASEM conducted a mid-term assessment of progress toward implementation of the 2013 Decadal Survey. • Heliophysics program reflects the results of a concerted effort to successfully launch missions developed over the past decade and to increase cadence of flight opportunities. • Heliophysics is driving growth in other areas of the program: • Space weather, space situational awareness, scientific discovery, application of the revolutionary new capabilities in Artificial Intelligence, Machine Learning, citizen science, data analysis and archiving to enhance data assimilation and modeling, and technology development. • In 2018-20, HPD successfully launched 5 missions: GOLD, Space Environment Testbeds, Parker Solar Probe, ICON, and Solar Orbiter Collaboration. • Leaning forward to accelerate mission selections and cadence as outlined in the 2013 Decadal Survey. Heliophysics currently has 12 missions in formulation or development and another 7 under study, representing the largest increase in missions in the history of the Division.
    [Show full text]