Introduction to the HST Data Handbooks

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to the HST Data Handbooks Version 8.0 May 2011 Introduction to the HST Data Handbooks Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration User Support For prompt answers to any question, please contact the STScI Help Desk. • Send E-mail to: [email protected]. • Phone: 410-338-1082. • Within the USA, you may call toll free: 1-800-544-8125. World Wide Web Information and other resources are available on the Web site: • URL: http://www.stsci.edu Revision History Version Date Editors 8.0 May 2011 Ed Smith Technical Editors: Susan Rose & Jim Younger 7.0 January 2009 HST Introduction Editors: Brittany Shaw, Jessica Kim Quijano, & Mary Elizabeth Kaiser HST Introduction Technical Editors: Susan Rose & Jim Younger 6.0 January 2006 HST Introduction Editor: Diane Karakla HST Introduction Technical Editors: Susan Rose & Jim Younger. 5.0 July 2004 Diane Karakla and Jennifer Mack, Editors, HST Introduction. Susan Rose, Technical Editor, HST Introduction. 4.0 January 2002 Bahram Mobasher, Chief Editor, HST Data Handbook Michael Corbin, Jin-chung Hsu, Editors, HST Introduction 3.1 March 1998 Tony Keyes 3.0, Vol. II October 1997 Tony Keyes 3.0, Vol. I October 1997 Mark Voit 2.0 December 1995 Claus Leitherer 1.0 February 1994 Stefi Baum Contributors The editors are grateful for the careful reviews and revised material provided by Azalee Boestrom, Howard Bushouse, Stefano Casertano, Warren Hack, Diane Karakla and Matt Lallo. Citation In publications, refer to this document as: Smith, E., et al. 2011, “Introduction to the HST Data Handbooks”, Version 8.0, (Baltimore: STScI) Send comments or corrections to: Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 E-mail:[email protected] Table of Contents Preface ................................................................................................ vi Chapter 1: Obtaining HST Data...................................1 1.1 Archive Overview.....................................................................1 1.1.1 Archive Processing ................................................................2 1.1.2 Archive Registration ..............................................................4 1.1.3 Archive Documentation and Help .........................................4 1.2 Obtaining Data via the MAST Web.....................................5 1.2.1 MAST Overview....................................................................5 1.2.2 Hubble Legacy Archive .......................................................11 1.2.3 High-Level Science Products...............................................16 1.3 Obtaining Data with StarView ............................................17 Chapter 2: HST File Formats........................................18 2.1 HST Data Files ........................................................................18 2.2 Multi-Extension FITS File Format.....................................20 2.2.1 Working with Multi-Extension FITS Images in IRAF .......21 2.2.2 Working with FITS Table Extensions .................................26 2.3 GEIS File Format....................................................................28 2.3.1 Converting waivered FITS to GEIS.....................................29 2.3.2 GEIS Data Groups ...............................................................30 2.3.3 Working with GEIS Files ....................................................31 2.3.4 Waivered FITS Format ........................................................34 Chapter 3: Analyzing HST Data.................................36 3.1 Analysis Options for HST Data ..........................................36 3.1.1 IRAF/STSDAS ...................................................................36 3.1.2 PyRAF.................................................................................37 3.1.3 Python ..................................................................................37 3.1.4 Interactive Data Language (IDL).........................................38 3.1.5 Fortran and C .......................................................................38 3.1.6 Java ......................................................................................38 iii iv Table of Contents 3.2 Navigating STSDAS..............................................................39 3.2.1 STSDAS Structure...............................................................39 3.2.2 Packages of General Interest................................................41 3.3 Displaying HST Images ........................................................42 3.3.1 The Display Task .................................................................42 3.3.2 Working with Image Sections..............................................46 3.4 Analyzing HST Images .........................................................48 3.4.1 Basic Astrometry .................................................................48 3.4.2 Examining and Manipulating Image Data ...........................50 3.4.3 Working with FITS Imsets ..................................................51 3.4.4 Photometry...........................................................................54 3.4.5 Combining Dithered HST Datasets with MultiDrizzle........59 3.5 Displaying HST Spectra........................................................61 3.5.1 Specview..............................................................................61 3.5.2 COS and STIS Spectra.........................................................61 3.5.3 FOS and GHRS Spectra.......................................................63 3.5.4 Producing Hardcopy ............................................................64 3.6 Analyzing HST Spectra.........................................................66 3.6.1 Preparing COS and STIS Spectra for Analysis in IRAF or PyRAF and STSDAS...........................................66 3.6.2 Preparing FOS and GHRS Data...........................................69 3.6.3 Photometry...........................................................................72 3.6.4 General Tasks for Spectra....................................................72 3.6.5 STSDAS Fitting Package ....................................................76 3.6.6 Specfit ..................................................................................78 3.7 References.................................................................................79 3.7.1 Available from STScI ..........................................................79 3.7.2 Available from NOAO.........................................................79 3.7.3 Other References Cited in This Chapter ..............................80 Chapter 4: IRAF Primer....................................................81 4.1 IRAF Overview ......................................................................81 4.2 Initiating IRAF........................................................................82 4.2.1 Setting Up IRAF in Unix/Linux..........................................82 4.2.2 Starting and Stopping an IRAF Session..............................84 Table of Contents v 4.3 IRAF Basics.............................................................................84 4.3.1 Loading Packages ................................................................85 4.3.2 Running Tasks .....................................................................85 4.3.3 Getting Help.........................................................................87 4.3.4 Setting Parameters ...............................................................88 4.3.5 Setting Environment Variables............................................91 4.3.6 File Management .................................................................91 4.3.7 Troubleshooting ...................................................................93 4.4 PyRAF Capabilities ...............................................................94 4.5 Accessing IRAF, PyRAF, and STSDAS Software.......96 4.5.1 Accessing the Synphot Data Set ..........................................96 Chapter 5: HST File Names ............................................97 5.1 File Name Format ...................................................................97 5.2 Rootnames ................................................................................98 5.3 Suffixes of Files Common to All Instruments.................99 5.3.1 Historical File Structures ...................................................100 5.4 Associations ...........................................................................101 Chapter 6: Observation Logs.......................................102 6.1 Observation Log Files..........................................................102 6.1.1 Jitter File Contents.............................................................103 6.2 Retrieving Observation Logs .............................................104 6.3 Using Observation Logs......................................................105 6.3.1 Guiding Mode ....................................................................105 6.3.2 Guide Star Acquisition Failure ..........................................107 6.3.3 Moving Targets and Spatial Scans.....................................108 6.3.4 High Jitter ..........................................................................109 Index...................................................................................................112 Preface This Introduction
Recommended publications
  • STS-103 Table of Contents Mission Overview
    Refining the Hubble Space Telescope's View of the Universe SPACESPACESPACE SHUTTLESHUTTLESHUTTLE PRESSKITPRESSKITPRESSKIT WWW.SHUTTLEPRESSKIT.COM Updated November 24, 1999 STS-103 Table of Contents Mission Overview ......................................................................................................... 1 Mission Profile .............................................................................................................. 8 Crew.............................................................................................................................. 10 Flight Day Summary Timeline ...................................................................................................14 Rendezvous Rendezvous, Retrieval and Deploy ......................................................................................................18 EVA Hubble Space Telescope Extravehicular Activity ..................................................................................21 EVA Timeline ........................................................................................................................................24 Payloads Fine Guidance Sensor .........................................................................................................................27 Gyroscopes .........................................................................................................................................28 New Advanced Computer .....................................................................................................................30
    [Show full text]
  • Hubble Space Telescope
    HUBBLE SPACE TELESCOPE Pioneering optics made by Ball Aerospace are ® GO BEYOND WITH BALL. responsible for the Hubble Space Telescope’s iconic images and revolutionary discoveries. In total, Ball has built seven instruments for Hubble, including the five currently aboard the telescope. Beginning with the first servicing mission in 1993 through the fourth in 2009, Ball’s advanced optical technologies have extended Hubble’s operational life and enabled the telescope to help us understand our universe as never before. OUR ROLE QUICK FACTS Since scientists began formulating the idea for Hubble, • Ball-built seven science instruments for the first major optical telescope in space, Ball played a Hubble, two star trackers, five major leave- part, providing a total of seven science instruments flown behind equipment subsystems. on Hubble. Today, Ball supports COS, WFC3, ACS, STIS and NICMOS and provides on-orbit mission operations • Each of the five science instruments now support. After the last servicing mission in 2009, Hubble’s operating on the telescope were Ball-designed unprecedented science capabilities made it the premier and built. space-based telescope for ultraviolet, optical and near- • Ball-built COSTAR was installed during infrared astronomy. Servicing Mission 1 in 1993 along with JPL’s Cosmic Origins Spectrograph (COS) WFPC-2 to correct Hubble’s hazy vision. COS is the most sensitive ultraviolet spectrograph ever • Ball developed more than eight custom tools built for space and replaced the Ball-built COSTAR in 2009. to support astronauts during COS improved Hubble’s ultraviolet sensitivity at least 10 servicing missions. times and up to 70 times when observing very faint objects, like distant quasars, massive celestial objects, too faint for previous spectrographs.
    [Show full text]
  • Hubble Space Telescope Primer for Cycle 25
    January 2017 Hubble Space Telescope Primer for Cycle 25 An Introduction to the HST for Phase I Proposers 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration How to Get Started For information about submitting a HST observing proposal, please begin at the Cycle 25 Announcement webpage at: http://www.stsci.edu/hst/proposing/docs/cycle25announce Procedures for submitting a Phase I proposal are available at: http://apst.stsci.edu/apt/external/help/roadmap1.html Technical documentation about the instruments are available in their respective handbooks, available at: http://www.stsci.edu/hst/HST_overview/documents Where to Get Help Contact the STScI Help Desk by sending a message to [email protected]. Voice mail may be left by calling 1-800-544-8125 (within the US only) or 410-338-1082. The HST Primer for Cycle 25 was edited by Susan Rose, Senior Technical Editor and contributions from many others at STScI, in particular John Debes, Ronald Downes, Linda Dressel, Andrew Fox, Norman Grogin, Katie Kaleida, Matt Lallo, Cristina Oliveira, Charles Proffitt, Tony Roman, Paule Sonnentrucker, Denise Taylor and Leonardo Ubeda. Send comments or corrections to: Hubble Space Telescope Division Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 E-mail:[email protected] CHAPTER 1: Introduction In this chapter... 1.1 About this Document / 7 1.2 What’s New This Cycle / 7 1.3 Resources, Documentation and Tools / 8 1.4 STScI Help Desk / 12 1.1 About this Document The Hubble Space Telescope Primer for Cycle 25 is a companion document to the HST Call for Proposals1.
    [Show full text]
  • Space Reporter's Handbook Mission Supplement
    CBS News Space Reporter's Handbook - Mission Supplement Page 1 The CBS News Space Reporter's Handbook Mission Supplement Shuttle Mission STS-125: Hubble Space Telescope Servicing Mission 4 Written and Produced By William G. Harwood CBS News Space Analyst [email protected] CBS News 5/10/09 Page 2 CBS News Space Reporter's Handbook - Mission Supplement Revision History Editor's Note Mission-specific sections of the Space Reporter's Handbook are posted as flight data becomes available. Readers should check the CBS News "Space Place" web site in the weeks before a launch to download the latest edition: http://www.cbsnews.com/network/news/space/current.html DATE RELEASE NOTES 08/03/08 Initial STS-125 release 04/11/09 Updating to reflect may 12 launch; revised flight plan 04/15/09 Adding EVA breakdown; walkthrough 04/23/09 Updating for 5/11 launch target date 04/30/09 Adding STS-400 details from FRR briefing 05/04/09 Adding trajectory data; abort boundaries; STS-400 launch windows Introduction This document is an outgrowth of my original UPI Space Reporter's Handbook, prepared prior to STS-26 for United Press International and updated for several flights thereafter due to popular demand. The current version is prepared for CBS News. As with the original, the goal here is to provide useful information on U.S. and Russian space flights so reporters and producers will not be forced to rely on government or industry public affairs officers at times when it might be difficult to get timely responses. All of these data are available elsewhere, of course, but not necessarily in one place.
    [Show full text]
  • Wide Field Camera 3 Instrument Mini-Handbook for Cycle 16
    Version 3.0 October 2006 Wide Field Camera 3 Instrument Mini-Handbook for Cycle 16 For long-term planning only Do not propose for WFC3 in Cycle 16 Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration User Support For prompt answers to any question, please contact the STScI Help Desk. • E-mail: [email protected] • Phone: (410) 338-1082 (800) 544-8125 (U.S., toll free) World Wide Web Information and other resources are available on the WFC3 World Wide Web sites at STScI and GSFC: • URL: http://www.stsci.edu/hst/wfc3 • URL: http://wfc3.gsfc.nasa.gov WFC3 Mini-Handbook Revision History Version Date Editor 3.0 October 2006 Howard E. Bond 2.0 October 2003 Massimo Stiavelli 1.0 October 2002 Mauro Giavalisco Contributors: Sylvia Baggett, Tom Brown, Howard Bushouse, Mauro Giavalisco, George Hartig, Bryan Hilbert, Randy Kimble, Matt Lallo, Olivia Lupie, John MacKenty, Larry Petro, Neill Reid, Massimo Robberto, Massimo Stiavelli. Citation: In publications, refer to this document as: Bond, H. E., et al. 2006, “Wide Field Camera 3 Instrument Mini-Handbook, Version 3.0” (Baltimore: STScI) Send comments or corrections to: Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 E-mail:[email protected] Acknowledgments The WFC3 Science Integrated Product Team (2006) Sylvia Baggett Howard Bond Tom Brown Howard Bushouse George Hartig Bryan Hilbert Robert Hill (GSFC)
    [Show full text]
  • Hubble Space Telescope Primer for Cycle 18
    January 2010 Hubble Space Telescope Primer for Cycle 18 An Introduction to HST for Phase I Proposers Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration How to Get Started If you are interested in submitting an HST proposal, then proceed as follows: • Visit the Cycle 18 Announcement Web page: http://www.stsci.edu/hst/proposing/docs/cycle18announce Then continue by following the procedure outlined in the Phase I Roadmap available at: http://apst.stsci.edu/apt/external/help/roadmap1.html More technical documentation, such as that provided in the Instrument Handbooks, can be accessed from: http://www.stsci.edu/hst/HST_overview/documents Where to Get Help • Visit STScI’s Web site at: http://www.stsci.edu • Contact the STScI Help Desk. Either send e-mail to [email protected] or call 1-800-544-8125; from outside the United States and Canada, call [1] 410-338-1082. The HST Primer for Cycle 18 was edited by Francesca R. Boffi, with the technical assistance of Susan Rose and the contributions of many others from STScI, in particular Alessandra Aloisi, Daniel Apai, Todd Boroson, Brett Blacker, Stefano Casertano, Ron Downes, Rodger Doxsey, David Golimowski, Al Holm, Helmut Jenkner, Jason Kalirai, Tony Keyes, Anton Koekemoer, Jerry Kriss, Matt Lallo, Karen Levay, John MacKenty, Jennifer Mack, Aparna Maybhate, Ed Nelan, Sami-Matias Niemi, Cheryl Pavlovsky, Karla Peterson, Larry Petro, Charles Proffitt, Neill Reid, Merle Reinhart, Ken Sembach, Paula Sessa, Nancy Silbermann, Linda Smith, Dave Soderblom, Denise Taylor, Nolan Walborn, Alan Welty, Bill Workman and Jim Younger.
    [Show full text]
  • Using the Tycho Catalogue for Axaf
    187 USING THE TYCHO CATALOGUE FOR AXAF: GUIDING AND ASPECT RECONSTRUCTION FOR HALF-ARCSECOND X-RAY IMAGES P.J. Green, T.A. Aldcroft, M.R. Garcia, P. Slane, J. Vrtilek Smithsonian Astrophysical Observatory High resolution imaging and/or fast timing measure- ABSTRACT ments are enabled by the High Resolution Camera HRC; Kenter 1996. Advances over the high resolu- tion imagers of Einstein and ROSAT include smaller AXAF, the Advanced X-ray Astrophysics Facility will p ore size, larger micro channel plate area, lower back- b e the third satellite in the series of great observato- ground, energy resolution, and charged particle anti- ries in the NASA program, after the Hubble Space coincidence. Telescop e and the Gamma Ray Observatory. At launch in fall 1998, AXAF will carry a high reso- The AXAF CCD Imaging Sp ectrometer ACIS; lution mirror, two imaging detectors, and two sets of Garmire 1997 is a CCD array for simultaneous imag- transmission gratings Holt 1993. Imp ortant AXAF ing and sp ectroscopyE=E =2050 over almost features are: an order of magnitude improvementin the entire AXAF bandpass with high quantum e- spatial resolution, good sensitivity from 0.1{10keV, ciency and low read noise. Pictures of extended ob- and the capability for high sp ectral resolution obser- jects can b e obtained along with sp ectral information vations over most of this range. from each element of the picture. The ACIS-I array comprises 4 CCDs arranged in a square which pro- The Tycho Catalogue from the Hipparcos mission 2 vide a 16 16 arcmin eld.
    [Show full text]
  • Vireo Manual.Pdf
    VIREO: The Virtual Educational Observatory 1 VIREO: THE VIRTUAL EDUCATIONAL OBSERVATORY Software Reference Guide A Manual to Accompany Software Document SM 20: Circ.Version 1.0 Department of Physics Gettysburg College Gettysburg, PA 17325 Telephone: (717) 337-6028 email: [email protected] Software, and Manuals prepared by: Contemporary Laboratory Glenn Snyder and Laurence Marschall (CLEA PROJECT, Gettysburg College) Experiences in Astronomy VIREO: The Virtual Educational Observatory 2 Contents Introduction To Vireo: The Virtual Educational Observatory .................................................................................. 3 Starting Vireo ................................................................................................................................................................ 4 The Virtual Observatory Control Screen ..................................................................................................................... 4 Using an Optical Telescope ........................................................................................................................................... 5 Using the Photometer .................................................................................................................................................... 8 Using the Spectrometer ............................................................................................................................................... 11 Using the Multi-Channel Spectrometer .....................................................................................................................
    [Show full text]
  • Building a Popular Science Library Collection for High School to Adult Learners: ISSUES and RECOMMENDED RESOURCES
    Building a Popular Science Library Collection for High School to Adult Learners: ISSUES AND RECOMMENDED RESOURCES Gregg Sapp GREENWOOD PRESS BUILDING A POPULAR SCIENCE LIBRARY COLLECTION FOR HIGH SCHOOL TO ADULT LEARNERS Building a Popular Science Library Collection for High School to Adult Learners ISSUES AND RECOMMENDED RESOURCES Gregg Sapp GREENWOOD PRESS Westport, Connecticut • London Library of Congress Cataloging-in-Publication Data Sapp, Gregg. Building a popular science library collection for high school to adult learners : issues and recommended resources / Gregg Sapp. p. cm. Includes bibliographical references and index. ISBN 0–313–28936–0 1. Libraries—United States—Special collections—Science. I. Title. Z688.S3S27 1995 025.2'75—dc20 94–46939 British Library Cataloguing in Publication Data is available. Copyright ᭧ 1995 by Gregg Sapp All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 94–46939 ISBN: 0–313–28936–0 First published in 1995 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc. Printed in the United States of America TM The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48–1984). 10987654321 To Kelsey and Keegan, with love, I hope that you never stop learning. Contents Preface ix Part I: Scientific Information, Popular Science, and Lifelong Learning 1
    [Show full text]
  • Stsci Newsletter: 2011 Volume 028 Issue 02
    National Aeronautics and Space Administration Interacting Galaxies UGC 1810 and UGC 1813 Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) 2011 VOL 28 ISSUE 02 NEWSLETTER Space Telescope Science Institute We received a total of 1,007 proposals, after accounting for duplications Hubble Cycle 19 and withdrawals. Review process Proposal Selection Members of the international astronomical community review Hubble propos- als. Grouped in panels organized by science category, each panel has one or more “mirror” panels to enable transfer of proposals in order to avoid conflicts. In Cycle 19, the panels were divided into the categories of Planets, Stars, Stellar Rachel Somerville, [email protected], Claus Leitherer, [email protected], & Brett Populations and Interstellar Medium (ISM), Galaxies, Active Galactic Nuclei and Blacker, [email protected] the Inter-Galactic Medium (AGN/IGM), and Cosmology, for a total of 14 panels. One of these panels reviewed Regular Guest Observer, Archival, Theory, and Chronology SNAP proposals. The panel chairs also serve as members of the Time Allocation Committee hen the Cycle 19 Call for Proposals was released in December 2010, (TAC), which reviews Large and Archival Legacy proposals. In addition, there Hubble had already seen a full cycle of operation with the newly are three at-large TAC members, whose broad expertise allows them to review installed and repaired instruments calibrated and characterized. W proposals as needed, and to advise panels if the panelists feel they do not have The Advanced Camera for Surveys (ACS), Cosmic Origins Spectrograph (COS), the expertise to review a certain proposal. Fine Guidance Sensor (FGS), Space Telescope Imaging Spectrograph (STIS), and The process of selecting the panelists begins with the selection of the TAC Chair, Wide Field Camera 3 (WFC3) were all close to nominal operation and were avail- about six months prior to the proposal deadline.
    [Show full text]
  • Number 28 Space Telescope European Coordinating Facility
    January 2001 Number 28 Page 1 Number 28 January 2001 This 140 nm ultraviolet image of Jupiter was taken with the Hubble Space Telescope Imaging Spectrograph (STIS) on 26 November 1998 (Credit: NASA; ESA & John T. Clarke, Univ. of Michigan) when Jupiter was at a distance of 700 million km from Earth. In addition to the main auroral oval, centred on the magnetic north pole, and a pattern of more diffuse emission inside the polar cap, unique features are the ‘magnetic footprints’ of three of Jupiter’s satellites, Io, Ganymede and Europa. Space Telescope ST-ECF Newsletter ST-ECF European Coordinating Facility Page 2 ST–ECF Newsletter European news As the ESA contribution to HST moves away Group and, in September, by the Space Science Advisory from hardware provision, support for another Committee that NGST be selected as the next ‘Flexi-mission’ project has been agreed for the ST-ECF. in ESA’s future plan for implementation between 2008 and Following the successful provision of a 2013. This selection was endorsed by the Science Programme software package for extraction of NICMOS Committee at its meeting in October. grism spectra (NICMOSLook, see ST-ECF Newsletter 24, p. 7, This approval has allowed ESA to follow up the industry 1997), support for the spectroscopic modes of the ACS will studies it funded during 1999 with new investigations also be provided. ACS has both grisms and prisms: the Wide focussed on the specific European contributions to the Field Camera, with a coverage of 3.4' × 3.4', is fitted with a mission. In November, a study of the 1–5µm near-IR multi- grism offering 40Å/pixel resolution (5500–11000Å) over the object spectrograph to be provided by ESA was awarded to a full WFC field; the High resolution Camera (26'' × 29'') consortium headed by Astrium (Munich) and Laboratoire provides 30Å/pix grism spectra and prism spectra with a d’Astronomie Spatiale (Marseille).
    [Show full text]
  • The Hubble Legacy Fields (HLF-GOODS-S) V1.5 Data Products: Combining 2442 Orbits of GOODS-S/CDF-S Region ACS and WFC3/IR Images
    !1 The Hubble Legacy Fields (HLF-GOODS-S) v1.5 Data Products: Combining 2442 Orbits of GOODS-S/CDF-S Region ACS and WFC3/IR Images. Garth Illingworth1, Daniel Magee1, Rychard Bouwens2, Pascal Oesch3, Ivo Labbe2, Pieter van Dokkum3, Katherine Whitaker4, Bradford Holden1, Marijn Franx2, and Valentino Gonzalez5 Abstract We have submitted to MAST the 1.5 version data release of the Hubble Legacy Fields (HLF) project covering a 25 x 25 arcmin area over the GOODS-S (ECDF-S) region from the HST archival program AR-13252. The release combines exposures from Hubble's two main cameras, the Advanced Camera for Surveys (ACS/WFC) and the Wide Field Camera 3 (WFC3/IR), taken over more than a decade between mid-2002 to the end of 2016. The HLF includes essentially all optical (ACS/WFC F435W, F606W, F775W, F814W and F850LP filters) and infrared (WFC3/ IR F098M, F105W, F125W, F140W and F160W filters) data taken by Hubble over the original CDF-S region including the GOODS-S, ERS, CANDELS and many other programs (31 in total). The data has been released at https://archive.stsci.edu/prepds/hlf/ as images with a common astrometric reference frame, with corresponding inverse variance weight maps. We provide one image per filter of WFC3/IR images at 60 mas per pixel resolution and two ACS/WFC images per filter, at both 30 and 60 mas per pixel. Since this comprehensive dataset combines data from 31 programs on the GOODS-S/CDF-S, the AR proposal identified the MAST products by the global name "Hubble Legacy Field”, with this region being identified by “HLF-GOODS-S”.
    [Show full text]