Parker One Conference -- Poster Session Two

Total Page:16

File Type:pdf, Size:1020Kb

Parker One Conference -- Poster Session Two 3/4/20 12:09 PM Poster Information Posters sizes should not exceed 1 meter wide by 1.2 meters high (3.2 ft x 4ft). There are two poster sessions: Session One on Monday and Tuesday and Session Two on Wednesday and Thursday. Pushpins will be provided. We have a reliable local printshop that can print your poster and deliver it to the Kossiakoff Center. Please make arrangements directly with the vendor: Northpoint Studios. An FTP upload is available on their main website. If you wish to use Northpoint and take advantage of Sunday night poster drop off, then your poster should be sent to Northpoint no later than Thursday, March 19. Parker One Conference -- Poster Session Two: 25 & 26 March 2020 (Wed & Thu) Number Name Title PS2-1 Robert Leamon When *WAS* Solar Minimum...!? PS2-2 Vadim Uritsky Jetlet - Associated Structure of Solar Plume Outflow PS2-3 J. Grant Mitchell Characteristics of Electron Events Observed in EPI-Lo PS2-4 Elena Provornikova Magnetic topology of the geoeffective April 5, 2010 CME: Gamera-Helio model with a data- constrained magnetic flux rope PS2-5 Yuan-Kuen Ko Case studies of solar wind suprathermal ion variation PS2-6 Benjamin Alterman Comparing near-Sun proton beams observed by PSP/SWEAP with near-Earth beams observed by the Wind Faraday cups PS2-7 Sarah Gibson WHPI: A big picture view on PSP fourth perihelion PS2-8 Kyung-Eun Choi Global structure of magnetic field lines for the small solar wind transient events inferred from suprathermal electrons PS2-9 Kristina Rackovic Babic In situ dust measurements in the solar wind from S/WAVES TDS instrument on STEREO mission PS2-10 Nishu Karna Observation and Modeling of an Equatorial Coronal hole Observed at the First Parker Solar Probe (PSP) Perihelion PS2-11 Sarah Kovac Using WSA-GAMERA and PSP to Study the Venusian Atmosphere PS2-12 Judy Karpen From Jets to CMEs: Observations of the Breakout Continuum PS2-13 Phillip Hess Calibration Status of the WISPR Detectors PS2-14 Guillermo Stenborg Uncloaking white-light structures on WISPR images: Conception and implementation of the Level 3 data product 1 3/4/20 12:09 PM PS2-15 Juan Carlos Martinez A Correlation Study of Coronal EUV Brightenings and Radio Emission Observed by Parker Oliveros Solar Probe PS2-16 Qiang Hu On the Toroidal Configuration of Interplanetary Coronal Mass Ejections near the Sun PS2-17 Brendan Gallagher Software Tools for the Exploration and Analysis of WISPR Images PS2-18 Toshifumi Shimizu JAXA Solar-C_EUVST mission: Toward PSP coordinated observations after 2025 PS2-19 Paulett Liewer Analysis of Solar Wind Ejecta Observed by the Wide-field Imager (WISPR) on Parker Solar Probe PS2-20 Laura Rodriguez-Garcia Flareless Widespread Solar Energetic Particle Event on 19th August 2013 PS2-21 Carlos Braga Coronal mass ejections observed on April 2019 by the heliospheric imagers onboard Parker Solar Probe (WISPR) and STEREO (SECCHI) PS2-22 Allan Labrador Geant4 Simulations for the Electron Responses of the EPI-Hi Instruments PS2-23 Adam Hutchinson Modelling back-precipitation of > 300 MeV protons onto the solar atmosphere PS2-24 Qian Xia Particle acceleration in reconnection current sheets and their diagnostics from observations PS2-25 Silvia Dalla Modelling solar relativistic proton propagation through interplanetary space PS2-26 Alessandro Bruno Solar Energetic Particle Spectra Based on Multi-Spacecraft Measurements PS2-27 Ian Richardson Interplanetary Coronal Mass Ejections at Earth During the Parker Solar Probe Era PS2-28 Roger B. Scott Interchange Reconnection and the Formation of Detached Coronal Holes PS2-29 Aleida Higginson Relating the Structure and Dynamics of the Corona to the Variability of the Slow Solar Wind PS2-30 Georgia de Nolfo Understanding the Origin of the Long Duration Gamma-ray Flares and the Connection to SEPs PS2-31 Meriem Alaoui Electron runaway acceleration by the co-spatial return current in solar flares PS2-32 Daniel McGinnis Impact of the Spacecraft on Electron Measurements in the First Orbits of PSP PS2-33 Alexander Hegedus Progress Towards an Automatic Detection and Cataloguing Algorithm for Type II and III Solar Radio Bursts in PSP RFS Data PS2-34 Luiz Fernando Guedes Using Deep Neural Networks to Identify Flux Ropes signatures in Magnetic Clouds dos Santos PS2-35 Amaal Mohamed The Coronal Hole Influence Parameter (CHIP) as an Important Parameter for Developing the Geomagnetic Storm Prediction Models PS2-36 Yeimy Rivera Simulating charge exchange between solar wind alphas and circumsolar dust PS2-37 Jae-Ok Lee Formation of post-CME blobs observed by LASCO-C2 and K-Cor on 2017 September 10 PS2-38 Lan Jian Thermodynamic Evolution of CMEs in the Inner Heliosphere PS2-39 Adam Szabo The Heliospheric Current Sheet during the First Three Solar Encounters 2 3/4/20 12:09 PM PS2-40 Dusan Odstrcil Operational Simulation of Heliospheric Space Weather During Parker Solar Probe Perihelions PS2-41 Nick Arge WSA modeling and forecast support for the Parker Solar Probe and Solar Orbiter Missions PS2-42 Emily Mason Rings of Fire: Observations of Erupting Null-Point Topologies PS2-43 Nathalia Alzate Propagating Disturbances as Tracers of the Near-Sun Slow Solar Wind PS2-44 Robert F. Wimmer- Energetic Particles in the Inner Heliosphere: Solar Orbiter Schweingruber PS2-45 Du Toit Strauss Solar energetic particle transport: Lessons from electron simulations PS2-46 Nicolas Poirier Detailed imaging of coronal rays with Parker Solar Probe PS2-47 Pankaj Kumar New Insights into the Dynamic Relationship between Jetlets and Plumes PS2-48 Mark Wiedenbeck Solar Energetic Particle Events during the Early Orbits of Parker Solar Probe PS2-49 Mitsuo Oka Particle Acceleration at Interplanetary Shocks: Dependence on Upstream Conditions PS2-50 Lan Jian Archiving and Serving the In Situ Data of Parker Solar Probe at SPDF PS2-51 Gregory Howes On-Board Wave-Particle Correlator and Field-Particle Correlations with Parker Solar PS2-52 Qian Xia Particle acceleration during CME eruptions PS2-53 Edmond Roelof A Remarkable Separatrix in Magnetic Connection to the Corona Observed During an SEP Event by Parker Solar Probe at 0.2AU (0750 UT, April 2-3, 2019) PS2-54 Giuseppe Nisticò Geometric triangulation of density features with PSP/WISPR PS2-55 Angelos Vourlidas The Solar Corona from Within: Overview of WISPR Science Results & Future Outlook PS2-56 Scott McIntosh Solar Cruiser: A Sailcraft platform for Heliophysics and Space Weather Observations PS2-57 Craig DeForest The Best of Both Worlds: Joint Science with PSP and PUNCH PS2-58 Pontus Brandt Interstellar Probe: Understanding Our Habitable Astrosphere and its Home in the Galaxy PS2-59 Richard Mewaldt First Observation of SEP Electrons at MeV Energies by the Parker Solar Probe PS2-60 Eleni Nikou Uncertainty Estimation of Geometric Parameters of Coronal Mass Ejections PS2-61 Olga Khabarova Interaction of the Heliospheric Plasma Sheet with High-speed Streams. Effects in Energetic Particles as Observed by PSP 3 .
Recommended publications
  • The Solar Cruiser Mission: Demonstrating Large Solar Sails for Deep Space Missions
    The Solar Cruiser Mission: Demonstrating Large Solar Sails for Deep Space Missions Les Johnson*, Frank M. Curran**, Richard W. Dissly***, and Andrew F. Heaton* * NASA Marshall Space Flight Center ** MZBlue Aerospace NASA Image *** Ball Aerospace Solar Sails Derive Propulsion By Reflecting Photons Solar sails use photon “pressure” or force on thin, lightweight, reflective sheets to produce thrust. NASA Image 2 Solar Sail Missions Flown (as of October 2019) NanoSail-D (2010) IKAROS (2010) LightSail-1 (2015) CanX-7 (2016) InflateSail (2017) NASA JAXA The Planetary Society Canada EU/Univ. of Surrey Earth Orbit Interplanetary Earth Orbit Earth Orbit Earth Orbit Deployment Only Full Flight Deployment Only Deployment Only Deployment Only 3U CubeSat 315 kg Smallsat 3U CubeSat 3U CubeSat 3U CubeSat 10 m2 196 m2 32 m2 <10 m2 10 m2 3 Current and Planned Solar Sail Missions CU Aerospace (2018) LightSail-2 (2019) Near Earth Asteroid Solar Cruiser (2024) Univ. Illinois / NASA The Planetary Society Scout (2020) NASA NASA Earth Orbit Earth Orbit Interplanetary L-1 Full Flight Full Flight Full Flight Full Flight In Orbit; Not yet In Orbit; Successful deployed 6U CubeSat 90 Kg Spacecraft 3U CubeSat 86 m2 >1200 m2 3U CubeSat 32 m2 20 m2 4 Near Earth Asteroid Scout The Near Earth Asteroid Scout Will • Image/characterize a NEA during a slow flyby • Demonstrate a low cost asteroid reconnaissance capability Key Spacecraft & Mission Parameters • 6U cubesat (20cm X 10cm X 30 cm) • ~86 m2 solar sail propulsion system • Manifested for launch on the Space Launch System (Artemis 1 / 2020) • 1 AU maximum distance from Earth Leverages: combined experiences of MSFC and JPL Close Proximity Imaging Local scale morphology, with support from GSFC, JSC, & LaRC terrain properties, landing site survey Target Reconnaissance with medium field imaging Shape, spin, and local environment NEA Scout Full Scale EDU Sail Deployment 6 Solar Cruiser Mission Concept Mission Profile Solar Cruiser may launch as a secondary payload on the NASA IMAP mission in October, 2024.
    [Show full text]
  • Solar Sail Propulsion for Deep Space Exploration
    Solar Sail Propulsion for Deep Space Exploration Les Johnson NASA George C. Marshall Space Flight Center NASA Image We tend to think of space as being big and empty… NASA Image Space Is NOT Empty. We can use the environments of space to our advantage NASA Image Solar Sails Derive Propulsion By Reflecting Photons Solar sails use photon “pressure” or force on thin, lightweight, reflective sheets to produce thrust. 4 NASA Image Real Solar Sails Are Not “Ideal” Billowed Quadrant Diffuse Reflection 4 Thrust Vector Components 4 Solar Sail Trajectory Control Solar Radiation Pressure allows inward or outward Spiral Original orbit Sail Force Force Sail Shrinking orbit Expanding orbit Solar Sails Experience VERY Small Forces NASA Image 8 Solar Sail Missions Flown Image courtesy of Univ. Surrey NASA Image Image courtesy of JAXA Image courtesy of The Planetary Society NanoSail-D (2010) IKAROS (2010) LightSail-1 & 2 CanX-7 (2016) InflateSail (2017) NASA JAXA (2015/2019) Canada EU/Univ. of Surrey The Planetary Society Earth Orbit Interplanetary Earth Orbit Earth Orbit Deployment Only Full Flight Earth Orbit Deployment Only Deployment Only Deployment / Flight 3U CubeSat 315 kg Smallsat 3U CubeSat 3U CubeSat 10 m2 196 m2 3U CubeSat <10 m2 10 m2 32 m2 9 Planned Solar Sail Missions NASA Image NASA Image NASA Image Near Earth Asteroid Scout Advanced Composite Solar Solar Cruiser (2025) NASA (2021) NASA Sail System (TBD) NASA Interplanetary Interplanetary Earth Orbit Full Flight Full Flight Full Flight 100 kg spacecraft 6U CubeSat 12U CubeSat 1653 m2 86
    [Show full text]
  • Observing the Corona and Inner Heliosphere with Parker Solar Probe ∗ G
    IL NUOVO CIMENTO 42 C (2019) 21 DOI 10.1393/ncc/i2019-19021-2 Colloquia: SoHe3 2018 Observing the corona and inner heliosphere with Parker Solar Probe ∗ G. Nistico`(1)( ),V.Bothmer(1),P.Liewer(2),A.Vourlidas(3) and A. Thernisien(4) (1) Institut f¨ur Astrophysik, G¨ottingen Universit¨at - G¨ottingen, 37077, Germany (2) Jet Propulsion Laboratory - Pasadena, CA, USA (3) Applied Physics Laboratory, Johns Hopkins University - Laurel, MD, USA (4) Naval Research Laboratory - Washington, D.C., USA received 28 December 2018 Summary. — The recently launched Parker Solar Probe (PSP) mission is expected to provide unprecedented views of the solar corona and inner heliosphere. In ad- dition to instruments devoted to taking measurements of the local solar wind, the spacecraft carries a visible imager: the Wide-field Imager for Solar PRobe (WISPR). WISPR will take advantage of the proximity of the spacecraft to the Sun to perform local imaging of the near-Sun environment. WISPR will observe coronal structures at high spatial and time resolutions, although the observed plane-of-sky will rapidly change because of the fast transit at the perihelia. We present a concise description of the PSP mission, with particular regard to the WISPR instrument, discussing its main scientific goals, targets of observations, and outlining the possible synergies with current and upcoming space missions. 1. – The Parker Solar Probe mission Parker Solar Probe (PSP) is a historic NASA mission aiming to explore for the first time the near-Sun environment [1] (1). PSP was launched on 12 August 2018 on a Delta IV Heavy rocket from Cape Canaveral Air Force Station for a seven-year-long mission.
    [Show full text]
  • Solar Probe Plus (SPP)
    Pre-decisional – For NASA Internal Use Only Solar Probe Plus (SPP) Committee on Solar and Space Physics 5 October 2016 Joe Smith Program Executive NASA Headquarters 5 October 2016 1 Solar Probe Plus (SPP) Overview Using in-situ measurements made closer to the Sun than by any previous spacecraft, SPP will determine the mechanisms that produce the fast and slow solar winds, coronal heating, and the transport of energetic particles. Solar Probe Plus will fly to less than 10 solar radii (Rs) of the Sun, having “walked in” from 35 Rs over 24 orbits. Milestones • Sponsor: NASA/GSFC LWS Pre-Phase A: 07/2008 – 11/2009 • LWS Program Manager – Nick Chrissotimos GSFC • LWS Deputy Program Manager – Mark Goans, GSFC Phase A: 12/2009 – 01/2012 • Project Manager – Andy Driesman, APL Phase B: 02/2012 – 03/2014 • Project Scientist – Nicky Fox, APL Phase C/D: 03/2014 – 09/2018 • Spacecraft Development/Operations – APL LRD: 31 July 2018 • Investigations selected by AO: • FIELDS – University of California Phase E: 10/2018 – 09/2025 • ISIS – Princeton University/SwRI • SWEAP – Smithsonian Astrophysical Obs Management Commitment: $1,366M • WISPR – Naval Research Laboratory Category 1, Risk Classification B • HelioOrigins – Jet Propulsion Laboratory 5 October 2016 Solar Probe Plus CSSP 2 50 years into the space age and we still don’t understand the corona and solar wind . The concept for a “Solar Probe” dates back to “Simpson’s Committee” of the Space Science Board (National Academy of Sciences, 24 October 1958) ‒ The need for extraordinary knowledge of Sun from remote observations, theory, and modeling to answer the questions: – Why is the solar corona so much hotter than the photosphere? – How is the solar wind accelerated? .
    [Show full text]
  • ENGINEERING the FUTURE SINCE 1868 Dean’Sword
    College of Engineering University of California, Berkeley Spring 2018 Universities and the digital Out of the GAIT Solar cruiser Volume 13 transformation of society Digital health tech CalSol’s new ride BerkeleyENGINEER ENGINEERING THE FUTURE SINCE 1868 Dean’sWord Leading our students toward a new future of work For the past decade, I have had the great privilege of serving as dean for one of the top engi- neering colleges in the nation. During this time, I have had a ringside seat to the tremendous growth at Berkeley Engineering during a transformative time in our society. As many traditional The world looks markedly different now than it did when I first assumed the deanship in 2007. The time is coming when we may be driving along the road and turn to see that the vehicle next to us doesn’t have a human being behind the wheel. In these not-too-distant jobs are transformed by scenarios, humans will be living and working closely with robots. Automation and artificial intelligence are revolutionizing nearly every sector of our society and automation, we need altering the landscape of our future workforce. to prepare our students The future of work was on my mind as I looked out at our graduating engineering students at commencement a few weeks ago. As many traditional jobs are transformed by automation, we in academia need to prepare our students for the jobs of the future. for the jobs of the future. We have made huge strides toward this goal by bringing in a blend of technology, entrepre- neurship and design into our instruction, and by offering a professional master’s of engineering degree as well as the Management, Entrepreneurship, & Technology dual degree program with the Haas School of Business.
    [Show full text]
  • 2012.15186.Pdf
    This work is on a Creative Commons Attribution 4.0 International (CC BY 4.0) license, https:// creativecommons.org/licenses/by/4.0/. Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform. Please provide feedback Please support the ScholarWorks@UMBC repository by emailing [email protected] and telling us what having access to this work means to you and why it’s important to you. Thank you. Solar Physics DOI: 10.1007/•••••-•••-•••-••••-• Deciphering Solar Magnetic Activity. II. The Solar Cycle Clock and the Onset of Solar Minimum Conditions Robert J. Leamon 1,2 · Scott W. McIntosh 3 · Sandra C. Chapman 4 · Nicholas W. Watkins 4,5,6 · Subhamoy Chatterjee 7 · Alan M. Title8 © Springer •••• Abstract The Sun's variability is controlled by the progression and interaction of the magnetized systems that form the 22-year magnetic activity cycle (the \Hale Cycle") as they march from their origin at ∼55◦ latitude to the equator, over ∼19 years. We will discuss the end point of that progression, dubbed \ter- minator" events, and our means of diagnosing them. Based on the terminations of Hale Magnetic Cycles, we construct a new solar activity `clock' which maps all solar magnetic activity onto a single normalized epoch. The Terminators appear at phase 0 ∗ 2π on this clock (by definition), then solar polar field reversals B R.J. Leamon [email protected] 1 University of Maryland{Baltimore County, Goddard Planetary Heliophysics Institute, Baltimore, MD 21250, USA 2 NASA Goddard Space Flight Center, Code 672, Greenbelt, MD 20771, USA.
    [Show full text]
  • The New Heliophysics Division Template
    NASA Heliophysics Division Update Heliophysics Advisory Committee October 1, 2019 Dr. Nicola J. Fox Director, Heliophysics Division Science Mission Directorate 1 The Dawn of a New Era for Heliophysics Heliophysics Division (HPD), in collaboration with its partners, is poised like never before to -- Explore uncharted territory from pockets of intense radiation near Earth, right to the Sun itself, and past the planets into interstellar space. Strategically combine research from a fleet of carefully-selected missions at key locations to better understand our entire space environment. Understand the interaction between Earth weather and space weather – protecting people and spacecraft. Coordinate with other agencies to fulfill its role for the Nation enabling advances in space weather knowledge and technologies Engage the public with research breakthroughs and citizen science Develop the next generation of heliophysicists 2 Decadal Survey 3 Alignment with Decadal Survey Recommendations NASA FY20 Presidential Budget Request R0.0 Complete the current program Extended operations of current operating missions as recommended by the 2017 Senior Review, planning for the next Senior Review Mar/Apr 2020; 3 recently launched and now in primary operations (GOLD, Parker, SET); and 2 missions currently in development (ICON, Solar Orbiter) R1.0 Implement DRIVE (Diversify, Realize, Implemented DRIVE initiative wedge in FY15; DRIVE initiative is now Integrate, Venture, Educate) part of the Heliophysics R&A baseline R2.0 Accelerate and expand Heliophysics Decadal recommendation of every 2-3 years; Explorer mission AO Explorer program released in 2016 and again in 2019. Notional mission cadence will continue to follow Decadal recommendation going forward. Increased frequency of Missions of Opportunity (MO), including rideshares on IMAP and Tech Demo MO.
    [Show full text]
  • WISPR (Wide Field Imager for Solar Probe Plus)
    WISPR (Wide Field Imager for Solar Probe Plus) V. Bothmer, R. A. Howard (WISPR PI), A. Vourlidas 22 May 2015 Solar Probe Plus A NASA Mission to Touch the Sun HELCATS First Annual Open Workshop What is Solar Probe Plus (SPP) . Goes to the last unexplored region of the solar system and enter the solar corona as close as 9.86 Rs . Will answer fundamental questions of Heliophysics: The heating of the solar corona The origin, structure and evolution of the solar wind Origin of solar energetic particles . Investigations: FIELDS: measurements of magnetic fields, AC/DC electric fields SWEAP: measurements of flux of electrons, protons and alphas ISIS: measurement of solar energetic particles WISPR: measurement of coronal structures Observatory Scientist HELCATS First Annual Open Workshop SPP Mission Scenario – Observations from 0.25 AU to 9.86 RS HELCATS First Annual Open Workshop 3 SPP Near Sun Perihel Passages Number of Perihel passages < 30 RS (0.14 AU): • First Perihel at 35 RS (0.16 AU) after 88 days • 24 Perihel-passages over the time periofd of 7 years after launch in July 2018 • 1000 hrs of measurements at distances < 20 RS Ref.: NASA STDT HELCATS First Annual Open Workshop 4 Solar Probe Plus Encounter Portion of the Orbit 9.86 Rs HELCATS First Annual Open Workshop Figure 4.2 – Encounter Pass Geometry and Timeline The Deep Space Network (DSN) will be used to communicate with the SPP observatory and collect data required for navigation. Mission operations will be conducted at APL from a single Mission Operations Center (MOC), located at the Johns Hopkins University Applied Physics Laboratory (JHU/APL) in Laurel, Maryland.
    [Show full text]
  • Parker Solar Probe Project Scientist JHU/Applied Physics Laboratory Parker Solar Probe
    The Coolest, Hottest Mission under the Sun!! Dr. Nicola J. Fox Parker Solar Probe Project Scientist JHU/Applied Physics Laboratory Parker Solar Probe A NASA Mission to Touch the Sun We are PARKER SOLAR PROBE! Parker, meet Parker December 12, 2017 Parker Solar Probe– Fall AGU 2017 Why haven’t we gone to the Sun yet? It took the same technological leap from a rotary phone to an iPhone X for Parker Solar Probe to become a reality December 12, 2017 Parker Solar Probe– Fall AGU 2017 Parker Solar Probe Science . To determine the structure and dynamics of the Sun’s coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. Detailed Science Objectives • Trace the flow of energy that heats and accelerates the solar corona and solar wind. • Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind. • Explore mechanisms that accelerate and transport energetic particles. November 16, 2017 Parker Solar Probe Mission Briefing Modeling: Providing the missing piece . In-situ data from within 0.25 AU will be available Manchester 2014 shortly after each orbit for ingestion into the coronal, solar wind and global heliospheric models . PSP would also benefit invaluably from knowing the mapping between the spacecraft and the solar surface though each orbit . Global simulations of CMEs would provide critical context when we fly through CMEs . Contact [email protected] or [email protected] Baker
    [Show full text]
  • Parker Solar Probe Through the First Two Solar Orbits
    30th Annual Thermal & Fluids Analysis Workshop TFAWS 2019, 26-30 August 2019 Newport News, VA Post-Launch and Early Mission Thermal Performance of Parker Solar Probe through the First Two Solar Orbits TFAWS19-AT-07 Carl J Ercol [email protected] G. Allan Holtzman Parker Solar Probe [email protected] A NASA Mission to Touch the Sun 30th Annual Thermal & Fluids Analysis Workshop 26-30 August 2019, Newport News, VA Parker Solar Probe Mission Summary Overview Using in-situ measurements made closer to the Sun than by any previous spacecraft, Parker Solar Probe (PSP) will determine the mechanisms that produce the fast and slow solar winds, coronal heating, and the transport of energetic particles. PSP will fly to 9.86 solar radii (Rs) of the Sun, having “walked in” from 35.7 Rs over 24 orbits, two of which have been completed to date. Sponsor: NASA SMD/Heliophysics Div Preliminary Mission Milestones • Program Office – GSFC/LWS • Project Scientist - APL Pre-Phase A: 07/2008 – 11/2009 • Project Management - APL Phase A: 12/2009 – 01/2012 • S/C Development & Operations – APL Phase B: 02/2012 – 03/2014 • Science Investigations selected by AO: Phase C/D: 03/2014 – 12/2018 • SWEAP - Smithsonian Astrophysical Observatory • FIELDS - UC Berkeley Phase E: 01/2019 – 09/2025 • WISPR - Naval Research Laboratory Launched: August 12, 2018, 07:31 UTC • ISʘIS – Southwest Research Institute 30th Annual Thermal & Fluids Analysis Workshop 26-30 August 2019, Newport News, VA Trajectory: 9.86Rs Minimum Perihelion . Launch 13-day launch period from Aug 11 to Aug 23, 2018 Maximum launch C3 of 154 km2/s2 S/C wet mass 685 kg Launch system: Delta-IVH Class + Star48 BV .
    [Show full text]
  • Heliophysics Division Committee on Solar and Space Physics
    Heliophysics Division Committee on Solar and Space Physics Dr. Nicky Fox Heliophysics Division Director March 24, 2021 1 Update on Heliophysics COVID-19 Impacts We recognize everyone’s enormous personal and professional challenges at this time. Everyone’s physical safety and emotional wellness remains our priority. Missions • Minimal impacts to operating missions • Many missions in formulation or development have already submitted, and amended, re-plans to accommodate COVID impacts Research • NASA instituted a number of grant administration flexibilities to ease the burden on grant recipients during the COVID-19 emergency • Post-COVID-19 Recovery: Heliophysics R&A augmentation requests received in early March and under evaluation 2 2020 Year in Review: Heliophysics is Experiencing Incredible Growth • NASEM conducted a mid-term assessment of progress toward implementation of the 2013 Decadal Survey. • Heliophysics program reflects the results of a concerted effort to successfully launch missions developed over the past decade and to increase cadence of flight opportunities. • Heliophysics is driving growth in other areas of the program: • Space weather, space situational awareness, scientific discovery, application of the revolutionary new capabilities in Artificial Intelligence, Machine Learning, citizen science, data analysis and archiving to enhance data assimilation and modeling, and technology development. • In 2018-20, HPD successfully launched 5 missions: GOLD, Space Environment Testbeds, Parker Solar Probe, ICON, and Solar Orbiter Collaboration. • Leaning forward to accelerate mission selections and cadence as outlined in the 2013 Decadal Survey. Heliophysics currently has 12 missions in formulation or development and another 7 under study, representing the largest increase in missions in the history of the Division.
    [Show full text]
  • Sailing in Space from Science Fiction to Science Fact
    Sailing in Space From Science Fiction to Science Fact Les Johnson NASA George C. Marshall Space Flight Center We tend to think of space as being big and empty… Space Is NOT Empty. Can we use the environments of space to our advantage? Spacecraft Can Use the Momentum of Sunlight and the Solar Wind 4 Electric Sail Propulsion Electric sail utilizes charged tethers to repel solar wind protons to gain momentum 5 The Heliopause Electrostatic Rapid Transit System (HERTS) Bruce M. Wiegmann NASA NAIC Fellow The HERTS NIAC project investigated the feasibility of a spacecraft concept, propelled by an “Electrostatic Sail” to travel to the edge of the Solar System (~120 AU from the sun) in less than 15 years. Relative Outbound S/C Positions at 10 year MET E-Sail S/C Sun Heliopause ~120 AU Advanced Solar-Sail & EP S/C 6 Solar Sails Use Sunlight (not the Solar Wind!) Solar sails use photon “pressure” or force on thin, lightweight, reflective sheets to produce thrust. 4 Solar Sails Experience VERY Small Forces 8 Solar Sail Trajectory Control • Solar Radiation Pressure allows inward or outward Spiral Original orbit Sail Force Force Sail Shrinking orbit Expanding orbit NanoSail-D Demonstration Solar Sail Mission Description: • 10 m2 sail • Made from tested ground demonstrator hardware 10 Interplanetary Kite-craft Accelerated by Radiation of the Sun (IKAROS) 11 Lightsail (The Planetary Society) • 32 m2 • No active ‘sailing’ • 3U CubeSat Flew successfully in 2015 & 2019 12 Near Earth Asteroid Scout GOALS • Characterize a Near Earth Asteroid for possible future human visits Measurements: NEA volume, spectral type, spin and orbital properties, address key physical and regolith mechanical SKGs 13 ~9 x ~9m Solar Sail (NEA Scout) Deployed Solar Sail Folded, spooled and packaged in here in packaged and spooled Folded, 6U Stowed Flight System School Bus 14 Full Scale Solar Sail Testing 15 Solar Cruiser • 90 kg spacecraft • 1666 m2 solar sail • Sub-L1 station keeping Solar Cruiser Mission Profile Solar Cruiser launches as a secondary payload on the NASA IMAP mission in October, 2024.
    [Show full text]