Data Communication
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ACU-M™ Improving In-Building Communications
Application Note: AN-2306-2 ACU-M™ Improving In-Building Communications Purpose This application note will describe methods in which the Raytheon’s ACU-M can be used to improve in-building communications. The application note will discuss permanent and temporary methods at which different devices can help increase the ability to transmit or receive land mobile radio communications from within a building, below-grade, or behind obstructions. Introduction Land mobile radios, whether used in vehicles or as handheld portables, are an important tool used everyday by first responders to make their jobs safer and more efficient. In the most part, these radio systems function as designed, and serve the end-user with reliable communications. However, when the duties of a first responder require them to enter a building, or operate below- grade during emergencies, the ability of their radios to communicate to the base, incident command or dispatcher may become an issue. One physical constraint of land mobile radio communications is its inability to transmit and receive radio waves through obstructions such as buildings or below-grade structures. The failure of a land mobile radio to transmit and receive communications from within a building or below-grade has cursed radio users since the beginning of land mobile radio communications (see Figure 1). Figure 1: Blockage or Absorption of Low-Power Handheld Radio Transmission Raytheon 5800 Departure Drive Raleigh, NC 27616 919.790.1011 © Raytheon Company. Data is subject to change. http://www.raytheon.com All Trademarks are the property of their respective owners. Application Note: AN-2306-2 Solutions Land mobile radios were first introduced to public safety, in the late 20’s, in the form of shortwave receivers mounted inside patrol vehicles. -
Data Communication and Computer Network Unit 1
Department of Collegiate Education GOVERNMENT FIRST GRADE COLLEGE RAIBAG-591317 Department of Computer Science Lecture Notes SUBJECT : DATA COMMUNICATIONS AND COMPUTER NETWORKS SUBJECT CODE : 17BScCST61 CLASS : BSC VI Sem Paper-1 Subject In charge Smt Bhagirathi Halalli Assistant Professor 2019-20 Data Communication and Computer Network Unit 1 Unit 1: Introduction Content: 1.1. Data communications, 1.2. Networks, 1.3. The internet, 1.4. Protocols and standards, 1.5. Network models – OSI model, 1.6. TCP/IP protocol suite, 1.7. Addressing. 1.1.Data Communications, Data refers to the raw facts that are collected while information refers to processed data that enables us to take decisions. Ex. When result of a particular test is declared it contains data of all students, when you find the marks you have scored you have the information that lets you know whether you have passed or failed. The word data refers to any information which is presented in a form that is agreed and accepted upon by is creators and users. Data Communication Data Communication is a process of exchanging data or information In case of computer networks this exchange is done between two devices over a transmission medium. This process involves a communication system which is made up of hardware and software. The hardware part involves the sender and receiver devices and the intermediate devices through which the data passes. The software part involves certain rules which specify what is to be communicated, how it is to be communicated and when. It is also called as a Protocol. The following sections describe the fundamental characteristics that are important for the effective working of data communication process and are followed by the components that make up a data communications system. -
Rs-232 Rs-422 Rs-485
ConceptConcept ofof SerialSerial CommunicationCommunication AgendaAgenda Serial v.s. Parallel Simplex , Half Duplex , Full Duplex Communication RS-485 Advantage over RS-232 SerialSerial v.s.v.s. ParallelParallel Application: How to Measure the temperature in a long distance? Measuring with a DAC card: 1200 m Remote sensor Control room T/C wire T/C A/D noise Application: How to Measure the temperature in a long distance? Measuring with a remote I/O module: 1200 m Remote sensor Control room T/C Remote I/O Standard Serial Communication T/C signal, 4-20mA, 0-5V… Noise rejection (Differential signal) MostMost PopularPopular 33 typestypes ofof SerialSerial Comm.Comm. z Most commonly available Tx Rx Rx Tx z Simple wiring CTS RTS z Low cost RTS CTS RS-232 z Short length (40 ft) DTR DSR DSR DTR Bar code reader z Slow data rates GND GND z Subject to noise Tx+ z High data rates Tx- z Longer cable lengths (4000 ft) Rx+ Rx- RS-422 z Full-duplex GND z Noise rejection PLC z Multipoint application (Up to 32 units) z Low cost Data+ z Longer cable lengths (4000 ft) Data- RS-485 zNoise immunity GND zHalf-duplex PLC SerialSerial V.S.V.S. ParallelParallel CommunicationCommunication Serial Communication Transfer the data bit by bit Synchronous Data Transfer Bit Send Data Receive Data Parallel Communication Transfer the all data simultaneously Asynchronous Data Transfer Bit Bit Bit Bit Bit Bit Bit Bit Send Data Receive Data SimplexSimplex ,, HalfHalf DuplexDuplex ,, FullFull DuplexDuplex CommunicationCommunication SimplexSimplex CommunicationCommunication Simplex Communication : – Data in a simplex channel is always one way. -
The OSI Model
Data Encapsulation & OSI & TCP/IP Models Week 2 Lecturer: Lucy White [email protected] Office : 324 1 Network Protocols • A protocol is a formal description of a set of rules and conventions that govern a particular aspect of how devices on a network communicate. Protocols determine the format, timing, sequencing, flow control and error control in data communication. Without protocols, the computer cannot make or rebuild the stream of incoming bits from another computer into the original format. • Protocols control all aspects of data communication, which include the following: - How the physical network is built - How computers connect to the network - How the data is formatted for transmission - The setting up and termination of data transfer sessions - How that data is sent - How to deal with errors 2 Protocol Suites & Industry Standard • Many of the protocols that comprise a protocol suite reference other widely utilized protocols or industry standards • Institute of Electrical and Electronics Engineers (IEEE) or the Internet Engineering Task Force (IETF) • The use of standards in developing and implementing protocols ensures that products from different manufacturers can work together for efficient communications 3 Function of Protocol in Network Communication A standard is a process or protocol that has been endorsed by the networking industry and ratified by a standards organization 4 Protocol Suites TCP/IP Protocol Suite and Communication Function of Protocol in Network Communication 6 Function of Protocol in Network Communication • Technology independent Protocols -Many diverse types of devices can communicate using the same sets of protocols. This is because protocols specify network functionality, not the underlying technology to support this functionality. -
Evolution of Switching Techniques Frequency Division Multiplexing
Evolution of Switching Techniques 1. Dedicate Channel. Separate wire frequency division multiplexing (FDM) time division multiplexing (TDM) Multiplexor (MUX) Demultiplexor (Concentrator) DEMUX individual lines shared individual lines high speed line Frequency Frequency Channel 1 available bandwidth 2 1 2 3 4 1 2 3 4 1 2 3 4 3 4 FDM Time TDM Time chow CS522 F2001—Multiplexing and Switching—10/17/2001—Page 1 Frequency Division Multiplexing (FDM) chow CS522 F2001—Multiplexing and Switching—10/17/2001—Page 2 Wavelength Division Multiplexing chow CS522 F2001—Multiplexing and Switching—10/17/2001—Page 3 Impact of WDM z Many big organizations are starting projects to design WDM system or DWDN (Dense Wave Division Mutiplexing Network). We may see products appear in next three years.In Fujitsu and CCL/Taiwan, 128 different wavelengthes on the same strand of fiber was reported working in the lab. z We may have optical routers between end systems that can take one wavelenght signal, covert to different wavelenght, send it out on different links. Some are designing traditional routers that covert optical signal to electronical signal, and use time slot interchange based on high speed memory to do the switching, the convert the electronic signal back to optical signal. z With this type of optical networks, we will have a virtual circuit network, where each connection is assigned some wave length. Each connection can have 2.4 gbps tremedous bandwidth. z With inital 128 different wavelength, we can have about 10 end users. If each pair of end users needs to communicate simultaneously, it will use 10*10=100 different wavelength. -
Vision-Based Mobile Free-Space Optical Communications Kyle Cavorley, Wayne Chang, Jonathan Giordano, Taichi Hirao Advisor: Prof
Vision-Based Mobile Free-Space Optical Communications Kyle Cavorley, Wayne Chang, Jonathan Giordano, Taichi Hirao Advisor: Prof. Daut Abstract Methodology The implementation of a free-space optical (FSO) communication system capable of interfacing with moving receivers such as unmanned ground or aerial vehicles. Two way communication Inexpensive laser diodes are used to transmit data at rates of up to 1 Mbps. A computer vision and tracking system controls a pan-tilt platform for target Transmit side Receive side acquisition and tracking. Complex package components, suchs as a laser driver and photo receiver, are avoided when possible to study the design of low-level system components. A two way communication system is made possible utilizing a reflective optical chopper (ROC) at the receiver end. Motivations and Objectives Motivations: -High power efficiency with high throughput Fig. 2: Photodiode Amplifier and Comparator Circuit. Fig. 4: Laser Diode Driver Circuit. -Increased security Objectives: -Construct optical communication link capable of 1 Mbps at thirty feet range -Form and maintain two way optical communication channel -Build computer vision tracking system and platform Fig. 6: Boston Micromachines Reflective Optical Chopper (ROC); used in two-way communication Fig. 3: Output Response of photodiode Fig. 5: Schmitt Trigger Circuit. Only one end of the communication link amplifier/comparator. requires a visual tracking/laser targeting system. Results ❑ 2 Mhz signal successfully transmitted 14 feet using 5 mW 670 nm laser. ❑ AD8030 Op-amp used to amplify photodiode response signal from a range [60 mV, 1 V] to 5V before entering comparator that generates a TTL output. Fig. 1: Vision Based FSO Communication Block Diagram. -
Unit 7: Choosing Communication Channels
UNIT 7: CHOOSING COMMUNICATION CHANNELS Unit 7 highlights the importance of selecting an appropriate channel mix for a communication response and describes five categories of communication channels: mass media, mid media, print media, social and digital media and interpersonal communication (IPC). For each of these channels, advantages and disadvantages have been listed, as well as situations in which different channels may be used. Although this Unit has attempted to differentiate the channels and their uses for simplicity, there is recognition that channels frequently overlap and may be effective for achieving similar objectives. This is why the match between channel, audience and communication objective is important. This unit provides some tools to help assess available and functioning channels during an emergency, as well as those that are more appropriate for reaching specific audience segments. Once you have completed this unit, you will have the following tools to support the development of your SBCC response: • Worksheet 7.1: Assessing Available Communication Channels • Worksheet 7.2: Matching Communication Channels to Primary and Influencing Audiences What Is a Communication Channel? A communication channel is a medium or method used to deliver a message to the intended audience. A variety of communication channels exist, and examples include: • Mass media such as television, radio (including community radio) and newspapers • Mid media activities, also known as traditional or folk media such as participatory theater, public talks, announcements through megaphones and community-based surveillance • Print media, such as posters, flyers and leaflets • Social and digital media such as mobile phones, applications and social media • IPC, such as door-to-door visits, phone lines and discussion groups Different channels are appropriate for different audiences, and the choice of channel will depend on the audience being targeted, the messages being delivered and the context of the emergency. -
Logical Link Control and Channel Scheduling for Multichannel Underwater Sensor Networks
ICST Transactions on Mobile Communications and Applications Research Article Logical Link Control and Channel Scheduling for Multichannel Underwater Sensor Networks Jun Li ∗, Mylene` Toulgoat, Yifeng Zhou, and Louise Lamont Communications Research Centre Canada, 3701 Carling Avenue, Ottawa, ON. K2H 8S2 Canada Abstract With recent developments in terrestrial wireless networks and advances in acoustic communications, multichannel technologies have been proposed to be used in underwater networks to increase data transmission rate over bandwidth-limited underwater channels. Due to high bit error rates in underwater networks, an efficient error control technique is critical in the logical link control (LLC) sublayer to establish reliable data communications over intrinsically unreliable underwater channels. In this paper, we propose a novel protocol stack architecture featuring cross-layer design of LLC sublayer and more efficient packet- to-channel scheduling for multichannel underwater sensor networks. In the proposed stack architecture, a selective-repeat automatic repeat request (SR-ARQ) based error control protocol is combined with a dynamic channel scheduling policy at the LLC sublayer. The dynamic channel scheduling policy uses the channel state information provided via cross-layer design. It is demonstrated that the proposed protocol stack architecture leads to more efficient transmission of multiple packets over parallel channels. Simulation studies are conducted to evaluate the packet delay performance of the proposed cross-layer protocol stack architecture with two different scheduling policies: the proposed dynamic channel scheduling and a static channel scheduling. Simulation results show that the dynamic channel scheduling used in the cross-layer protocol stack outperforms the static channel scheduling. It is observed that, when the dynamic channel scheduling is used, the number of parallel channels has only an insignificant impact on the average packet delay. -
Modeling and Simulation of an Asynchronous Digital Subscriber Line Transceiver Data Transmission Subsystem
Modeling and Simulation of an Asynchronous Digital Subscriber Line Transceiver Data Transmission Subsystem Elmustafa Erwa ABSTRACT Recently, there has been an increase in demand for digital services provided over the public telephone line network. Asymmetric digital subscriber line (ADSL) transmit high bit rate data in the forward direction to the subscriber, and lower bit rate data in the reverse direction to the central office, both on a single copper telephone loop. I implemented a Synchronous Dataflow (SDF) model for an ADSL transceiver’s data transmission subsystem in LabVIEW. My implementation enables designers to simulate and optimize different ADSL transceiver designs. The overall implementation is compliant with the European Telecommunications Standards Institute’s ADSL specification. 1. INTRODUCTION With the emergence of the Internet as the cornerstone of communications in this age, the demand for high speed Internet access has only been increasing. Asymmetric digital subscriber lines (ADSL) is one of the technologies that provide high-speed Internet access in residences and offices [1]. It facilitates the use of normal telephone services, Integrated Services Digital Network (ISDN), and high-speed data transmission simultaneously. Hence, bandwidth-demanding technologies, such as video-conferencing and video-on-demand, are enabled over ordinary telephone lines. ADSL standards use discrete multi-tone (DMT) modulation [2]. DMT divides the effectively bandlimited communication channel into a larger number of orthogonal narrowband subchannels. This allows for maximizing the transmitted bit rate and adapting to changing line conditions. Designing ADSL systems is inherently complex. However, advances in the digital signal processor (DSP) technology allowed programmable DSP based solutions to replace application-specific integrated circuit based implementations. -
Data Networks
Second Ed ition Data Networks DIMITRI BERTSEKAS Massachusetts Institute of Technology ROBERT GALLAGER Massachusetts Institute ofTechnology PRENTICE HALL, Englewood Cliffs, New Jersey 07632 2 Node A Node B Time at B --------- Packet 0 Point-to-Point Protocols and Links 2.1 INTRODUCTION This chapter first provides an introduction to the physical communication links that constitute the building blocks of data networks. The major focus of the chapter is then data link control (i.e., the point-to-point protocols needed to control the passage of data over a communication link). Finally, a number of point-to-point protocols at the network, transport, and physical layers are discussed. There are many similarities between the point-to-point protocols at these different layers, and it is desirable to discuss them together before addressing the more complex network-wide protocols for routing, flow control, and multiaccess control. The treatment of physical links in Section 2.2 is a brief introduction to a very large topic. The reason for the brevity is not that the subject lacks importance or inherent interest, but rather, that a thorough understanding requires a background in linear system theory, random processes, and modem communication theory. In this section we pro vide a sufficient overview for those lacking this background and provide a review and perspective for those with more background. 37 38 Point-to-Point Protocols and Links Chap. 2 In dealing with the physical layer in Section 2.2, we discuss both the actual com munication channels used by the network and whatever interface modules are required at the ends of the channels to transmit and receive digital data (see Fig 2.1). -
Telematics Chapter 3: Physical Layer
Telematics User Server watching with video Chapter 3: Physical Layer video clip clips Application Layer Application Layer Presentation Layer Presentation Layer Session Layer Session Layer Transport Layer Transport Layer Network Layer Network Layer Network Layer Data Link Layer Data Link Layer Data Link Layer Physical Layer Physical Layer Physical Layer Univ.-Prof. Dr.-Ing. Jochen H. Schiller Computer Systems and Telematics (CST) Institute of Computer Science Freie Universität Berlin http://cst.mi.fu-berlin.de Contents ● Design Issues ● Theoretical Basis for Data Communication ● Analog Data and Digital Signals ● Data Encoding ● Transmission Media ● Guided Transmission Media ● Wireless Transmission (see Mobile Communications) ● The Last Mile Problem ● Multiplexing ● Integrated Services Digital Network (ISDN) ● Digital Subscriber Line (DSL) ● Mobile Telephone System Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 3: Physical Layer 3.2 Design Issues Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 3: Physical Layer 3.3 Design Issues ● Connection parameters ● mechanical OSI Reference Model ● electric and electronic Application Layer ● functional and procedural Presentation Layer ● More detailed ● Physical transmission medium (copper cable, Session Layer optical fiber, radio, ...) ● Pin usage in network connectors Transport Layer ● Representation of raw bits (code, voltage,…) Network Layer ● Data rate ● Control of bit flow: Data Link Layer ● serial or parallel transmission of bits Physical Layer ● synchronous or asynchronous transmission ● simplex, half-duplex, or full-duplex transmission mode Univ.-Prof. Dr.-Ing. Jochen H. Schiller ▪ cst.mi.fu-berlin.de ▪ Telematics ▪ Chapter 3: Physical Layer 3.4 Design Issues Transmitter Receiver Source Transmission System Destination NIC NIC Input Abcdef djasdja dak jd ashda kshd akjsd asdkjhasjd as kdjh askjda Univ.-Prof. -
Lecture 8: Overview of Computer Networking Roadmap
Lecture 8: Overview of Computer Networking Slides adapted from those of Computer Networking: A Top Down Approach, 5th edition. Jim Kurose, Keith Ross, Addison-Wesley, April 2009. Roadmap ! what’s the Internet? ! network edge: hosts, access net ! network core: packet/circuit switching, Internet structure ! performance: loss, delay, throughput ! media distribution: UDP, TCP/IP 1 What’s the Internet: “nuts and bolts” view PC ! millions of connected Mobile network computing devices: server Global ISP hosts = end systems wireless laptop " running network apps cellular handheld Home network ! communication links Regional ISP " fiber, copper, radio, satellite access " points transmission rate = bandwidth Institutional network wired links ! routers: forward packets (chunks of router data) What’s the Internet: “nuts and bolts” view ! protocols control sending, receiving Mobile network of msgs Global ISP " e.g., TCP, IP, HTTP, Skype, Ethernet ! Internet: “network of networks” Home network " loosely hierarchical Regional ISP " public Internet versus private intranet Institutional network ! Internet standards " RFC: Request for comments " IETF: Internet Engineering Task Force 2 A closer look at network structure: ! network edge: applications and hosts ! access networks, physical media: wired, wireless communication links ! network core: " interconnected routers " network of networks The network edge: ! end systems (hosts): " run application programs " e.g. Web, email " at “edge of network” peer-peer ! client/server model " client host requests, receives