TIPS 2002 to the Present

Total Page:16

File Type:pdf, Size:1020Kb

TIPS 2002 to the Present Tips from Comanche Flyer magazines Feb 1973 – Sep 2012 CHAPTER EIGHT AIRFRAME (CONTROL SURFACES, TRIM, SHEET METAL, FLAPS, GENERAL FUSELAGE) Table of Contents Miscellaneous......................................................................................................................................................... 3 Electric Trim Toggle Switch Box Check ............................................................................................................. 3 Droop Wing Tips................................................................................................................................................. 3 Droop Wing Tips Exchanged for Hoerner Tips .................................................................................................. 3 PIPER Wing Tips................................................................................................................................................ 3 Nose Wheel Alignment....................................................................................................................................... 4 Fasteners............................................................................................................................................................ 4 Twin Rudder Seal Strip Replacement ................................................................................................................ 5 Cowl Assembly................................................................................................................................................... 5 Comanche Airframe Age .................................................................................................................................... 5 Flaps....................................................................................................................................................................... 6 Flap Maintenance............................................................................................................................................... 6 Flap Maintenance............................................................................................................................................... 6 Flap Maintenance............................................................................................................................................... 6 Rigging Manual Flaps......................................................................................................................................... 6 Flap Alignment.................................................................................................................................................... 9 Flap Maintenance............................................................................................................................................... 9 Flap Maintenance............................................................................................................................................. 10 Wing Miscellaneous ............................................................................................................................................. 10 Wing Root Gap Seals....................................................................................................................................... 10 Ailerons................................................................................................................................................................. 11 Aileron Cable Separation by Corrosion............................................................................................................ 11 Aileron Adjustment ........................................................................................................................................... 11 Engine and Cowling Controls............................................................................................................................... 13 Twin Cowl Flap Control Cable Replacement ................................................................................................... 13 Binding Throttle Cables .................................................................................................................................... 14 Twin Cracked Firewalls ........................................................................................................................................ 15 Twin Cracked Engine Nacelle .......................................................................................................................... 15 Twin Cracked Engine Nacelle .......................................................................................................................... 15 Seat Rails-Cracked Stringers............................................................................................................................... 19 Seat Rail Bulkhead........................................................................................................................................... 19 Stringer Cracks................................................................................................................................................. 19 Copyright © 2012, International Comanche Society, Inc. All rights reserved. Rails.................................................................................................................................................................. 20 Stabilator-Balance, Trim, Corrosion, Flutter......................................................................................................... 21 Stabilator Balance ............................................................................................................................................ 21 Stabilator Balance ............................................................................................................................................ 21 Stabilator Balance ............................................................................................................................................ 22 Stabilator Jam................................................................................................................................................... 22 Stabilator Attachment Hardware ...................................................................................................................... 23 Stabilator Inspection......................................................................................................................................... 24 Stabilator Flutter Revisited (PA30)................................................................................................................... 26 Loose Hi−Shear Rivets Check them again! ..................................................................................................... 27 Stabilator Trim Drum Parts Installation ............................................................................................................ 28 Shimming out Trim Drum Wear........................................................................................................................ 29 Wing Spars........................................................................................................................................................... 31 Spar Cap Tension ............................................................................................................................................ 31 Tips for easy Inspection of the Wing Spars...................................................................................................... 31 Strobes ................................................................................................................................................................. 32 Wing Strobe Installation ................................................................................................................................... 32 Twinkle twinkle little Airplane, where are You? ................................................................................................ 32 Aileron Control Cables (Oct 2002) (from Maurice’s Toolbox) .............................................................................. 35 Paint Stripper Problems (Dec2002)...................................................................................................................... 35 Replace Clevis Pins to Preserve Cowling Attachments (Dec 2003).................................................................... 35 Flight Control Rigging May 2004)......................................................................................................................... 36 Gluing Door Seals with Weatherstrip (Jan 2004)................................................................................................. 36 Static Wicks (Jan 2004)........................................................................................................................................ 36 Asymmetric flaps (Feb 2004) ............................................................................................................................... 36 Janitrol Heater Problem (Apr 2004) ..................................................................................................................... 37 Stabilator Control Problem (May 2004)................................................................................................................ 37 Rubber Gap Seal on Rudder May
Recommended publications
  • Albatross Can Soar at Sea for Days and Even Weeks at a Time
    Executive Summary April 28, 2021 Sean Berger • Ryan Casterline • Jonathan Detwiler • Joshua Forrest Zackary Long • JR Sciple • Daniel Szallai • Xinpeng Zhao Introduction Out in the remote costal cliffs of the North Pacific Ocean, the Great Albatross can soar at sea for days and even weeks at a time. With a wingspan of more than 10 feet, this magnificent bird can stay aloft for free by utilizing dynamic soaring. Its maneuverability and flight longevity allow it to be unrivaled by any other sea bird. Inspired by this bird, the aerospace engineering undergraduate team from Penn State University designed the UQ-9 Albatross: an autonomous medical supply delivery VTOL aircraft in response to the 2020- 2021 VFS Student Design Competition sponsored by Boeing. Albatross is a hybrid 4-bladed quad rotor VTOL aircraft with folding wing capabilities, designed to deliver packages at high speed to local delivery centers and logistics sites. Its variable geometry and autonomous, compact package unloading system makes it an effective delivery vehicle. It was also designed to be multiply redundant to maximize safety. These features allow Albatross to operate in environments that are void of conventional runwayswith the advantagesof a fixed wing aircraft. Vehicle Overview The Albatross is a cargo aircraft that is capable of vertical takeoff and landing during the Fall semester. Our group decided upon a vehicle that changes the configuration of its wings between vertical and horizontal flight. The folding wing concept is a design that attempts to trade‐off the advantages and disadvantages of a conventional vertical take‐off and landing vehicle with a conventional fixed‐wing aircraft configuration.
    [Show full text]
  • CESSNA WING TIPS - EMPENNAGE TIPS CESSNA WING TIPS These Wing Tip Kits Consist of a Left and Right Hand Drooped Fiberglass Wing Tip
    CESSNA WING TIPS - EMPENNAGE TIPS CESSNA WING TIPS These wing tip kits consist of a left and right hand drooped fiberglass wing tip. These wing tips are better than those manufactured by Cessna because they are made of fiberglass rather than a royalite type material, that bends and CM cracks after a short time on the aircraft. The superior epoxy rather than polyester fiberglass is used. Epoxy fiberglass has major advantages over a royalite type material; It is approximately six timesstronger and twelve times stiffer, it resists ultraviolet light and weathers better, and it keeps its chemical composition intact much longer. With all these advantages, they will probably be the last wingtips that will ever have to be installed on the aircraft. Should these wing tips be damaged through some unforeseen circumstances, they are easily repairable due to their fiberglass construc- tion. These kits are FAA STC’d and manufactured under a FAA PMA authority. The STC allows you to install these WP modern drooped wing tips, even if your aircraft was not originally manufactured with this newer, more aerodynamically efficient wingtip. *Does not include the Plate lens. Plate lens must be purchased separately. **Kits includes the left hand wing tip, right hand wing tip, hardware, and the plate lens Cessna Models Kit No.** Price Per Kit All 150, A150, 152, A152, 170A & B, P172, 175, 205 &L19, 172, 180, 185 for model year up through 1972.182, 206 for 05-01526 . model year up through 1971, 207 from 1970 and up (219-100) ME 05-01545 172, R172K(172XP), 172RG, 180, 185 for model year 1973 and up, 182, 206 for model year 1972 and up.
    [Show full text]
  • Aircraft Winglet Design
    DEGREE PROJECT IN VEHICLE ENGINEERING, SECOND CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2020 Aircraft Winglet Design Increasing the aerodynamic efficiency of a wing HANLIN GONGZHANG ERIC AXTELIUS KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES 1 Abstract Aerodynamic drag can be decreased with respect to a wing’s geometry, and wingtip devices, so called winglets, play a vital role in wing design. The focus has been laid on studying the lift and drag forces generated by merging various winglet designs with a constrained aircraft wing. By using computational fluid dynamic (CFD) simulations alongside wind tunnel testing of scaled down 3D-printed models, one can evaluate such forces and determine each respective winglet’s contribution to the total lift and drag forces of the wing. At last, the efficiency of the wing was furtherly determined by evaluating its lift-to-drag ratios with the obtained lift and drag forces. The result from this study showed that the overall efficiency of the wing varied depending on the winglet design, with some designs noticeable more efficient than others according to the CFD-simulations. The shark fin-alike winglet was overall the most efficient design, followed shortly by the famous blended design found in many mid-sized airliners. The worst performing designs were surprisingly the fenced and spiroid designs, which had efficiencies on par with the wing without winglet. 2 Content Abstract 2 Introduction 4 Background 4 1.2 Purpose and structure of the thesis 4 1.3 Literature review 4 Method 9 2.1 Modelling
    [Show full text]
  • Glider Handbook, Chapter 2: Components and Systems
    Chapter 2 Components and Systems Introduction Although gliders come in an array of shapes and sizes, the basic design features of most gliders are fundamentally the same. All gliders conform to the aerodynamic principles that make flight possible. When air flows over the wings of a glider, the wings produce a force called lift that allows the aircraft to stay aloft. Glider wings are designed to produce maximum lift with minimum drag. 2-1 Glider Design With each generation of new materials and development and improvements in aerodynamics, the performance of gliders The earlier gliders were made mainly of wood with metal has increased. One measure of performance is glide ratio. A fastenings, stays, and control cables. Subsequent designs glide ratio of 30:1 means that in smooth air a glider can travel led to a fuselage made of fabric-covered steel tubing forward 30 feet while only losing 1 foot of altitude. Glide glued to wood and fabric wings for lightness and strength. ratio is discussed further in Chapter 5, Glider Performance. New materials, such as carbon fiber, fiberglass, glass reinforced plastic (GRP), and Kevlar® are now being used Due to the critical role that aerodynamic efficiency plays in to developed stronger and lighter gliders. Modern gliders the performance of a glider, gliders often have aerodynamic are usually designed by computer-aided software to increase features seldom found in other aircraft. The wings of a modern performance. The first glider to use fiberglass extensively racing glider have a specially designed low-drag laminar flow was the Akaflieg Stuttgart FS-24 Phönix, which first flew airfoil.
    [Show full text]
  • A “Short Course” on Ice and the TBM
    A “Short Course” on Ice and the TBM. Icing is topical at the present time as a result of a recent accident in a TBM. I have had a number of conversations with pilots who I would consider knowledgeable and it is apparent that there is a lot of confusion surrounding this subject. Also noting on line posts this confusion is not limited to owner pilots. I have had occasion to be a victim of my own stupidity in a serious icing condition years ago and I can vouch that icing is a deadly serious situation in more ways than one. Before going on with the subject we want to stipulate that the data we are about to provide is a summary of information that is to be found on line, along with narrative and data provided from knowledgeable instructors, if any of the data provided conflicts with anything you have been taught we urge you to satisfy yourself as to which data is correct. TBM operators fly in the same airspace where we find Part 25 aircraft (Commercial Category) aircraft. There is a big difference in how these two categories of aircraft are affected by icing conditions. A 767 will often be climbing at over 300 kts and 4000+ ft/min at typical icing altitudes. This creates two very distinct advantages for the 767: first, their icing exposure time may be less than 1/3 of ours. Second, icing conditions are a function of TAT (Total Air Temperature), not SAT (static air temp). TAT is warmer than SAT because of the effects of compressibility as the airplane operates at faster and faster speeds.
    [Show full text]
  • Using Redundant Effectors to Trim a Compound Helicopter with Damaged Main Rotor Controls
    Using Redundant Effectors to Trim a Compound Helicopter with Damaged Main Rotor Controls Jean-Paul Reddinger Farhan Gandhi Ph.D. Candidate Professor Rensselaer Polytechnic Institute Rensselaer Polytechnic Institute Troy, NY Troy, NY ABSTRACT Control of a helicopter’s main rotor is typically accomplished through use of three hydraulic actuators that act on the non-rotating swashplate and position it to achieve any combination of collective and cyclic blade pitch. Failure of one of these servos can happen through loss of hydraulic pressure or by impingement of the piston within the hydraulic cylinder. For a compound helicopter with an articulated main rotor, a range of failed servo states (by piston impingement) are simulated in RCAS at hover, 100 kts, and 200 kts, to show the extent to which the compound effectors can generate additional forces and moments to maintain trimmed flight. After the loss of control of any of the three main rotor actuators in hover, the compound helicopter is capable of trimming with little change to the state of the vehicle by replacing control of the locked servo with control of rotor speed. This strategy can be used to maintain trim over 6 – 12% of the total servo ranges. At forward flight speeds, each of the three actuators produces a different result on the trimmed aircraft due to the non-axisymmetry of the rotor. Reconfiguration is accomplished through use of the ailerons, stabilator pitch, wings, and wing-mounted propellers to trim rotor produced roll moments, pitch moments, lift, and drag, respectively. The additional effectors in forward flight increases the range of tolerable failures to 20 – 63% of the maximum actuation limits.
    [Show full text]
  • Piper Cherokee-Series Piper PA-28 “Cherokee” Series Overview
    Aircraft Systems & Emergencies Review Piper Cherokee-Series Piper PA-28 “Cherokee” Series Overview All metal, semi- monocoque structure The skin provides part of the structural strength 0.051” (1.3mm) – 0.016” (0.4mm) thick Wings are of a full cantilever design with removable tips No external bracing 2 (C) 2014 Open Sky Aviation, LLC. Systems Review Understanding the aircraft systems can save your life! 3 (C) 2014 Open Sky Aviation, LLC. Cockpit Layout – “Classic” Cherokee Know where all the switches and circuit breakers are by memory Caution Lights Suction Gauge Alternate Static Air Panel Lighting 4 (C) 2014 Open Sky Aviation, LLC. Cockpit Layout – “Classic” Cherokee (Cont.) Know where all the switches and circuit breakers are by memory * = Optional item Backup Vacuum* Alternate Static Air Alt. Avionics Master 5 (C) 2014 Open Sky Aviation, LLC. Cockpit Layout – “Modern” Cherokee Know where all the switches and circuit breakers are by memory * = Optional item Electric Pitch Trim* Digital Volt/Ammeter Caution/Warning Lights Suction Gauge Alternate Static Air Panel Lighting Carb Ice Detector* 7 (C) 2014 Open Sky Aviation, LLC. Cockpit Layout – Overhead Switches Know where all the switches and circuit breakers are by memory Position Lights Electric Primer & Starter Buttons No Beacon light - use Strobes Magneto Switches 8 (C) 2014 Open Sky Aviation, LLC. Pitot-Static System The ASI, altimeter, and VSI Standard PA-28 static lines are plumbed in parallel The pitot and static lines should be drained prior to each flight Not included on most checklists! Pitot & Static Drains (1 or 2) 9 (C) 2014 Open Sky Aviation, LLC.
    [Show full text]
  • Development of F/A-18 Spin Departure Demonstration Procedure with Departure Resistant Flight Control Computer Version 10.7
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2004 Development of F/A-18 Spin Departure Demonstration Procedure with Departure Resistant Flight Control Computer Version 10.7 David J. Park University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Aerospace Engineering Commons Recommended Citation Park, David J., "Development of F/A-18 Spin Departure Demonstration Procedure with Departure Resistant Flight Control Computer Version 10.7. " Master's Thesis, University of Tennessee, 2004. https://trace.tennessee.edu/utk_gradthes/2312 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by David J. Park entitled "Development of F/A-18 Spin Departure Demonstration Procedure with Departure Resistant Flight Control Computer Version 10.7." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Aviation Systems. Robert. B. Richards, Major Professor We have read this thesis and recommend its acceptance: Charles T. N. Paludan, Richard J. Ranaudo Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by David J.
    [Show full text]
  • A Historical Overview of Flight Flutter Testing
    tV - "J -_ r -.,..3 NASA Technical Memorandum 4720 /_ _<--> A Historical Overview of Flight Flutter Testing Michael W. Kehoe October 1995 (NASA-TN-4?20) A HISTORICAL N96-14084 OVEnVIEW OF FLIGHT FLUTTER TESTING (NASA. Oryden Flight Research Center) ZO Unclas H1/05 0075823 NASA Technical Memorandum 4720 A Historical Overview of Flight Flutter Testing Michael W. Kehoe Dryden Flight Research Center Edwards, California National Aeronautics and Space Administration Office of Management Scientific and Technical Information Program 1995 SUMMARY m i This paper reviews the test techniques developed over the last several decades for flight flutter testing of aircraft. Structural excitation systems, instrumentation systems, Maximum digital data preprocessing, and parameter identification response algorithms (for frequency and damping estimates from the amplltude response data) are described. Practical experiences and example test programs illustrate the combined, integrated effectiveness of the various approaches used. Finally, com- i ments regarding the direction of future developments and Ii needs are presented. 0 Vflutte r Airspeed _c_7_ INTRODUCTION Figure 1. Von Schlippe's flight flutter test method. Aeroelastic flutter involves the unfavorable interaction of aerodynamic, elastic, and inertia forces on structures to and response data analysis. Flutter testing, however, is still produce an unstable oscillation that often results in struc- a hazardous test for several reasons. First, one still must fly tural failure. High-speed aircraft are most susceptible to close to actual flutter speeds before imminent instabilities flutter although flutter has occurred at speeds of 55 mph on can be detected. Second, subcritical damping trends can- home-built aircraft. In fact, no speed regime is truly not be accurately extrapolated to predict stability at higher immune from flutter.
    [Show full text]
  • Wing Tip.Qxd
    WINGTIP COUPLING AT 15,000 FEET Dangerous Experiments by C.E. “Bud” Anderson ingtip coupling evolved from an invention by Dr. Richard Vogt, a German scientist who emigrated to W the U.S. after WW II. The basic con- cept involved increasing an aircraft’s range by attaching two “free-floating,” fuel-carrying aerodynamic panels to the wingtips. This could be accomplished without undue struc- tural weight penalties as long as the panels were free to articulate and support themselves with their own aerodynamic lift. The panels would increase the basic wing configuration’s aspect ratio and would therefore significantly reduce induced drag; the “free” extra fuel car- ried by this more efficient wing would consid- erably increase an aircraft’s range. Soon, other logical uses of this unusual concept became apparent: for example, two escort fighters might be carried along “free” on a large bomber without sacrificing its range. To be feasible, the wingtip extensions, But there was also the problem of how such fuel-carrying extensions could be handled on the ground. How would they be supported without airflow to or panels, whatever they were, would have to hold them up?—perhaps by the use of a retractable outrigger landing gear, but what about runway width requirements? And—the big question—what about be kept properly aligned, preferably by a sim- the stability and control problems that might be induced by such a configura- ple and automatic flight-control system. tion; would the extensions be easy to control? Many questions are also immedi- 64 FLIGHT JOURNAL The second wingtip-coupling experiment involved an ETB-29A and two EF-84Bs (photo courtesy of Peter M.
    [Show full text]
  • Fast 49 Airbus Technical Magazine Worthiness Fast 49 January 2012 4049July 2007
    JANUARY 2012 FLIGHT AIRWORTHINESS SUPPORT 49 TECHNOLOGY FAST AIRBUS TECHNICAL MAGAZINE FAST 49 FAST JANUARY 2012 4049JULY 2007 FLIGHT AIRWORTHINESS SUPPORT TECHNOLOGY Customer Services Events Spare part commonality Ensuring A320neo series commonality 2 with the existing A320 Family AIRBUS TECHNICAL MAGAZINE Andrew James MASON Publisher: Bruno PIQUET Graham JACKSON Editor: Lucas BLUMENFELD Page layout: Quat’coul Biomimicry Cover: Radio Altimeters When aircraft designers learn from nature 8 Picture from Hervé GOUSSE ExM Company Denis DARRACQ Authorization for reprint of FAST Magazine articles should be requested from the editor at the FAST Magazine e-mail address given below Radio Altimeter systems Customer Services Communications 15 Tel: +33 (0)5 61 93 43 88 Correct maintenance practices Fax: +33 (0)5 61 93 47 73 Sandra PREVOT e-mail: [email protected] Printer: Amadio Ian GOODWIN FAST Magazine may be read on Internet http://www.airbus.com/support/publications ELISE Consulting Services under ‘Quick references’ ILS advanced simulation technology 23 ISSN 1293-5476 Laurent EVAIN © AIRBUS S.A.S. 2012. AN EADS COMPANY Jean-Paul GENOTTIN All rights reserved. Proprietary document Bruno GUTIERRES By taking delivery of this Magazine (hereafter “Magazine”), you accept on behalf of your company to comply with the following. No other property rights are granted by the delivery of this Magazine than the right to read it, for the sole purpose of information. The ‘Clean Sky’ initiative This Magazine, its content, illustrations and photos shall not be modified nor Setting the tone 30 reproduced without prior written consent of Airbus S.A.S. This Magazine and the materials it contains shall not, in whole or in part, be sold, rented, or licensed to any Axel KREIN third party subject to payment or not.
    [Show full text]
  • Commercial Aircraft Performance Improvement Using Winglets
    Nikola N. Gavrilović Commercial Aircraft Performance Graduate Research Assistant Improvement Using Winglets University of Belgrade Faculty of Mechanical Engineering Aerodynamic drag force breakdown of a typical transport aircraft shows Boško P. Rašuo that lift-induced drag can amount to as much as 40% of total drag at Full Professor cruise conditions and 80-90% of the total drag in take-off configuration. University of Belgrade Faculty of Mechanical Engineering One way of reducing lift-induced drag is by using wing-tip devices. By applying several types of winglets, which are already used on commercial George S. Dulikravich airplanes, we study their influence on aircraft performance. Numerical Full Professor investigation of five configurations of winglets is described and Florida International University preliminary indications of their aerodynamic performance are provided. Department of Mechanical and Materials Engineering, Miami, Florida, USA Moreover, using advanced multi-objective design optimization software an optimal one-parameter winglet configuration was detrmined that Vladimir Parezanović simultaneously minimizes drag and maximizes lift. Researcher Institute PPRIME, CNRS UPR3346 Poitiers, France Keywords: Winglet, Bionics, Computational fluid dynamics, Drag reduction, Lift-induced drag, Optimization 1. INTRODUCTION of soaring birds and their use of tip feathers to control flight, continued on the quest to reduce induced drag The main motivation for using wingtip devices is and improve aircraft performance and further develop reduction of lift-induced drag force. Environmental the concept of winglets in the late 1970s [4]. This issues and rising operational costs have forced industry research provided a fundamental knowledge and design to improve efficiency of commercial air transport and approach required for extremely attractive option to this has led to some innovative developments for improve aerodynamic efficiency of civilian aircraft, reducing lift-induced drag.
    [Show full text]