River Flood Plains: Some Observations on Their Formation

Total Page:16

File Type:pdf, Size:1020Kb

River Flood Plains: Some Observations on Their Formation River Flood Plains: Some Observations On Their Formation By M. GORDON WOLMAN and LUNA B. LEOPOLD PHYSIOGRAPHIC AND HYDRAULIC STUDIES OF RIVERS GEOLOGICAL SURVEY PROFESSIONAL PAPER 282-C UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1957 CONTEKTS Page Page 87 Foiniation of a typical flood plain-Continued 87 Overbank deposition-Continued 88 IIypothetical construction of a flood plain by 91 overbank deposition ____ - - - - - - - - - - - - - - - - - 100 91 Conditions affecting amounts of overbank 91 deposition_________________________-____-.. 100 92 Flood plains in stable, aggrading, and degrading streams. 103 96 Channel pattern and formation of the flood plain - - - - - - - 105 97 Conclusion___-___-_-____________________----------- 106 97 References cited- - - ______ ______ ..................... 106 98 Index-____-_____--_______-______________----------109 ILLUSTRATIONS PLATE 1. View of meanders on' Watts Branch, Md __________ ________________________________________-------Facing 92 2. A, View of successive elevations of surfaces of point bar on Seneca Creek, Prathertown, Md.; B, Flat-topped gravel bar, New Fork River near Pinedale, Wyo ______ ______ ____________________________________ Facing 93 FIGURE58. Relation of flood-damage stage to elevation of flood plain 90 59. Map and cross section of point bar, Watts Branch, Rockville, Md ________________________________________93 60. Distribution of materials in point bar, Watts Branch, Rockville, Md ______________________________________ 94 61. Size distribution of samples from bed of Watts Branch, Rockvillc, Md., and adjacent bar ______-_____________ 95 62. Erosion and deposition in cross sections of Watts Branch, Rockville, Md- _________________________________ 96 63. Size distribution of flood deposits and flood-plain sediments________________________________________------ 99 64. Hypothetical rate of increase in elevation of flood plain by overbank deposition- ___________________________ 100 65. Sediment concentration and discharge in several Kansas rivers- -.- - - - - - - - - - - - .. - - - - - - - - - - - - - - - - - - - - - - - - - 102 66. Cross sections of river flood plains in North and South Carolina ____________-____________________________-104 67. Relation of distance from headwater divide to thickness of alluvium and to mean depth of average discharge--- 104 TABLES TABLE1. Recurrence interval with which flood-plain level is attained by annual flood___________ - - ..................... 88 2. Distribution of flood-damage stage at 71 river gage locations in Texas expressed as number of examples in various categories of recurrence interval___--_----------------_-------------------_---------_----------------- 89 3. Differences between elevation of flood-damage stage and average elevation of natural flood plain - - - __ - - - - - - - - - - 91 4. Some data on rates of lateral migration of rivers across valleys _________________ .___________________________97 5. Examples of amounts of deposition on flood plains during major floods ________ - ____________________________ 97 6. Velocity and depth of flow in overbank sections of river flood plains ____.._________.______._____I. .________ 101 111 PHYSIOGRAPHIC AND HYDRAULIC STUDIES OF RIVERS RIVER FLOOD PLAINS : SOME OBSERVATIONS ON THEIR FORMATION By M. GORDONWOLMAN and LUNAB. LEOPOLD ABSTRACT be considered tentative, as many additional data will On many small rivers and most great rivers, thc flood plain bc needed to verify them adequately. consists of channel and overbank deposits. The proportion of A definition of IL flood plain often quoted is ‘‘a strip of the latter is generally very small. relatively smooth land bordering a stream * * * called Frequency studies indicate that the flood plains of many a living flood plain if it is overflowed in times of high treams of different sizes flowing in diversc physiographic and water” (Rice, 1949, p. 139). Valley flats which would limatic regions are subject to flooding about once a year. usually be considered “flood plains” may includc those The uniform frequency OF flooding of the flood-plain surface nd the small amount of deposition observed in great floods formed by different processes such as landslides, t the conclusion that overbank low-angle fans, and perhaps others. Thc distinction a minor part of the material con- between valley flats formed by different processes may he relatively high velocities (1 to 4 not be apparent to the casual observer and, indeed, erbank flows and the reduction in detailed work might be iiecessary to determine the ch often accompanies large floods origin a given feature. However, an important his. Although lateral migration of of s is important in controlling the elevation of the flood process resulting in the formation of valley flats is B rates of migration are extremely variable and alone cannot combination of deposition on the inside of rives curvcs for the uniform relation the flood-plain surface bears to and deposition from overbank flows. This process produced many of the flat areas adjoining river channels ed studies of flood plains in Maryland and in North and probably most of the flood plains of the great a indicate that it is difficult to differentiate between rivers of the world. It is the flood plains produced by hannel and overbank deposits in a stratigraphic section alone. this process with which the present paper is concerncd. ion on the flood plain docs not continue od-plain surface can only be transformed into The data supplied to us by several district engineers by some tectonic or climatic change which of the Geological Survey are essential to the tentative of the river and causes it to entrench itself conclusions reached in this paper. We are iiideb tecl d bed and associated flood plain. A terrace, to H. C. Bolon, L. R. Sawyer, M. T. Wilson, and flood plain by the frequency with E. A. Johnson. We also express our appreciatioii to ch each is overflowed. D. M. Culbertson for detailed analyses of hydrographs INTRODUCTION of water and sediment in several streams in Kansas. Shri B. N. Chatterjea kindly obtained certain ficld Owing to the extensive use of river flood plains by data in India at our request, and furnished us flood dustry and agriculture, there is practical as well as frequency tabulations for which we are grateful. tellectual interest in the mode of formation, stability We have profited from discussion of the subject with e flood plain, and the frequency of flooding of its J. T. Hack of the Geological Survey. In addition ce. If maximum use is to be made of the broad, to colleagues in the Survey who read earlier drafts, 1 surfaces provided by flood plains, it is important we thank Prof. John C. Geyer of Johns Hopkins know the natural conditions controlling their University, H. T, U. Smith of the University of lopment and preservation. The geologist has long Kansas, and Mr. Cole Fisher of the Virginia Geologi- interested in the characteristics of flood plains cal Survey for their helpful criticisms of the manuscript.. d has written much about them. For the most part, Thanks arc due also to Miss Gladys Braden of Minne- ious papers have dealt primarily with individual apolis, Minn., for a number of references with which ples. The authors believe that the hydrologic as she provided us. 11 as the additional stratigraphic observations We are grateful to thc Viers family of Rockville, ented here may help in developing a more general- Md., and especially to Caroline Viers Mudgett, for picture of the characteristics of river flood plains. permission to study the stream on their property over clusions based upon the data now at hand should a period of years. 87 SS PHYSIOGRAPHIC AND HYDRAULIC STUDIES OF RIVERS FREQUENCY OF OVERBANK FLOW luced by the process with which we are concerned. Both the narrow valleys of the mountain torrents and On any rivcr there are floods of varying magnitude ,he vsry turbulent flow inay contribute to this condi- which cover a wide range in stage. As successive floods ion. Despite these variations, the data from eastern overtopped the flood plain, one would expect successive md western United States and the examples from India increments of overbank deposition on the flood plain to ndicnte a remarkable uniformity in the recurrence result in a c,oiitinual increase in elevation of this surface iiterval of overbank flooding. rclative to the elevation of the stream bed. As the flood plain became higher and higher, presumably it would I'SBLKI .-Recurrence inierual with which jlood-plain leuel is be flooded less and less frequently. Nevertheless, the attained by annual jlood giaut flood could still be expected to deposit a thin Recur- increment of niaterial on this high surface. As it result rence of such a sequence of events, one would logically expect interval, Drain- Discharge in years to find that the frequency of flooding of flood plains in age at bankjull (from different regions was extremely variable. Some flood area staqe annual (square (cubic feet flood plains woiild be flooded with extreme rarity, and others River and location miles) per second) series) Remarks ______ __ ___ would be flooded frequently. Such considerations Polo Crock ncar Pinedale, 88 514 1. 13 suggested to us that a study of the frequcncy of flooding wyo. Horse Crcek near Daniel, 121 320 I in of flood plains might be useful in understanding their wyo. mode of formation. Studies of a number of flood plains Cottonwood Creek ncar 202 990 15 Terrace(?). Daniel, Wyo. in both the eastern and western Uiiited States and in Little Sandy Creek near Elk- 21 227 4 India indicate that, contrary to the logic of the argu- horn, Wyo. Big Sandy Creek at Leckie 94 573 1 05 incrit above, thc frequency of overbank flow is remark- ranch, Wyo. ably uniform in many rivers flowing in diverse climatic Qreen River Dear Pontenelle. 3, '370 9,170 1 47 and phj-sjographic regions. wyo. Table 1 shows the recurrence interval of the bankfull Hams Fork near Frontier,Wyo. 298 626 1 01 Middle Piney Creek near Big 31 740 200 Mountain torient; fiood or incipient overflow stage at a number of stations, Piney, wyo. plaih poorly defined. most of them in different regions in the United States. Faall Creek near Finedale, 37 1,130 200 DO. wyo.
Recommended publications
  • (P 117-140) Flood Pulse.Qxp
    117 THE FLOOD PULSE CONCEPT: NEW ASPECTS, APPROACHES AND APPLICATIONS - AN UPDATE Junk W.J. Wantzen K.M. Max-Planck-Institute for Limnology, Working Group Tropical Ecology, P.O. Box 165, 24302 Plön, Germany E-mail: [email protected] ABSTRACT The flood pulse concept (FPC), published in 1989, was based on the scientific experience of the authors and published data worldwide. Since then, knowledge on floodplains has increased considerably, creating a large database for testing the predictions of the concept. The FPC has proved to be an integrative approach for studying highly diverse and complex ecological processes in river-floodplain systems; however, the concept has been modified, extended and restricted by several authors. Major advances have been achieved through detailed studies on the effects of hydrology and hydrochemistry, climate, paleoclimate, biogeography, biodi- versity and landscape ecology and also through wetland restoration and sustainable management of flood- plains in different latitudes and continents. Discussions on floodplain ecology and management are greatly influenced by data obtained on flow pulses and connectivity, the Riverine Productivity Model and the Multiple Use Concept. This paper summarizes the predictions of the FPC, evaluates their value in the light of recent data and new concepts and discusses further developments in floodplain theory. 118 The flood pulse concept: New aspects, INTRODUCTION plain, where production and degradation of organic matter also takes place. Rivers and floodplain wetlands are among the most threatened ecosystems. For example, 77 percent These characteristics are reflected for lakes in of the water discharge of the 139 largest river systems the “Seentypenlehre” (Lake typology), elaborated by in North America and Europe is affected by fragmen- Thienemann and Naumann between 1915 and 1935 tation of the river channels by dams and river regula- (e.g.
    [Show full text]
  • Deposition Patterns and Rates of Mining-Contaminated Sediment Within a Sedimentation Basin System, S.E
    BearWorks Institutional Repository MSU Graduate Theses Spring 2017 Deposition Patterns and Rates of Mining- Contaminated Sediment within a Sedimentation Basin System, S.E. Missouri Joshua Carl Voss Missouri State University - Springfield, [email protected] Follow this and additional works at: http://bearworks.missouristate.edu/theses Part of the Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, and the Hydrology Commons Recommended Citation Voss, Joshua Carl, "Deposition Patterns and Rates of Mining-Contaminated Sediment within a Sedimentation Basin System, S.E. Missouri" (2017). MSU Graduate Theses. 3074. http://bearworks.missouristate.edu/theses/3074 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The orkw contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. DEPOSITION PATTERNS AND RATES OF MINING-CONTAMINATED SEDIMENT WITHIN A SEDIMENTATION BASIN SYSTEM, BIG RIVER, S.E. MISSOURI A Masters Thesis Presented to The Graduate College of Missouri State University ATE In Partial Fulfillment Of the Requirements for the Degree Master of Science, Geospatial Sciences in Geography, Geology, and Planning By Josh C. Voss May 2017 Copyright 2017 by Joshua Carl Voss ii DEPOSITION PATTERNS AND RATES OF MINING-CONTAMINATED SEDIMENT WITHIN A SEDIMENTATION BASIN SYSTEM, BIG RIVER, S.E. MISSOURI Geography, Geology, and Planning Missouri State University, May 2017 Master of Science Josh C. Voss ABSTRACT Flooding events exert a dominant control over the deposition and formation of floodplains. The rate at which floodplains form depends on flood magnitude, frequency, and duration, and associated sediment transport capacity and supply.
    [Show full text]
  • Lesson 4: Sediment Deposition and River Structures
    LESSON 4: SEDIMENT DEPOSITION AND RIVER STRUCTURES ESSENTIAL QUESTION: What combination of factors both natural and manmade is necessary for healthy river restoration and how does this enhance the sustainability of natural and human communities? GUIDING QUESTION: As rivers age and slow they deposit sediment and form sediment structures, how are sediments and sediment structures important to the river ecosystem? OVERVIEW: The focus of this lesson is the deposition and erosional effects of slow-moving water in low gradient areas. These “mature rivers” with decreasing gradient result in the settling and deposition of sediments and the formation sediment structures. The river’s fast-flowing zone, the thalweg, causes erosion of the river banks forming cliffs called cut-banks. On slower inside turns, sediment is deposited as point-bars. Where the gradient is particularly level, the river will branch into many separate channels that weave in and out, leaving gravel bar islands. Where two meanders meet, the river will straighten, leaving oxbow lakes in the former meander bends. TIME: One class period MATERIALS: . Lesson 4- Sediment Deposition and River Structures.pptx . Lesson 4a- Sediment Deposition and River Structures.pdf . StreamTable.pptx . StreamTable.pdf . Mass Wasting and Flash Floods.pptx . Mass Wasting and Flash Floods.pdf . Stream Table . Sand . Reflection Journal Pages (printable handout) . Vocabulary Notes (printable handout) PROCEDURE: 1. Review Essential Question and introduce Guiding Question. 2. Hand out first Reflection Journal page and have students take a minute to consider and respond to the questions then discuss responses and questions generated. 3. Handout and go over the Vocabulary Notes. Students will define the vocabulary words as they watch the PowerPoint Lesson.
    [Show full text]
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • Variability of Bed Mobility in Natural Gravel-Bed Channels
    WATER RESOURCES RESEARCH, VOL. 36, NO. 12, PAGES 3743–3755, DECEMBER 2000 Variability of bed mobility in natural, gravel-bed channels and adjustments to sediment load at local and reach scales Thomas E. Lisle,1 Jonathan M. Nelson,2 John Pitlick,3 Mary Ann Madej,4 and Brent L. Barkett3 Abstract. Local variations in boundary shear stress acting on bed-surface particles control patterns of bed load transport and channel evolution during varying stream discharges. At the reach scale a channel adjusts to imposed water and sediment supply through mutual interactions among channel form, local grain size, and local flow dynamics that govern bed mobility. In order to explore these adjustments, we used a numerical flow ␶ model to examine relations between model-predicted local boundary shear stress ( j) and measured surface particle size (D50) at bank-full discharge in six gravel-bed, alternate-bar ␶ channels with widely differing annual sediment yields. Values of j and D50 were poorly correlated such that small areas conveyed large proportions of the total bed load, especially in sediment-poor channels with low mobility. Sediment-rich channels had greater areas of full mobility; sediment-poor channels had greater areas of partial mobility; and both types had significant areas that were essentially immobile. Two reach- mean mobility parameters (Shields stress and Q*) correlated reasonably well with sediment supply. Values which can be practicably obtained from carefully measured mean hydraulic variables and particle size would provide first-order assessments of bed mobility that would broadly distinguish the channels in this study according to their sediment yield and bed mobility.
    [Show full text]
  • Biogeochemical and Metabolic Responses to the Flood Pulse in a Semi-Arid Floodplain
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@USU 1 Running Head: Semi-arid floodplain response to flood pulse 2 3 4 5 6 Biogeochemical and Metabolic Responses 7 to the Flood Pulse in a Semi-Arid Floodplain 8 9 10 11 with 7 Figures and 3 Tables 12 13 14 15 H. M. Valett1, M.A. Baker2, J.A. Morrice3, C.S. Crawford, 16 M.C. Molles, Jr., C.N. Dahm, D.L. Moyer4, J.R. Thibault, and Lisa M. Ellis 17 18 19 20 21 22 Department of Biology 23 University of New Mexico 24 Albuquerque, New Mexico 87131 USA 25 26 27 28 29 30 31 present addresses: 32 33 1Department of Biology 2Department of Biology 3U.S. EPA 34 Virginia Tech Utah State University Mid-Continent Ecology Division 35 Blacksburg, Virginia 24061 USA Logan, Utah 84322 USA Duluth, Minnesota 55804 USA 36 540-231-2065, 540-231-9307 fax 37 [email protected] 38 4Water Resources Division 39 United States Geological Survey 40 Richmond, Virginia 23228 USA 41 1 1 Abstract: Flood pulse inundation of riparian forests alters rates of nutrient retention and 2 organic matter processing in the aquatic ecosystems formed in the forest interior. Along the 3 Middle Rio Grande (New Mexico, USA), impoundment and levee construction have created 4 riparian forests that differ in their inter-flood intervals (IFIs) because some floodplains are 5 still regularly inundated by the flood pulse (i.e., connected), while other floodplains remain 6 isolated from flooding (i.e., disconnected).
    [Show full text]
  • South Fox Meadow Drainage Improvement Project
    VILLAGE OF SCARSDALE WESTCHESTER COUNTY, NEW YORK COMPREHENSIVE STORM WATER MANAGEMENT SOUTH FOX MEADOW STORMWATER IMPROVEMENT PROJECT In association with WESTCHESTER COUNTY FLOOD MITIGATION PROGRAM Rob DeGiorgio, P.E., CPESC, CPSWQ The Bronx River Watershed Fox Meadow Brook Bronx River Watershed Area in Westchester 48.3 square miles (30,932 acres) 15 Sub-watersheds Percent of undeveloped land in the Watershed 3.3% (0.8 acres in Fox Meadow Brook (FMB) FMB watershed) 928 acres (5.7% of watershed) Bronx River Watershed Fox Meadow Brook George Field Park High School Duck Pond Project Philosophy and Goals •Provide flood mitigation within the Fox Meadow Brook Drainage Basin. •Reduce peak run off rates in the Bronx River Watershed through dry detention storage. •Rehabilitate and preserve natural landscapes and wetlands through invasive species management and re- construction. •Improve water quality. • Petition for and obtain County grant funding to subsidize the project. Village of Scarsdale Fox Meadow Brook Watershed SR-2 BR-4 SR-3 BR-7 BR-8 SR-5 Village of Scarsdale History •In 2009 the Village completed a Comprehensive Storm Water Management Plan. •Critical Bronx River sub drainage basin areas identified inclusive of Fox Meadow Brook (BR-4, BR-7, BR-8). •26 Capital Improvement Projects were identified, several of which comprise the Fox Meadow Detention Improvement Project. •Project included in Village’s Capital Budget. •Project has been reviewed by the NYS DEC. •NYS EFC has approved financing for the project granting Scarsdale a 50% subsidy for their local share of the costs. Village of Scarsdale Site Locations – 7 Segments 7 Project Segments 1.
    [Show full text]
  • Classifying Rivers - Three Stages of River Development
    Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion.
    [Show full text]
  • Topic: Drainage Basins As Open Systems 3.1.1.2 Runoff, Hydrographs & Changes in the Water Cycle Over Time
    Topic: Drainage basins as open systems 3.1.1.2 Runoff, hydrographs & changes in the water cycle over time What you need to know How runoff varies within the water cycle. How to analyse a flood hydrograph How the water cycle changes over time Introduction: Runoff (the flow of water over the Earth’s surface) can vary depending upon a range of physical and human factors. These include: • Time of year. • Storm conditions. • Vegetation cover. • Soil saturation levels. • Topography & relief. • Agricultural land use. • Urban land use. Physical factors affecting runoff: Time of year In temperate climates, where seasonal change is evident, runoff levels can vary greatly throughout the year. In summer, runoff levels can be low due to a reduction in rainfall. Soil saturation levels will be low and therefore any rainfall at this point can easily infiltrate into the ground. However, intense baking of the soil by the sun can lead to the soil becoming effectively impermeable and summer storms can lead to high levels of runoff as the rain is unable to soak in. This can lead to flash flooSAMPLEds. In winter, precipitation may be in the form of snow and the water may be stored on the ground due to low temperatures. Warmer temperatures in spring may lead to snowmelt and this can lead to the soil reaching field capacity quickly. Further meltwater will therefore run over the surface. © Tutor2u Limited 2016 www.tutor2u.net Topic: Drainage basins as open systems 3.1.1.2 Runoff, hydrographs & changes in the water cycle over time Storm conditions Intense storms with heavy rainfall can lead to soils quickly becoming saturated.
    [Show full text]
  • So Many Ways to Make a River Bend
    Presenter: John Holbrook So Many Ways to Make a River Bend John M. Holbrook Texas Christian University ABSTRACT The concept of meandering in rivers is old and well known, but so many of the known mechanisms of meandering are novel. The classic model of meander growth by translation and expansion generates upward-fining stories with en echolon accretion sets. This model still holds, but additional mechanisms, and variations on this theme, are now apparent. These mechanisms and variations manifest as differing architecture and lithofacies for deposits on the inner bend that ultimatly impact petroleum production trends. Bar-bend theory characterizes the growth of river meanders and the processes by which rivers will build bends. Transience in bedload transport demands that the channels will develop flow irregularities that are compensated by erosion at a cutbank. Deposition of a point bar is forced on the inner bend to maintain constant width in single-thread channels as the cutbank expands. This process deposits discrete shingles of bedload sediment as individual and parallel accretion sets on the point bar surface. No rule, however, demands that bar growth is exclusively by expansion or that growth have any constant roll or yaw. The bar growth surface can wobble, and the bar growth direction can translate, rotate, or can toggle inbetween expansion and translation, while still maintaining the constraint of a constant channel width (Figure 1). Each of these growth vectors alters internal bar architecture in separate ways. Wobble tends to form accretion surfaces with non-consistent dip that cross-cut and fragment accretion sets within bars.
    [Show full text]
  • River Network Rearrangements in Amazonia Shake Biogeography and Civil Security
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 September 2018 doi:10.20944/preprints201809.0168.v1 River Network Rearrangements in Amazonia Shake Biogeography and Civil Security Authors K Ruokolainen1,2*, G Massaine Moulatlet2,3, G Zuquim2, C Hoorn3,4, H Tuomisto2 Affiliations 1 Department of Geography and Geology, University of Turku, 20014 Turku, Finland. 2 Department of Biology, University of Turku, 20014 Turku, Finland. 3 Universidad Regional Amazónica IKIAM, km 7 Via Muyuna, Parroquia Muyuna, Tena, Napo, Ecuador. 4 Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands. *Corresponding author. Email: [email protected] Key words: avulsion, civil defence, dispersal barrier, flood, Rio Madeira, rain forest, species distribution Abstract The scene for regional biogeography and human settlements in Central Amazonia is set by the river network, which presumably consolidated in the Pliocene. However, we present geomorphological and sediment chronological data showing that the river network has been anything but stable. Even during the last 50 kyr, the tributary relationships have repeatedly changed for four major rivers, together corresponding to one third of the discharge of the Amazon. The latest major river capture event converted the Japurá from a tributary of the Rio Negro to a tributary of the Amazon only 1000 years ago. Such broad-scale lability implies that rivers cannot have been as efficient biogeographical dispersal barriers as has generally been assumed, but that their effects on human societies can have been even more profound. Climate change and deforestation scenarios predict increasing water levels during peak floods, which will likely increase the risk of future river avulsions.
    [Show full text]
  • Where Rivers Meet the Sea
    A C T I V I T Y 1 Where Rivers Meet the Sea Estuary Principle Estuaries are interconnected with the world Ocean and with major systems and This curriculum was developed and produced for: cycles on Earth. The National Oceanic and Atmospheric Administration (NOAA) and The National Estuarine Research Question Research Reserve System (NERRS) What are estuaries? 1305 East West Highway NORM/5, 10th Floor Silver Spring, MD 20910 Introduction www.estuaries.noaa.gov Financial support for the Estuaries Did you know that estuaries are interconnected with the world-ocean and major 101 Middle School Curriculum was systems on Earth? provided by the National Oceanic and Atmospheric Administration via Estuaries are places where the planet's major environments of land, ocean, rivers, grant NA06NOS4690196, administered through the Alabama and the atmosphere come together. Estuaries are found all-over the planet, mostly Department of Conservation and in the form of salt water marshes and mangrove swamps. Estuaries, no matter Natural Resources, State Lands where they are located on Earth, have shared characteristics. They all have a Division, Coastal Section and Weeks Bay National Estuarine semi-enclosed body of water that has a free connection to the open sea, and fresh Research Reserve. Support was water derived from land drainage. The North American shoreline is ringed with also provided by the Baldwin estuaries. County Board of Education. There are twenty-eight estuarine reserve sites in the United States that make up a system of estuaries stewarded by NOAA's National Estuarine Research Reserve System (NERRS). These reserves are located in 22 of the 35 U.S coastal states from Alaska to Puerto Rico, including the Great Lakes Basin, and protect over 1.3 million acres of coastal land and waters.
    [Show full text]