Kwanashie, Augustine (2015) Efficient Algorithms for Optimal Matching Problems Under Preferences

Total Page:16

File Type:pdf, Size:1020Kb

Kwanashie, Augustine (2015) Efficient Algorithms for Optimal Matching Problems Under Preferences Kwanashie, Augustine (2015) Efficient algorithms for optimal matching problems under preferences. PhD thesis. http://theses.gla.ac.uk/6706/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Efficient Algorithms for Optimal Matching Problems Under Preferences Augustine Kwanashie Submitted in fulfillment of the requirements for the degree of Doctor of Philosophy School of Computing Science College of Science and Engineering University of Glasgow September 2015 c Augustine Kwanashie 2015 Abstract In this thesis we consider efficient algorithms for matching problems involving pref- erences, i.e., problems where agents may be required to list other agents that they find acceptable in order of preference. In particular we mainly study the Stable Marriage problem (sm), the Hospitals / Residents problem (hr) and the Student / Project Allo- cation problem (spa), and some of their variants. In some of these problems the aim is to find a stable matching which is one that admits no blocking pair. A blocking pair with respect to a matching is a pair of agents that prefer to be matched to each other than their assigned partners in the matching if any. We present an Integer Programming (IP) model for the Hospitals / Residents problem with Ties (hrt) and use it to find a maximum cardinality stable matching. We also present results from an empirical evaluation of our model which show it to be scalable with respect to real-world hrt instance sizes. Motivated by the observation that not all blocking pairs that exist in theory will lead to a matching being undermined in practice, we investigate a relaxed stability criterion called social stability where only pairs of agents with a social relationship have the ability to undermine a matching. This stability concept is studied in instances of the Stable Marriage problem with Incomplete lists (smi) and in instances of hr. We show that, in the smi and hr contexts, socially stable matchings can be of varying sizes and the problem of finding a maximum socially stable matching (max smiss and max hrss respectively) is NP-hard though approximable within 3=2. Furthermore we give polynomial time algorithms for three special cases of the problem arising from restrictions on the social network graph and the lengths of agents' preference lists. We also consider other optimality criteria with respect to social stability and establish inapproximability bounds for the problems of finding an egalitarian, minimum regret and sex equal socially stable matching in the sm context. We extend our study of social stability by considering other variants and restrictions of max smiss and max hrss. We present NP-hardness results for max smiss even under certain restrictions on the degree and structure of the social network graph as well as the presence of master lists. Other NP-hardness results presented relate to the problem of determining whether a given man-woman pair belongs to a socially stable matching and the problem of determining whether a given man (or woman) is part of at least one socially stable matching. We also consider the Stable Roommates problem with Incomplete lists under Social Stability (a non-bipartite generalisation of smi under social stability). We observe that the problem of finding a maximum socially stable matching in this context is also NP-hard. We present efficient algorithms for three special cases of the problem arising from restrictions on the social network graph and the lengths of agents' preference lists. These are the cases where (i) there exists a constant number of acquainted pairs (ii) or a constant number of unacquainted pairs or (iii) each preference list is of length at most 2. We also present algorithmic results for finding matchings in the spa context that are optimal with respect to profile, which is the vector whose ith component is the number of students assigned to their ith-choice project. We present an efficient algorithm for finding a greedy maximum matching in the spa context | this is a maximum matching whose profile is lexicographically maximum. We then show how to adapt this algorithm to find a generous maximum matching | this is a matching whose reverse profile is lexicographically minimum. We demonstrate how this approach can allow additional constraints, such as lecturer lower quotas, to be handled flexibly. We also present results of empirical evaluations carried out on both real world and randomly generated datasets. These results demonstrate the scalability of our algorithms as well as some interesting properties of these profile-based optimality criteria. Practical applications of spa motivate the investigation of certain special cases of the problem. For instance, it is often desired that the workload on lecturers is evenly dis- tributed (i.e. load balanced). We enforce this by either adding lower quota constraints on the lecturers (which leads to the potential for infeasible problem instances) or adding a load balancing optimisation criterion. We present efficient algorithms in both cases. Another consideration is the fact that certain projects may require a minimum number of students to become viable. This can be handled by enforcing lower quota constraints on the projects (which also leads to the possibility of infeasible problem instances). A technique of handling this infeasibility is the idea of closing projects that do not meet their lower quotas (i.e. leaving such project completely unassigned). We show that the problem of finding a maximum matching subject to project lower quotas where projects can be closed is NP-hard even under severe restrictions on preference lists lengths and project upper and lower quotas. To offset this hardness, we present polynomial time heuristics that find large feasible matchings in practice. We also present ip models for the spa variants discussed and show results obtained from an empirical evaluation carried out on both real and randomly generated datasets. These results show that our algorithms and heuristics are scalable and provide good matchings with respect to profile-based optimality. Table of Contents 1 Introduction 1 2 Literature Review of Matching Problems 5 2.1 Introduction . .5 2.2 The Stable Marriage problem (sm)....................7 2.2.1 Introduction . .7 2.2.2 Structure of stable matchings in sm ................9 2.2.3 Stable Marriage problem with Incomplete lists . 12 2.2.4 Stable Marriage problem with Ties . 12 2.2.5 Stable Marriage problem with Ties and Incomplete lists . 13 2.2.6 Other optimality criteria . 14 2.3 The Hospitals/Residents problem (hr).................. 15 2.3.1 Introduction . 15 2.3.2 Hospital/Residents with Ties . 16 2.3.3 Cloning hr instances . 18 2.4 The Stable Roommates problem (sr)................... 19 2.4.1 Rotations in the Stable Roommates problem . 20 2.4.2 Structure of stable matchings in sr ................ 20 2.4.3 Stable Roommates with Incomplete lists . 20 2.5 Locally Stable Matchings . 21 2.5.1 Introduction . 21 2.5.2 Locally Stable Matchings in the Job Market Context . 22 2.5.3 Other results relating to Locally Stable Matchings . 24 2.6 The Student/Project Allocation problem . 24 2.6.1 Introduction . 24 2.6.2 Two-sided preferences and stability . 25 2.6.3 One-sided preferences and profile-based optimality . 27 2.6.4 Other spa models and approaches . 29 2.7 Integer Programming approaches to matching problems . 30 3 An Integer Programming Approach to the Hospitals/Residents Prob- lem with Ties 32 3.1 Introduction . 32 3.2 An IP model for max hrt ......................... 33 3.3 Implementing the model . 35 3.3.1 Reducing the model size . 35 3.3.2 Improving optimisation performance . 37 3.3.3 Testing the implementation . 38 3.4 Empirical evaluation . 39 3.4.1 Using random instances . 40 3.4.2 Using real instances . 43 3.5 Open problems . 44 4 Socially Stable Matchings in the Hospitals/Residents Problem 46 4.1 Introduction . 46 4.2 Preliminary definitions and results . 47 4.3 Reduction from hrss to hr+sn ...................... 48 4.4 Hardness of max smiss ........................... 50 4.5 Approximating max hrss ......................... 51 4.5.1 Approximation results . 52 4.5.2 Inapproximability result . 57 4.6 Some special cases of hrss ......................... 58 4.6.1 (2; 1)-max smiss .......................... 59 4.6.2 hrss with a constant number of unacquainted pairs . 62 4.6.3 hrss with a constant number of acquainted pairs . 63 4.7 Empirical evaluation . 67 4.7.1 Introduction . 67 4.7.2 Varying instance size . 69 4.7.3 Varying the density of the social network . 69 4.8 Conclusion . 71 5 Further Algorithmic Results on Socially Stable Matchings 73 5.1 Introduction . 73 5.2 Fair socially stable matchings . 74 5.2.1 Introduction . 74 5.2.2 Egalitarian socially stable matchings . 75 5.2.3 Minimum regret socially stable matchings . 77 5.2.4 Sex-equal socially stable matchings . 78 5.3 Further restrictions of com smiss ..................... 80 5.3.1 Restrictions on the degree of the social network graph . 80 5.3.2 Restrictions on the structure of the social network graph . 83 5.3.3 Restrictions on the ordering of preference lists . 84 5.4 Minimum socially stable matchings . 86 5.5 Further hardness results for smiss ....................
Recommended publications
  • Stable Matching: Theory, Evidence, and Practical Design
    THE PRIZE IN ECONOMIC SCIENCES 2012 INFORMATION FOR THE PUBLIC Stable matching: Theory, evidence, and practical design This year’s Prize to Lloyd Shapley and Alvin Roth extends from abstract theory developed in the 1960s, over empirical work in the 1980s, to ongoing efforts to fnd practical solutions to real-world prob- lems. Examples include the assignment of new doctors to hospitals, students to schools, and human organs for transplant to recipients. Lloyd Shapley made the early theoretical contributions, which were unexpectedly adopted two decades later when Alvin Roth investigated the market for U.S. doctors. His fndings generated further analytical developments, as well as practical design of market institutions. Traditional economic analysis studies markets where prices adjust so that supply equals demand. Both theory and practice show that markets function well in many cases. But in some situations, the standard market mechanism encounters problems, and there are cases where prices cannot be used at all to allocate resources. For example, many schools and universities are prevented from charging tuition fees and, in the case of human organs for transplants, monetary payments are ruled out on ethical grounds. Yet, in these – and many other – cases, an allocation has to be made. How do such processes actually work, and when is the outcome efcient? Matching theory The Gale-Shapley algorithm Analysis of allocation mechanisms relies on a rather abstract idea. If rational people – who know their best interests and behave accordingly – simply engage in unrestricted mutual trade, then the outcome should be efcient. If it is not, some individuals would devise new trades that made them better of.
    [Show full text]
  • Matching with Externalities
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Pycia, Marek; Yenmez, M. Bumin Working Paper Matching with externalities Working Paper, No. 392 Provided in Cooperation with: Department of Economics, University of Zurich Suggested Citation: Pycia, Marek; Yenmez, M. Bumin (2021) : Matching with externalities, Working Paper, No. 392, University of Zurich, Department of Economics, Zurich, http://dx.doi.org/10.5167/uzh-204367 This Version is available at: http://hdl.handle.net/10419/235605 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu University of Zurich Department of Economics Working Paper Series ISSN 1664-7041 (print) ISSN 1664-705X (online) Working Paper No. 392 Matching with Externalities Marek Pycia and M.
    [Show full text]
  • Matching with Externalities
    Matching with Externalities Marek Pycia and M. Bumin Yenmez* June 2021 Abstract We incorporate externalities into the stable matching theory of two-sided markets. Ex- tending the classical substitutes condition to markets with externalities, we establish that stable matchings exist when agent choices satisfy substitutability. We show that substi- tutability is a necessary condition for the existence of a stable matching in a maximal- domain sense and provide a characterization of substitutable choice functions. In addition, we extend the standard insights of matching theory, like the existence of side-optimal sta- ble matchings and the deferred acceptance algorithm, to settings with externalities even though the standard fixed-point techniques do not apply. 1 Introduction Externalities are present in many two-sided markets. For instance, couples in a labor market pool their resources as do partners in legal or consulting partnerships. As a result, the pref- erences of an agent depend on the contracts signed by the partners. Likewise, a firm’s hiring *First online version: August 2, 2014; first presentation: February 2012. We would like to thank Peter Chen and Michael Egesdal for stimulating conversations early in the project. For their comments, we would also like to thank Omer Ali, Andrew Atkeson, David Dorn, Haydar Evren, James Fisher, Mikhail Freer, Andrea Gale- otti, Christian Hellwig, Jannik Hensel, George Mailath, Preston McAfee, SangMok Lee, Michael Ostrovsky, David Reiley, Michael Richter, Tayfun Sonmez, Alex Teytelboym, Utku Unver, Basit Zafar, Simpson Zhang, Josef Zweimüller, anonymous referees, and audiences of presentations at UCLA, Carnegie Mellon University, the University of Pennsylvania Workshop on Multiunit Allocation, AMMA, Arizona State University, Winter Econo- metric Society Meetings, Boston College, Princeton, CIREQ Montreal Microeconomic Theory Conference, and University of Zurich.
    [Show full text]
  • Seen As Stable Marriages
    This paper was presented as part of the Mini-Conference at IEEE INFOCOM 2011 Seen As Stable Marriages Hong Xu, Baochun Li Department of Electrical and Computer Engineering University of Toronto Abstract—In this paper, we advocate the use of stable matching agents from both sides to find the optimal solution, which is framework in solving networking problems, which are tradi- computationally expensive. tionally solved using utility-based optimization or game theory. Born in economics, stable matching efficiently resolves conflicts of interest among selfish agents in the market, with a simple and elegant procedure of deferred acceptance. We illustrate through (w1,w3,w2) (m1,m2,m3) one technical case study how it can be applied in practical m1 w1 scenarios where the impeding complexity of idiosyncratic factors makes defining a utility function difficult. Due to its use of (w2,w3,w1) (m1,m3,m2) generic preferences, stable matching has the potential to offer efficient and practical solutions to networking problems, while its m2 w2 mathematical structure and rich literature in economics provide many opportunities for theoretical studies. In closing, we discuss (w2,w1,w3) open questions when applying the stable matching framework. (m3,m2,m1) m3 w3 I. INTRODUCTION Matching is perhaps one of the most important functions of Fig. 1. A simple example of the marriage market. The matching shown is a stable matching. markets. The stable marriage problem, introduced by Gale and Shapley in their seminal work [1], is arguably one of the most Many large-scale networked systems, such as peer-to-peer interesting and successful abstractions of such markets.
    [Show full text]
  • Algorithms, Data Science, and Online Markets
    Algorithms, Data Science, and Online Markets Stefano Leonardi Department of Computer, Control, and Management Engineering Antonio Ruberti (DIAG) Sapienza University of Rome September 2-6, 2019 Data Science Summer School - Pisa Algorithms, Data Science, and Markets September 5, 2019 1 / 83 Stefano Leonardi Leader of the Research Group on Algorithms and Data Science at DIAG - Sapienza ERC Advanced Grant "Algorithms and Mechanism Design Research in Online MArkets" (AMDROMA) Chair of the PhD program in Data Science at Sapienza Past Chair of the Master's Research Interests: Degree in Data Science at Algorithmic Theory Sapienza Algorithmic Data Analysis Fellow of the European Association for Theoretical Economics and Computation Computer Science Algorithms, Data Science, and Markets September 5, 2019 2 / 83 Outline 1 Part I: Algorithms, Data Science and Markets 2 Part II: Internet, Equilibria and Games 3 Part III: Games and solution concepts 4 Part IV: The complexity of finding equilibria 5 Part V: The price of Anarchy 6 Part VI: Equilibria in markets 7 Conclusions Algorithms, Data Science, and Markets September 5, 2019 3 / 83 Algorithms, Data Science, and Markets Digital markets form an important share of the global economy. Many classical markets moved to Internet: real-estate, stocks, e-commerce, entarteinment New markets with previously unknown features have emerged: web-based advertisement, viral marketing, digital goods, online labour markets, sharing economy Algorithms, Data Science, and Markets September 5, 2019 4 / 83 An Economy of Algorithms In 2000, we had 600 humans making markets in U.S. stocks. Today, we have two people and a lot of software. One in three Goldman Sachs employees are engineers R.
    [Show full text]
  • Matchingandmarketdesign
    Matching and Market Design Theory and Practice Xiang Sun May 12, 2017 ii Contents Acknowledgement vii 1 Introduction 1 1.1 Matching and market design .......................................... 1 1.2 Time line of the main evolution of matching and market design ....................... 2 I Two-sided matching 9 2 Marriage 11 2.1 The formal model ............................................... 11 2.2 Stability and optimality ............................................ 12 2.3 Deferred acceptance algorithm ........................................ 14 2.4 Properties of stable matchings I ........................................ 16 2.5 Properties of stable matchings II ........................................ 21 2.6 Extension: Extending the men’s preferences ................................. 24 2.7 Extension: Adding another woman ...................................... 26 2.8 Incentive compatibility I ............................................ 29 2.9 Incentive compatibility II ........................................... 35 2.10 Non-bossiness ................................................. 38 3 College admissions 41 3.1 The formal model ............................................... 41 3.2 Stability ..................................................... 42 3.3 The connection between the college admissions model and the marriage model .............. 44 3.4 Deferred acceptance algorithm and properties of stable matchings ..................... 45 i Contents ii 3.5 Further results for the college admissions model ..............................
    [Show full text]
  • Coalition Manipulation of the Gale-Shapley Algorithm
    Coalition Manipulation of the Gale-Shapley Algorithm Weiran Shen and Pingzhong Tang Yuan Deng Institute for Interdisciplinary Information Sciences Department of Computer Science Tsinghua University Duke University Beijing, China Durham, NC 27708, USA femersonswr,[email protected] [email protected] Abstract him yet. Then each woman rejects all men but her favorite one. The algorithm terminates when no man can make any It is well-known that the Gale-Shapley algorithm is not truth- proposal. ful for all agents. Previous studies in this category concentrate on manipulations using incomplete preference lists by a sin- It is shown that the matching computed by the Gale- gle woman and by the set of all women. Little is known about Shapley algorithm is stable and the algorithm is guaranteed manipulations by a subset of women. to terminate for each legal input, which immediately implies In this paper, we consider manipulations by any subset of that every instance of the stable matching problem has a sta- women with arbitrary preferences. We show that a strong ble matching. There are many interesting structural results in Nash equilibrium of the induced manipulation game always the literature of stable matching theory. For example, among exists among the manipulators and the equilibrium outcome all stable matchings, the matching computed by the Gale- is unique and Pareto-dominant. In addition, the set of match- Shapley algorithm is preferred by all men to other match- ings achievable by manipulations has a lattice structure. We ings, and thus is called the M-optimal (W-pessimal) match- also examine the super-strong Nash equilibrium in the end.
    [Show full text]
  • Unbalanced Random Matching Markets: the Stark Effect of Competition
    Unbalanced Random Matching Markets: The Stark Effect of Competition Itai Ashlagi Stanford University Yash Kanoria Columbia University Jacob D. Leshno Columbia University We study competition in matching markets with random heteroge- neous preferences and an unequal number of agents on either side. First, we show that even the slightest imbalance yields an essentially unique stable matching. Second, we give a tight description of stable outcomes, showing that matching markets are extremely competitive. Each agent on the short side of the market is matched with one of his top choices, and each agent on the long side either is unmatched or does almost no better than being matched with a random partner. Our results suggest that any matching market is likely to have a small core, explaining why small cores are empirically ubiquitous. I. Introduction Stable matching theory has been instrumental in the study and design of numerous two-sided markets. Two-sided markets are described by two dis- Part of the work was done when the last two authors were postdoctoral researchers at Microsoft Research New England. We thank Nittai Bergman, Gabriel Carroll, Yeon-Koo Che, Ben Golub, Uriel Feige, Ali Hortaçsu, Nicole Immorlica, Fuhito Kojima, SangMok Electronically published December 16, 2016 [ Journal of Political Economy, 2017, vol. 125, no. 1] © 2017 by The University of Chicago. All rights reserved. 0022-3808/2017/12501-0005$10.00 69 70 journal of political economy joint sets of men and women, where each agent has preferences over po- tential partners. Examples include entry-level labor markets, dating, and college admissions. The core of a two-sided market is the set of stable matchings, where a matching is stable if there are no man and woman who both prefer each other over their assigned partners.
    [Show full text]
  • Diversity.Pdf
    Published in the American Economic Review (2015) Vol. 105(8): 2679-94. doi:10.1257/aer.20130929 HOW TO CONTROL CONTROLLED SCHOOL CHOICE FEDERICO ECHENIQUE AND M. BUMIN YENMEZ Abstract. We characterize choice rules for schools that regard students as substitutes while expressing preferences for a diverse student body. The stable (or fair) assignment of students to schools requires the latter to re- gard the former as substitutes. Such a requirement is in conflict with the reality of schools' preferences for diversity. We show that the conflict can be useful, in the sense that certain unique rules emerge from imposing both considerations. We also provide welfare comparisons for students when different choice rules are employed. Date: October 22, 2014. Keywords: School choice, diversity, gross substitutes. We thank Estelle Cantillon, Lars Ehlers, Sean Horan, Mark Johnson, Juan Pereyra Barreiro, Ariel Rubinstein, Kota Saito, Yves Sprumont, and Utku Unver¨ for their helpful comments, as well as seminar audiences at multiple universities and conferences. We are particularly grateful to Scott Kominers, Parag Pathak and Tayfun S¨onmezfor their comments, and advise on existing controlled school choice programs. Karen Hannsberry, manager at the office of access and enrollment at Chicago Public Schools, very kindly answered all our questions about their program. Finally, we are very grateful to the editor, Debraj Ray, and three anonymous referees for their suggestions, which have led to a much improved version of the paper. Echenique is affiliated with the Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125; Yenmez is with Tepper School of Business, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213.
    [Show full text]
  • Coalition Manipulation of Gale-Shapley Algorithm∗
    The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18) Coalition Manipulation of Gale-Shapley Algorithm∗ Weiran Shen, Pingzhong Tang Yuan Deng Institute for Interdisciplinary Information Sciences Department of Computer Science Tsinghua University Duke University Beijing, China Durham, NC 27708, USA {emersonswr,kenshinping}@gmail.com [email protected] Abstract women. At each round of the procedure, each man proposes to his favorite woman among those who have not rejected It is well-known that the Gale-Shapley algorithm is not truth- ful for all agents. Previous studies in this category concentrate him yet. Then each woman rejects all men but her favorite on manipulations using incomplete preference lists by a sin- one. The algorithm terminates when no man can make any gle woman and by the set of all women. Little is known about proposal. manipulations by a subset of women. It is shown that the matching computed by the Gale- In this paper, we consider manipulations by any subset of Shapley algorithm is stable and the algorithm is guaranteed women with arbitrary preferences. We show that a strong to terminate for each legal input, which immediately implies Nash equilibrium of the induced manipulation game always that every instance of the stable matching problem has a sta- exists among the manipulators and the equilibrium outcome ble matching. There are many interesting structural results in is unique and Pareto-dominant. In addition, the set of match- the literature of stable matching theory. For example, among ings achievable by manipulations has a lattice structure. We all stable matchings, the matching computed by the Gale- also examine the super-strong Nash equilibrium in the end.
    [Show full text]
  • The Complexity of Interactively Learning a Stable Matching by Trial and Error∗†
    The Complexity of Interactively Learning a Stable Matching by Trial and Error∗y Ehsan Emamjomeh-Zadehz Yannai A. Gonczarowskix David Kempe{ September 16, 2020 Abstract In a stable matching setting, we consider a query model that allows for an interactive learning algorithm to make precisely one type of query: proposing a matching, the response to which is either that the proposed matching is stable, or a blocking pair (chosen adversarially) indicating that this matching is unstable. For one-to-one matching markets, our main result is an essen- tially tight upper bound of O(n2 log n) on the deterministic query complexity of interactively learning a stable matching in this coarse query model, along with an efficient randomized algo- rithm that achieves this query complexity with high probability. For many-to-many matching markets in which participants have responsive preferences, we first give an interactive learning algorithm whose query complexity and running time are polynomial in the size of the market if the maximum quota of each agent is bounded; our main result for many-to-many markets is that the deterministic query complexity can be made polynomial (more specifically, O(n3 log n)) in the size of the market even for arbitrary (e.g., linear in the market size) quotas. 1 Introduction Problem and Background In the classic Stable Matching Problem (Gale and Shapley, 1962), there are n women and n men; each woman has a subset of men she deems acceptable and a strict preference order over them; similarly, each man has a subset of women he finds acceptable and a strict preference order over them.
    [Show full text]
  • Seen As Stable Marriages
    Seen As Stable Marriages Hong Xu, Baochun Li Department of Electrical and Computer Engineering University of Toronto Abstract—In this paper, we advocate the use of stable matching agents from both sides to find the optimal solution, which is framework in solving networking problems, which are tradi- computationally expensive. tionally solved using utility-based optimization or game theory. Born in economics, stable matching efficiently resolves conflicts of interest among selfish agents in the market, with a simple and elegant procedure of deferred acceptance. We illustrate through (w1, w 3, w 2) (m1, m 2, m 3) one technical case study how it can be applied in practical m1 w1 scenarios where the impeding complexity of idiosyncratic factors makes defining a utility function difficult. Due to its use of (w2, w 3, w 1) (m1, m 3, m 2) generic preferences, stable matching has the potential to offer efficient and practical solutions to networking problems, while its m2 w2 mathematical structure and rich literature in economics provide many opportunities for theoretical studies. In closing, we discuss (w2, w 1, w 3) open questions when applying the stable matching framework. (m3, m 2, m 1) m3 w3 I. INTRODUCTION Matching is perhaps one of the most important functions of Fig. 1. A simple example of the marriage market. The matching shown is a stable matching. markets. The stable marriage problem, introduced by Gale and Shapley in their seminal work [1], is arguably one of the most Many large-scale networked systems, such as peer-to-peer interesting and successful abstractions of such markets.
    [Show full text]