Coalition Manipulation of Gale-Shapley Algorithm∗

Total Page:16

File Type:pdf, Size:1020Kb

Coalition Manipulation of Gale-Shapley Algorithm∗ The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18) Coalition Manipulation of Gale-Shapley Algorithm∗ Weiran Shen, Pingzhong Tang Yuan Deng Institute for Interdisciplinary Information Sciences Department of Computer Science Tsinghua University Duke University Beijing, China Durham, NC 27708, USA {emersonswr,kenshinping}@gmail.com [email protected] Abstract women. At each round of the procedure, each man proposes to his favorite woman among those who have not rejected It is well-known that the Gale-Shapley algorithm is not truth- ful for all agents. Previous studies in this category concentrate him yet. Then each woman rejects all men but her favorite on manipulations using incomplete preference lists by a sin- one. The algorithm terminates when no man can make any gle woman and by the set of all women. Little is known about proposal. manipulations by a subset of women. It is shown that the matching computed by the Gale- In this paper, we consider manipulations by any subset of Shapley algorithm is stable and the algorithm is guaranteed women with arbitrary preferences. We show that a strong to terminate for each legal input, which immediately implies Nash equilibrium of the induced manipulation game always that every instance of the stable matching problem has a sta- exists among the manipulators and the equilibrium outcome ble matching. There are many interesting structural results in is unique and Pareto-dominant. In addition, the set of match- the literature of stable matching theory. For example, among ings achievable by manipulations has a lattice structure. We all stable matchings, the matching computed by the Gale- also examine the super-strong Nash equilibrium in the end. Shapley algorithm is preferred by all men to other match- ings, and thus is called the M-optimal (W-pessimal) match- Introduction ing. Similarly, the W-optimal (M-pessimal) matching can be The stable matching theory was introduced by Gale and found by switching the roles of men and women. In fact, all Shapley (1962). Since then, stability has been a central men and women have opposite preferences over the set of concept in matching market design. The area has attracted stable matchings, i.e., for every two stable matchings μ1 and intensive research attention, putting theory into practice μ2, all men prefer μ1 to μ2, if and only if all women prefer through a large amount of important applications, such as μ2 to μ1. Moreover, the set of all stable matchings forms a college admissions and school matchings (Abdulkadiroglu lattice structure. and Sonmez¨ 2003; Abdulkadiroglu,˘ Pathak, and Roth 2005; Gale and Shapley 1962), hospitals-residents matchings (Irv- Incentive Issue ing and Manlove 2009; Irving, Manlove, and Scott 2000; However, the Gale-Shapley algorithm suffers from the in- Roth 1996), kidney exchange programs (Abraham, Blum, ¨ centive issue, i.e., some agents have incentive to misreport and Sandholm 2007; Roth, Sonmez,¨ and Unver 2004; 2005; their preference lists. Although it is shown that the Gale- Liu, Tang, and Fang 2014), and water right trading (Liu et Shapley algorithm is group strategy-proof for all men (Du- al. 2016; Zhan et al. 2017). bins and Freedman 1981)1, when the algorithm is adopted, We study the standard stable matching model, where two the women may have incentives to misreport their pref- set of agents, namely men and women, have preferences erences. Moreover, a well-known impossibility result by over each other. A matching is a one-to-one correspondence Roth (1982) states that no stable matching algorithm is truth- between the two sets. A pair of a man and a woman, who ful for all agents. are not matched together, but prefer each other to their des- Gale and Sotomayor (1985) shows that if all women trun- ignated partner, is said to be a blocking pair. A match- cate their preference lists properly, the Gale-Shapley algo- ing is called stable if there exists no blocking pair. The rithm will output a matching that matches each of them to Gale-Shapley algorithm, which was first proposed by Gale their partner in the W-optimal matching. Teo, Sethuraman, and Shapley (1962), takes as input the preference lists of O(n2) and Tan (2001) provide a polynomial time algorithm to find all agents, and computes a stable matching in time. the optimal single-agent truncation manipulation. However, The algorithm simulates the procedure of men proposing to ∗This work was supported in part by the National Natural Sci- 1Precisely, group strategy-proof means no coalition manipula- ence Foundation of China Grant 61561146398 and a China Youth tion can make all men in the coalition strictly better off, in this 1000-talent program. context. If considering the case where no man is worse off and at Copyright c 2018, Association for the Advancement of Artificial least one man is strictly better off, the Gale-Shapley algorithm is Intelligence (www.aaai.org). All rights reserved. not group strategy-proof (Huang 2006). 1210 little is known when only a subset of players can misreport removed in order for the W-optimal matching to be the final their preference lists. output. This paper is directly motivated by the recent reform of Dworczak (2016) put forward a new matching algorithm the college admissions process in China. In China, all stu- to find stable matchings, where all agents are allowed to dents are required to take the National College Entrance make proposals. Their algorithm is a natural generalization Exam before applying to the universities. The applications of the Gale-Shapley algorithm and they also characterize the are settled by the Ministry of Education using the Gale- set of stable matchings by showing that a matching is stable Shapley algorithm. However, besides the entrance exam, the if and only if it is a possible output of their algorithm. Teo, Ministry also has the independent admission program (aka Sethuraman, and Tan (2001) study a different type of ma- the university initiative admission plan). This program al- nipulation, where a woman can only permute her true pref- lows the universities to conduct independent exams to deter- erence list2. This is a natural constraint when all agents are mine their own ordering of the students. Starting from 2010, only allowed to report a complete preference list. They fo- these universities began to form leagues and determine their cus on the case where there is only a single manipulator and orderings together. Such leagues are widely believed to be give an algorithm to find the optimal manipulation that runs beneficial to their members, since they can cooperatively in polynomial time. Gupta et al. (2015) extends the algo- manipulate the admission results. However, these universi- rithm to the so-called P -stable (stable w.r.t preferences P ) ties are also faced with the problem of competition, since Nash equilibrium setting. they target for a similar set of students. Such leagues are With the impossibility result by Roth, it is clear that there urged to dissolve by the Ministry for the belief of unfairness. always exist some agents who have the incentive to manip- ulate the matching result, no matter what stable matching Our Results algorithm is applied. Nevertheless, Pini et al. (2009) design We analyze the manipulation problem in the stable matching a stable matching mechanism and prove that it is computa- problem, where agents can report a preference list over any tionally hard to find a manipulation, even for a single ma- subset of the other sex. Contrary to most existing works, we nipulator. allow any subset of women to be the manipulators. We show that a strong Nash equilibrium (i.e., no subset of manipula- Preliminaries tors can deviate and get strictly better off) always exists for In the standard stable matching problem, there are two sets any subset of women. Moreover, in the strong Nash equi- of agents: the men (denoted by M) and the women (denoted librium, each manipulator removes every man below her W- by W ). A preference profile P is the collection of the pref- optimal partner on her list and in the induced matching, all erence lists of all agents. The preference list P (m) of a man manipulators can be matched to their W-optimal partners. m ∈ M is a strict total order m over a subset of W , where This result generalizes the results by Teo, Sethuraman, w1 m w2 denotes that m prefers w1 to w2. Similarly, the and Tan (2001) and Gale and Sotomayor (1985), which con- preference list P (w) of a woman w ∈ W is a strict total sider manipulations by a single woman and the set of all P P order w over a subset of M. We will use m and w to women, respectively. Moreover, the equilibrium outcome is explicitly refer to the preference lists of m and w in profile unique and Pareto-dominant for all manipulators, i.e., all P , if multiple preference profiles are considered. However, manipulators reach a consensus on a single manipulation for simplicity, we always use m and m to denote the true profile. Furthermore, the set of all stable matchings attain- preferences of m and w. We slightly abuse notation and use able from general manipulations forms a join-semilattice. P (X) to denote the preference profile for a set of agents Finally, we show how to check whether such an unique X ⊂ M ∪ W . strong Nash equilibrium is a super-strong Nash equilibrium. A matching between men and women is a function μ : M ∪W → M ∪W , that maps each agent to his or her partner Related Works in the matching. For example, μ(m)=w means that m is Knuth, Motwani, and Pittel (1990) show that the number of matched to w.
Recommended publications
  • Game Theory 2: Extensive-Form Games and Subgame Perfection
    Game Theory 2: Extensive-Form Games and Subgame Perfection 1 / 26 Dynamics in Games How should we think of strategic interactions that occur in sequence? Who moves when? And what can they do at different points in time? How do people react to different histories? 2 / 26 Modeling Games with Dynamics Players Player function I Who moves when Terminal histories I Possible paths through the game Preferences over terminal histories 3 / 26 Strategies A strategy is a complete contingent plan Player i's strategy specifies her action choice at each point at which she could be called on to make a choice 4 / 26 An Example: International Crises Two countries (A and B) are competing over a piece of land that B occupies Country A decides whether to make a demand If Country A makes a demand, B can either acquiesce or fight a war If A does not make a demand, B keeps land (game ends) A's best outcome is Demand followed by Acquiesce, worst outcome is Demand and War B's best outcome is No Demand and worst outcome is Demand and War 5 / 26 An Example: International Crises A can choose: Demand (D) or No Demand (ND) B can choose: Fight a war (W ) or Acquiesce (A) Preferences uA(D; A) = 3 > uA(ND; A) = uA(ND; W ) = 2 > uA(D; W ) = 1 uB(ND; A) = uB(ND; W ) = 3 > uB(D; A) = 2 > uB(D; W ) = 1 How can we represent this scenario as a game (in strategic form)? 6 / 26 International Crisis Game: NE Country B WA D 1; 1 3X; 2X Country A ND 2X; 3X 2; 3X I Is there something funny here? I Is there something funny here? I Specifically, (ND; W )? I Is there something funny here?
    [Show full text]
  • Lecture Notes
    GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies ..................................
    [Show full text]
  • Stable Matching: Theory, Evidence, and Practical Design
    THE PRIZE IN ECONOMIC SCIENCES 2012 INFORMATION FOR THE PUBLIC Stable matching: Theory, evidence, and practical design This year’s Prize to Lloyd Shapley and Alvin Roth extends from abstract theory developed in the 1960s, over empirical work in the 1980s, to ongoing efforts to fnd practical solutions to real-world prob- lems. Examples include the assignment of new doctors to hospitals, students to schools, and human organs for transplant to recipients. Lloyd Shapley made the early theoretical contributions, which were unexpectedly adopted two decades later when Alvin Roth investigated the market for U.S. doctors. His fndings generated further analytical developments, as well as practical design of market institutions. Traditional economic analysis studies markets where prices adjust so that supply equals demand. Both theory and practice show that markets function well in many cases. But in some situations, the standard market mechanism encounters problems, and there are cases where prices cannot be used at all to allocate resources. For example, many schools and universities are prevented from charging tuition fees and, in the case of human organs for transplants, monetary payments are ruled out on ethical grounds. Yet, in these – and many other – cases, an allocation has to be made. How do such processes actually work, and when is the outcome efcient? Matching theory The Gale-Shapley algorithm Analysis of allocation mechanisms relies on a rather abstract idea. If rational people – who know their best interests and behave accordingly – simply engage in unrestricted mutual trade, then the outcome should be efcient. If it is not, some individuals would devise new trades that made them better of.
    [Show full text]
  • Implementation Theory*
    Chapter 5 IMPLEMENTATION THEORY* ERIC MASKIN Institute for Advanced Study, Princeton, NJ, USA TOMAS SJOSTROM Department of Economics, Pennsylvania State University, University Park, PA, USA Contents Abstract 238 Keywords 238 1. Introduction 239 2. Definitions 245 3. Nash implementation 247 3.1. Definitions 248 3.2. Monotonicity and no veto power 248 3.3. Necessary and sufficient conditions 250 3.4. Weak implementation 254 3.5. Strategy-proofness and rich domains of preferences 254 3.6. Unrestricted domain of strict preferences 256 3.7. Economic environments 257 3.8. Two agent implementation 259 4. Implementation with complete information: further topics 260 4.1. Refinements of Nash equilibrium 260 4.2. Virtual implementation 264 4.3. Mixed strategies 265 4.4. Extensive form mechanisms 267 4.5. Renegotiation 269 4.6. The planner as a player 275 5. Bayesian implementation 276 5.1. Definitions 276 5.2. Closure 277 5.3. Incentive compatibility 278 5.4. Bayesian monotonicity 279 * We are grateful to Sandeep Baliga, Luis Corch6n, Matt Jackson, Byungchae Rhee, Ariel Rubinstein, Ilya Segal, Hannu Vartiainen, Masahiro Watabe, and two referees, for helpful comments. Handbook of Social Choice and Welfare, Volume 1, Edited by K.J Arrow, A.K. Sen and K. Suzumura ( 2002 Elsevier Science B. V All rights reserved 238 E. Maskin and T: Sj'str6m 5.5. Non-parametric, robust and fault tolerant implementation 281 6. Concluding remarks 281 References 282 Abstract The implementation problem is the problem of designing a mechanism (game form) such that the equilibrium outcomes satisfy a criterion of social optimality embodied in a social choice rule.
    [Show full text]
  • Collusion Constrained Equilibrium
    Theoretical Economics 13 (2018), 307–340 1555-7561/20180307 Collusion constrained equilibrium Rohan Dutta Department of Economics, McGill University David K. Levine Department of Economics, European University Institute and Department of Economics, Washington University in Saint Louis Salvatore Modica Department of Economics, Università di Palermo We study collusion within groups in noncooperative games. The primitives are the preferences of the players, their assignment to nonoverlapping groups, and the goals of the groups. Our notion of collusion is that a group coordinates the play of its members among different incentive compatible plans to best achieve its goals. Unfortunately, equilibria that meet this requirement need not exist. We instead introduce the weaker notion of collusion constrained equilibrium. This al- lows groups to put positive probability on alternatives that are suboptimal for the group in certain razor’s edge cases where the set of incentive compatible plans changes discontinuously. These collusion constrained equilibria exist and are a subset of the correlated equilibria of the underlying game. We examine four per- turbations of the underlying game. In each case,we show that equilibria in which groups choose the best alternative exist and that limits of these equilibria lead to collusion constrained equilibria. We also show that for a sufficiently broad class of perturbations, every collusion constrained equilibrium arises as such a limit. We give an application to a voter participation game that shows how collusion constraints may be socially costly. Keywords. Collusion, organization, group. JEL classification. C72, D70. 1. Introduction As the literature on collective action (for example, Olson 1965) emphasizes, groups often behave collusively while the preferences of individual group members limit the possi- Rohan Dutta: [email protected] David K.
    [Show full text]
  • Implementation and Strong Nash Equilibrium
    LIBRARY OF THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY Digitized by the Internet Archive in 2011 with funding from Boston Library Consortium Member Libraries http://www.archive.org/details/implementationstOOmask : } ^mm working paper department of economics IMPLEMENTATION AND STRONG NASH EQUILIBRIUM Eric Maskin Number 216 January 1978 massachusetts institute of technology 50 memorial drive Cambridge, mass. 021 39 IMPLEMENTATION AND STRONG NASH EQUILIBRIUM Eric Maskin Number 216 January 1978 I am grateful for the financial support of the National Science Foundation. A social choice correspondence (SCC) is a mapping which assoc- iates each possible profile of individuals' preferences with a set of feasible alternatives (the set of f-optima) . To implement *n SCC, f, is to construct a game form g such that, for all preference profiles the equilibrium set of g (with respect to some solution concept) coincides with the f-optimal set. In a recent study [1], I examined the general question of implementing social choice correspondences when Nash equilibrium is the solution concept. Nash equilibrium, of course, is a strictly noncooperative notion, and so it is natural to consider the extent to which the results carry over when coalitions can form. The cooperative counterpart of Nash is the strong equilibrium due to Aumann. Whereas Nash defines equilibrium in terms of deviations only by single individuals, Aumann 's equilibrium incorporates deviations by every conceivable coalition. This paper considers implementation for strong equilibrium. The results of my previous paper were positive. If an SCC sat- isfies a monotonicity property and a much weaker requirement called no veto power, it can be implemented by Nash equilibrium.
    [Show full text]
  • Nash Equilibrium
    Lecture 3: Nash equilibrium Nash equilibrium: The mathematician John Nash introduced the concept of an equi- librium for a game, and equilibrium is often called a Nash equilibrium. They provide a way to identify reasonable outcomes when an easy argument based on domination (like in the prisoner's dilemma, see lecture 2) is not available. We formulate the concept of an equilibrium for a two player game with respective 0 payoff matrices PR and PC . We write PR(s; s ) for the payoff for player R when R plays 0 s and C plays s, this is simply the (s; s ) entry the matrix PR. Definition 1. A pair of strategies (^sR; s^C ) is an Nash equilbrium for a two player game if no player can improve his payoff by changing his strategy from his equilibrium strategy to another strategy provided his opponent keeps his equilibrium strategy. In terms of the payoffs matrices this means that PR(sR; s^C ) ≤ P (^sR; s^C ) for all sR ; and PC (^sR; sC ) ≤ P (^sR; s^C ) for all sc : The idea at work in the definition of Nash equilibrium deserves a name: Definition 2. A strategy s^R is a best-response to a strategy sc if PR(sR; sC ) ≤ P (^sR; sC ) for all sR ; i.e. s^R is such that max PR(sR; sC ) = P (^sR; sC ) sR We can now reformulate the idea of a Nash equilibrium as The pair (^sR; s^C ) is a Nash equilibrium if and only ifs ^R is a best-response tos ^C and s^C is a best-response tos ^R.
    [Show full text]
  • Matching with Externalities
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Pycia, Marek; Yenmez, M. Bumin Working Paper Matching with externalities Working Paper, No. 392 Provided in Cooperation with: Department of Economics, University of Zurich Suggested Citation: Pycia, Marek; Yenmez, M. Bumin (2021) : Matching with externalities, Working Paper, No. 392, University of Zurich, Department of Economics, Zurich, http://dx.doi.org/10.5167/uzh-204367 This Version is available at: http://hdl.handle.net/10419/235605 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu University of Zurich Department of Economics Working Paper Series ISSN 1664-7041 (print) ISSN 1664-705X (online) Working Paper No. 392 Matching with Externalities Marek Pycia and M.
    [Show full text]
  • Lecture Notes
    Chapter 12 Repeated Games In real life, most games are played within a larger context, and actions in a given situation affect not only the present situation but also the future situations that may arise. When a player acts in a given situation, he takes into account not only the implications of his actions for the current situation but also their implications for the future. If the players arepatient andthe current actionshavesignificant implications for the future, then the considerations about the future may take over. This may lead to a rich set of behavior that may seem to be irrational when one considers the current situation alone. Such ideas are captured in the repeated games, in which a "stage game" is played repeatedly. The stage game is repeated regardless of what has been played in the previous games. This chapter explores the basic ideas in the theory of repeated games and applies them in a variety of economic problems. As it turns out, it is important whether the game is repeated finitely or infinitely many times. 12.1 Finitely-repeated games Let = 0 1 be the set of all possible dates. Consider a game in which at each { } players play a "stage game" , knowing what each player has played in the past. ∈ Assume that the payoff of each player in this larger game is the sum of the payoffsthat he obtains in the stage games. Denote the larger game by . Note that a player simply cares about the sum of his payoffs at the stage games. Most importantly, at the beginning of each repetition each player recalls what each player has 199 200 CHAPTER 12.
    [Show full text]
  • Kwanashie, Augustine (2015) Efficient Algorithms for Optimal Matching Problems Under Preferences
    Kwanashie, Augustine (2015) Efficient algorithms for optimal matching problems under preferences. PhD thesis. http://theses.gla.ac.uk/6706/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Efficient Algorithms for Optimal Matching Problems Under Preferences Augustine Kwanashie Submitted in fulfillment of the requirements for the degree of Doctor of Philosophy School of Computing Science College of Science and Engineering University of Glasgow September 2015 c Augustine Kwanashie 2015 Abstract In this thesis we consider efficient algorithms for matching problems involving pref- erences, i.e., problems where agents may be required to list other agents that they find acceptable in order of preference. In particular we mainly study the Stable Marriage problem (sm), the Hospitals / Residents problem (hr) and the Student / Project Allo- cation problem (spa), and some of their variants. In some of these problems the aim is to find a stable matching which is one that admits no blocking pair. A blocking pair with respect to a matching is a pair of agents that prefer to be matched to each other than their assigned partners in the matching if any.
    [Show full text]
  • Strong Nash Equilibria and Mixed Strategies
    Strong Nash equilibria and mixed strategies Eleonora Braggiona, Nicola Gattib, Roberto Lucchettia, Tuomas Sandholmc aDipartimento di Matematica, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy bDipartimento di Elettronica, Informazione e Bioningegneria, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milano, Italy cComputer Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA Abstract In this paper we consider strong Nash equilibria, in mixed strategies, for finite games. Any strong Nash equilibrium outcome is Pareto efficient for each coalition. First, we analyze the two–player setting. Our main result, in its simplest form, states that if a game has a strong Nash equilibrium with full support (that is, both players randomize among all pure strategies), then the game is strictly competitive. This means that all the outcomes of the game are Pareto efficient and lie on a straight line with negative slope. In order to get our result we use the indifference principle fulfilled by any Nash equilibrium, and the classical KKT conditions (in the vector setting), that are necessary conditions for Pareto efficiency. Our characterization enables us to design a strong–Nash– equilibrium–finding algorithm with complexity in Smoothed–P. So, this problem—that Conitzer and Sandholm [Conitzer, V., Sandholm, T., 2008. New complexity results about Nash equilibria. Games Econ. Behav. 63, 621–641] proved to be computationally hard in the worst case—is generically easy. Hence, although the worst case complexity of finding a strong Nash equilibrium is harder than that of finding a Nash equilibrium, once small perturbations are applied, finding a strong Nash is easier than finding a Nash equilibrium.
    [Show full text]
  • On the Verification and Computation of Strong Nash Equilibrium
    On the Verification and Computation of Strong Nash Equilibrium Nicola Gatti Marco Rocco Tuomas Sandholm Politecnico di Milano Politecnico di Milano Carnegie Mellon Piazza Leonardo da Vinci 32 Piazza Leonardo da Vinci 32 Computer Science Dep. Milano, Italy Milano, Italy 5000 Forbes Avenue [email protected] [email protected] Pittsburgh, PA 15213, USA [email protected] ABSTRACT The NE concept is inadequate when agents can a priori Computing equilibria of games is a central task in computer communicate, being in a position to form coalitions and de- science. A large number of results are known for Nash equi- viate multilaterally in a coordinated way. The strong Nash librium (NE). However, these can be adopted only when equilibrium (SNE) concept strengthens the NE concept by coalitions are not an issue. When instead agents can form requiring the strategy profile to be resilient also to multilat- coalitions, NE is inadequate and an appropriate solution eral deviations, including the grand coalition [2]. However, concept is strong Nash equilibrium (SNE). Few computa- differently from NE, an SNE may not exist. It is known tional results are known about SNE. In this paper, we first that searching for an SNE is NP–hard, but, except for the study the problem of verifying whether a strategy profile is case of two–agent symmetric games, it is not known whether an SNE, showing that the problem is in P. We then design the problem is in NP [8]. Furthermore, to the best of our a spatial branch–and–bound algorithm to find an SNE, and knowledge, there is no algorithm to find an SNE in general we experimentally evaluate the algorithm.
    [Show full text]