Defining and Assessing Animal Pain
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taxonomic Study of the Pagurus Forbesii "Complex" (Crustacea
Taxonomic study of the Pagurus forbesii "complex" (Crustacea: Decapoda: Paguridae). Description of Pagurus pseudosculptimanus sp. nov. from Alborán Sea (Southern Spain, Western Mediterranean Sea). GARCÍA MUÑOZ J.E.1, CUESTA J.A.2 & GARCÍA RASO J.E.1* 1 Dept. Biología Animal, Fac. Ciencias, Univ. Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain. 2 Inst. Ciencias Marinas de Andalucía (CSIC), Av. República Saharaui, 2, 11519 Puerto Real, Cádiz, Spain. * Corresponding author - e-mail address: [email protected] ABSTRACT The study of hermit crabs from Alboran Sea has allowed recognition of two different morphological forms under what had been understood as Pagurus forbesii. Based on morphological observations with various species of Pagurus, and molecular studies, a new species is defined and described as P. pseudosculptimanus. An overview on species of Pagurus from the eastern Atlantic and Mediterranean Sea is provided. Key words: Pagurus, new species, Mediterranean, eastern Atlantic. 1 Introduction More than 170 species from around the world are currently assigned to the genus Pagurus Fabricius, 1775 (Lemaitre and Cruz Castaño 2004; Mantelatto et al. 2009; McLaughlin 2003, McLaughlin et al. 2010). This genus is complex because of there is high morphological variability and similarity among some species, and has been divided in groups (e.g. Lemaitre and Cruz Castaño 2004 for eastern Pacific species; Ingle, 1985, for European species) with difficulty (Ayón-Parente and Hendrickx 2012). This difficulty has lead to taxonomic problems, although molecular techniques have been recently used to elucidate some species (Mantelatto et al. 2009; Da Silva et al. 2011). Thirteen species are present in eastern Atlantic (European and the adjacent African waters) (Ingle 1993; Udekem d'Acoz 1999; Froglia, 2010, MarBEL Data System - Türkay 2012, García Raso et al., in press) but only nine of these (the first ones mentioned below) have been cited in the Mediterranean Sea, all of them are present in the study area (Alboran Sea, southern Spain). -
Why Fish Do Not Feel Pain
Key, Brian (2016) Why fish do not eelf pain. Animal Sentience 3(1) DOI: 10.51291/2377-7478.1011 This article has appeared in the journal Animal Sentience, a peer-reviewed journal on animal cognition and feeling. It has been made open access, free for all, by WellBeing International and deposited in the WBI Studies Repository. For more information, please contact [email protected]. Call for Commentary: Animal Sentience publishes Open Peer Commentary on all accepted target articles. Target articles are peer-reviewed. Commentaries are editorially reviewed. There are submitted commentaries as well as invited commentaries. Commentaries appear as soon as they have been revised and accepted. Target article authors may respond to their commentaries individually or in a joint response to multiple commentaries. Instructions: http://animalstudiesrepository.org/animsent/guidelines.html Why fish do not feel pain Brian Key Biomedical Sciences University of Queensland Australia Abstract: Only humans can report feeling pain. In contrast, pain in animals is typically inferred on the basis of nonverbal behaviour. Unfortunately, these behavioural data can be problematic when the reliability and validity of the behavioural tests are questionable. The thesis proposed here is based on the bioengineering principle that structure determines function. Basic functional homologies can be mapped to structural homologies across a broad spectrum of vertebrate species. For example, olfaction depends on olfactory glomeruli in the olfactory bulbs of the forebrain, visual orientation responses depend on the laminated optic tectum in the midbrain, and locomotion depends on pattern generators in the spinal cord throughout vertebrate phylogeny, from fish to humans. Here I delineate the region of the human brain that is directly responsible for feeling painful stimuli. -
The American Slipper Limpet Crepidula Fornicata (L.) in the Northern Wadden Sea 70 Years After Its Introduction
Helgol Mar Res (2003) 57:27–33 DOI 10.1007/s10152-002-0119-x ORIGINAL ARTICLE D. W. Thieltges · M. Strasser · K. Reise The American slipper limpet Crepidula fornicata (L.) in the northern Wadden Sea 70 years after its introduction Received: 14 December 2001 / Accepted: 15 August 2001 / Published online: 25 September 2002 © Springer-Verlag and AWI 2002 Abstract In 1934 the American slipper limpet 1997). In the centre of its European distributional range Crepidula fornicata (L.) was first recorded in the north- a population explosion has been observed on the Atlantic ern Wadden Sea in the Sylt-Rømø basin, presumably im- coast of France, southern England and the southern ported with Dutch oysters in the preceding years. The Netherlands. This is well documented (reviewed by present account is the first investigation of the Crepidula Blanchard 1997) and sparked a variety of studies on the population since its early spread on the former oyster ecological and economic impacts of Crepidula. The eco- beds was studied in 1948. A field survey in 2000 re- logical impacts of Crepidula are manifold, and include vealed the greatest abundance of Crepidula in the inter- the following: tidal/subtidal transition zone on mussel (Mytilus edulis) (1) Accumulation of pseudofaeces and of fine sediment beds. Here, average abundance and biomass was 141 m–2 through the filtration activity of Crepidula and indi- and 30 g organic dry weight per square metre, respec- viduals protruding in stacks into the water column. tively. On tidal flats with regular and extended periods of This was reported to cause changes in sediments and emersion as well as in the subtidal with swift currents in near-bottom currents (Ehrhold et al. -
Guidelines for Pain and Distress in Laboratory Animals: Responsibilities, Recognition, and Intervention
Guidelines for Pain and Distress in Laboratory Animals: Responsibilities, Recognition, and Intervention Introduction Animals can experience pain and distress. It is the ethical and legal obligation of all personnel involved with the use of animals in research to reduce or eliminate pain and distress in research animals whenever such actions do not interfere with the research objectives. The Institute/Center Animal Care and Use Committee (IC ACUC) has the delegated responsibility and accountability for ensuring that all animals under their oversight are used humanely and in accordance with a number of Federal Regulations and policies.2,21,29,30,32 Key to fulfilling the responsibilities for both the Principal Investigator (PI) and the IC ACUC are to: • understand the legal requirements, • be able to distinguish pain and distress in animals from their normal state, • relieve or minimize the pain and distress appropriately; and • establish humane endpoints. Regulatory Requirements and IC ACUC Responsibilities The IC ACUC must ensure that all aspects of the animal study proposal (ASP) that may cause more than transient pain and/or distress are addressed; alternatives6 to painful or distressful procedures are considered; that methods, anesthetics, and analgesics to minimize or eliminate pain and distress are included when these methods do not interfere with the research objectives; and that humane endpoints have been established for all situations where more than transient pain and distress can not be avoided or eliminated. Whenever possible, death or severe pain and distress should be avoided as endpoints. A written scientific justification is required to be included in the ASP for any more than transient painful or distressful procedure that cannot be relieved or minimized. -
Comparative Evolutionary Approach to Pain Perception in Fishes
Brown, Culum (2016) Comparative evolutionary approach to pain perception in fishes. Animal Sentience 3(5) DOI: 10.51291/2377-7478.1029 This article has appeared in the journal Animal Sentience, a peer-reviewed journal on animal cognition and feeling. It has been made open access, free for all, by WellBeing International and deposited in the WBI Studies Repository. For more information, please contact [email protected]. Animal Sentience 2016.011: Brown Commentary on Key on Fish Pain Comparative evolutionary approach to pain perception in fishes Commentary on Key on Fish Pain Culum Brown Biological Sciences Macquarie University Abstract: Arguments against the fact that fish feel pain repeatedly appear even in the face of growing evidence that they do. The standards used to judge pain perception keep moving as the hurdles are repeatedly cleared by novel research findings. There is undoubtedly a vested commercial interest in proving that fish do not feel pain, so the topic has a half-life well past its due date. Key (2016) reiterates previous perspectives on this topic characterised by a black-or-white view that is based on the proposed role of the human cortex in pain perception. I argue that this is incongruent with our understanding of evolutionary processes. Keywords: pain, fishes, behaviour, physiology, nociception Culum Brown [email protected] studies the behavioural ecology of fishes with a special interest in learning and memory. He is Associate Professor of vertebrate evolution at Macquarie University, Co-Editor of the volume Fish Cognition and Behavior, and Editor for Animal Behaviour of the Journal of Fish Biology. -
Do “Prey Species” Hide Their Pain? Implications for Ethical Care and Use of Laboratory Animals
Journal of Applied Animal Ethics Research 2 (2020) 216–236 brill.com/jaae Do “Prey Species” Hide Their Pain? Implications for Ethical Care and Use of Laboratory Animals Larry Carbone Independent scholar; 351 Buena Vista Ave #703E, San Francisco, CA 94117, USA [email protected] Abstract Accurate pain evaluation is essential for ethical review of laboratory animal use. Warnings that “prey species hide their pain,” encourage careful accurate pain assess- ment. In this article, I review relevant literature on prey species’ pain manifestation through the lens of the applied ethics of animal welfare oversight. If dogs are the spe- cies whose pain is most reliably diagnosed, I argue that it is not their diet as predator or prey but rather because dogs and humans can develop trusting relationships and because people invest time and effort in canine pain diagnosis. Pain diagnosis for all animals may improve when humans foster a trusting relationship with animals and invest time into multimodal pain evaluations. Where this is not practical, as with large cohorts of laboratory mice, committees must regard with skepticism assurances that animals “appear” pain-free on experiments, requiring thorough literature searches and sophisticated pain assessments during pilot work. Keywords laboratory animal ‒ pain ‒ animal welfare ‒ ethics ‒ animal behavior 1 Introduction As a veterinarian with an interest in laboratory animal pain management, I have read articles and reviewed manuscripts on how to diagnose a mouse in pain. The challenge, some authors warn, is that mice and other “prey species” © LARRY CARBONE, 2020 | doi:10.1163/25889567-bja10001 This is an open access article distributed under the terms of the CC BY 4.0Downloaded license. -
Scientific Advances in the Study of Animal Welfare
Scientific advances in the study of animal welfare How we can more effectively Why Pain? assess pain… Matt Leach To recognise it, you need to define it… ‘Pain is an unpleasant sensory & emotional experience associated with actual or potential tissue damage’ IASP 1979 As it is the emotional component that is critical for our welfare, the same will be true for animals Therefore we need indices that reflect this component! Q. How do we assess experience? • As it is subjective, direct assessment is difficult.. • Unlike in humans we do not have a gold standard – i.e. Self-report – Animals cannot meaningfully communicate with us… • So we traditionally use proxy indices Derived from inferential reasoning Infer presence of pain in animals from behavioural, anatomical, physiological & biochemical similarity to humans In humans, if pain induces a change & that change is prevented by pain relief, then it is used to assess pain If the same occurs in animals, then we assume that they can be used to assess pain Quantitative sensory testing • Application of standardised noxious stimuli to induce a reflex response – Mechanical, thermal or electrical… – Used to measure nociceptive (i.e. sensory) thresholds • Wide range of methods used – Choice depends on type of pain (acute / chronic) modeled • Elicits specific behavioural response (e.g. withdrawal) – Latency & frequency of response routinely measured – Intensity of stimulus required to elicit a response • Easy to use, but difficult to master… Value? • What do these tests tell us: – Fundamental nociceptive mechanisms & central processing – It measures evoked pain, not spontaneous pain • Tests of hypersensitivity not pain per se (Different mechanisms) • What don’t these tests tell us: – Much about the emotional component of pain • Measures nociceptive (sensory) thresholds based on autonomic responses (e.g. -
An Assessment of Recent Trade Law Developments from an Animal Law Perspective: Trade Law As the Sheep in Wolf's Clothing?
AN ASSESSMENT OF RECENT TRADE LAW DEVELOPMENTS FROM AN ANIMAL LAW PERSPECTIVE: TRADE LAW AS THE SHEEP IN WOLF’S CLOTHING? By Charlotte Blattner* Further development within the field of animal law seems to be at an impasse, lost among the potential paths presented by its traditional influ- ences: international treaty law, domestic animal welfare regulations, and trade law. First, classical elements of global animal treaty law are limited to preservationist aspirations, insusceptible to the questions of how animals are treated or how they cope with their environment. Second, animal welfare regulation is understood as a matter confined to national territories. In cross-border dialogue, animal matters have been reduced to allegations of imperialism, which is not conducive to furthering animal interests. Third, animals are regarded as commodities in international trade law, rendering their regulation an undesirable barrier to trade. These present deficiencies deprive global animal law of its significance as a dynamic instrument re- sponsive to global challenges, be they ethical, environmental, economic, technological, or social in nature. The objective of this paper is to demonstrate future ways out of this impasse. Recent developments in trade law, as demonstrated by four exam- ples found within the World Trade Organization’s (WTO) ‘case law,’ mark an important development for animal law. State objectives expressed through trade law are slowly moving away from anthropocentric considera- tions (i.e., geared to preserve a fraction of animals for human interests) to- wards sentiocentric animal welfare (i.e., aimed at minimizing animal suffering and focusing on animal interests). Thereby, the quality of animal law that developed on the international scene through trade law exceeded the status quo of global animal treaty law. -
Guide for the Care and Use of Agricultural Animals in Research and Teaching
Guide for the Care and Use of Agricultural Animals in Research and Teaching Fourth edition © 2020. Published by the American Dairy Science Association®, the American Society of Animal Science, and the Poultry Science Association. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (http://creativecommons. org/licenses/by-nc-nd/4.0/). American Dairy Science Association® American Society of Animal Science Poultry Science Association 1800 South Oak Street, Suite 100 PO Box 7410 4114C Fieldstone Road Champaign, IL 61820 Champaign, IL 61826 Champaign, IL 61822 www.adsa.org www.asas.org www.poultryscience.org ISBN: 978-0-9634491-5-3 (PDF) ISBN: 978-1-7362930-0-3 (PDF) ISBN: 978-0-9649811-2-6 (PDF) 978-0-9634491-4-6 (ePub) 978-1-7362930-1-0 (ePub) 978-0-9649811-3-3 (ePub) Committees to revise the Guide for the Care and Use of Agricultural Animals in Research and Teaching, 4th edition (2020) Senior Editorial Committee Cassandra B. Tucker, University of California Davis (representing the American Dairy Science Association®) Michael D. MacNeil, Delta G (representing the American Society of Animal Science) A. Bruce Webster, University of Georgia (representing the Poultry Science Association) Ag Guide 4th edition authors Chapter 1: Institutional Policies Chapter 7: Dairy Cattle Ken Anderson, North Carolina State University, Chair Cassandra Tucker, University of California Davis, Chair Deana Jones, ARS USDA Nigel Cook, University of Wisconsin–Madison Gretchen Hill, Michigan State University Marina von Keyserlingk, University of British Columbia James Murray, University of California Davis Peter Krawczel, University of Tennessee Chapter 2: Agricultural Animal Health Care Chapter 8: Horses Frank F. -
Feeding Habits of the Prawns Processa Edulzs and Palaemon Adspersus (Crustacea, Decapoda, Caridea) in the Alfacs Bay, Ebro Delta (Nw Mediterranean)
FEEDING HABITS OF THE PRAWNS PROCESSA EDULZS AND PALAEMON ADSPERSUS (CRUSTACEA, DECAPODA, CARIDEA) IN THE ALFACS BAY, EBRO DELTA (NW MEDITERRANEAN) Guerao, G., 1993-1994. Feeding habits of the prawns Processa edulis and Palaemon adspersus (Crustacea, Decapoda, Caridea) in the Alfacs Bay, Ebro Delta (NW Mediterranean). Misc. Zool., 17: 115-122. Feeding habits of the prawns Processa edulis and Palaemon adspersus (Crustacea, Decapoda, Caridea) in the Alfacs Bay, Ebro Delta (NW Mediterranean).- The stomach contents of 147 Palaemon adspersus Rathke, and 102 Processa edulis (Risso) were analyzed. The frequency of occurrence method and the points method were used. The role of these species in the food web of Cymodocea nodosa meadows is defined. Results indicate that both species are predators of benthic invertebrates rather than scavengers or detritus feeders. The main food items varied according to species. The diet of Palaemon adspersus consisted almost entirely of crustaceans, molluscs, and plant material, with amphipods playing a major role. Processa edulis ate an almost equal amount of crustaceans and polychaetes. In P. adspersus, most dietary items differed according to size classes of prawn. Key words: Feeding, Prawns, Palaemon, Processa, Ebro Delta. (Rebut: 18 V 94; Acceptació condicional: 13 IX 94; Acc. definitiva: 18 X 94) G. Guerao, Dept. de Biologia Animal (Artrdpodes), Fac. de Biologia, Univ. de Barcelona, Avgda. Diagonal 645, 08028 Barcelona, Espanya (Spain). INTRODUCTION and has been recorded from as far north as the Norwegian Sea to the Marocco coast Processidae prawns are abundant in coastal (LAGARDERE,1971) and the Mediterranean waters of temperate and tropical areas. (ZARIQUIEYÁLVAREZ, 1968). This species is Processa edulis (Risso, 1816) is a comrnon the subject of commercial fisheries in many littoral mediterranean prawn (ZARIQUIEY areas (JENSEN,1958; HOLTHUIS,1980; ÁLVAREZ,1968). -
Pagurus Bernhardus)
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Hermit crab (Pagurus bernhardus) MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Emily Wilson 2007-07-03 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1169]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Wilson, E. 2007. Pagurus bernhardus Hermit crab. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1169.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2007-07-03 Hermit crab (Pagurus bernhardus) - Marine Life Information Network See online review for distribution map Pagurus bernhardus on shell gravel. Distribution data supplied by the Ocean Photographer: Paul Naylor Biogeographic Information System (OBIS). -
Hemigrapsus Asian Crab
NONINDIGENOUS SPECIES INFORMATION BULLETIN: Asian shore crab, Japanese shore crab, Pacific crab, Hemigrapsus sanguineus (De Haan) (Arthropoda: Grapsidae) IDENTIFICATION: The Asian shore crab has a square-shaped shell with 3 spines on each side of the carapace. The carapace color ranges from green to purple to orange-brown to red. It has light and dark bands along its legs and red spots on its claws. Male crabs have a distinctive fleshy, bulb-like structure at the base of the moveable finger on the claws. This species is small with adults ranging from 35 mm (1.5 in) to 42 mm (1.65 in) in carapace width. NATIVE RANGE: Hemigrapsus sanguineus is indigenous to the western Pacific Ocean from Russia, along the Korean and Chinese coasts to Hong Kong, and the Japanese archipelago. LIFE HISTORY: This species is an opportunistic omnivore, feeding on macroalgae, salt marsh grass, larval and juvenile fish, and small invertebrates such as amphipods, gastropods, bivalves, barnacles, and polychaetes. The Asian shore crab is highly reproductive with a breeding season from May to September, twice the length of native crabs. The females are capable of producing 50,000 eggs per clutch with 3-4 clutches per breeding season. The larvae are suspended in the water for approximately one month before developing into juvenile crabs. Actual carapace width of Because of this, the larvae have the ability to be specimen is ~ 20 mm transported over great distances, a possible means Asian Shore Crab (Hemigrapsus sanguineus) of new introductions. (Specimen courtesy of Susan Park, University of Delaware) HABITAT: This versatile crab inhabits any shallow hard-bottom intertidal or sometimes subtidal habitat.