Fortiwan Administration Guide

Total Page:16

File Type:pdf, Size:1020Kb

Fortiwan Administration Guide FortiWAN - Handbook VERSION 4.2.4 FORTINET DOCUMENT LIBRARY http://docs.fortinet.com FORTINET VIDEO GUIDE http://video.fortinet.com FORTINET BLOG https://blog.fortinet.com CUSTOMER SERVICE & SUPPORT https://support.fortinet.com FORTIGATE COOKBOOK http://cookbook.fortinet.com FORTINET TRAINING SERVICES http://www.fortinet.com/training FORTIGUARD CENTER http://www.fortiguard.com END USER LICENSE AGREEMENT http://www.fortinet.com/doc/legal/EULA.pdf FEEDBACK Email: [email protected] August 1, 2016 FortiWAN 4.2.4 Handbook Revision 1 38-424-382158-20160801 TABLE OF CONTENTS Introduction 8 Product Benefits 8 Key Concepts and Product Features 10 Scope 11 What's new 13 Document enhancements 19 How to set up your FortiWAN 23 Registering your FortiWAN 23 Planning the network topology 23 WAN, LAN and DMZ 23 Default port mappings 24 WAN link and WAN port 25 WAN types: Routing mode and Bridge mode 25 Near WAN 27 Public IP pass through (DMZ Transparent Mode) 28 Scenarios to deploy subnets 29 VLAN and port mapping 29 IPv6/IPv4 Dual Stack 30 FortiWAN in HA (High Availability) Mode 30 Web UI and CLI Overview 34 Connecting to the Web UI and the CLI 34 Using the Web UI 37 Console Mode Commands 41 Configuring Network Interface (Network Setting) 52 Set DNS server to FortiWAN 52 Configurations for VLAN and Port Mapping 54 MIB fields for WAN links and VLANs 64 System Configurations 68 Summary 68 Optimum Route Detection 71 Port Speed/Duplex Settings 76 Backup Line Settings 76 IP Grouping 77 Service Grouping 78 Busyhour Settings 78 Diagnostic Tools 79 Setting the system time & date 82 Remote Assistance 82 Administration 83 Administrator and Monitor Password 83 RADIUS Authentication 84 Firmware Update 85 Configuration File 86 Maintenance 88 Web UI Port 88 License Control 90 Load Balancing & Fault Tolerance 91 Load Balancing Algorithms 91 Round Robin (weighted) 92 By Connection 92 By Downstream Traffic 94 By Upstream Traffic 94 By Total Traffic 95 By Optimum Route 96 By Response Time 96 By Static 96 By Fixed 96 Hash 97 Outbound Load Balancing and Failover (Auto Routing) 97 Auto Routing Mechanism 97 Fault Tolerance Mechanism 98 Configurations 99 Inbound Load Balancing and Failover (Multihoming) 106 Multihoming 106 Introduction to DNS 106 SwiftDNS 107 How does SwiftDNS work? 107 Prerequisites for Multihoming 108 DNSSEC Support 108 Relay Mode 109 Enable Backup 109 Configurations 109 Scenarios 124 Tunnel Routing 127 How the Tunnel Routing Works 128 Tunnel Routing - Setting 134 How to set up routing rules for Tunnel Routing 138 Tunnel Routing - Benchmark 144 Scenarios 146 Virtual Server & Server Load Balancing 156 WAN Link Health Detection 161 IPSec 164 IPSec VPN Concepts 164 IPSec VPN overview 165 IPSec key exchange 166 How IPSec VPN Works 170 IPSec set up 171 About FortiWAN IPSec VPN 171 173 Limitation in the IPSec deployment 173 Planning your VPN 176 IPSec VPN in the Web UI 177 Define routing policies for an IPSec VPN 191 Establish IPSec VPN with FortiGate 200 Optional Services 208 Firewall 208 NAT 211 Persistent Routing 216 Bandwidth Management 219 Inbound BM and Outbound BM 220 Managing Bandwidth for Tunnel Routing and IPsec 222 Scenarios 223 Connection Limit 228 Cache Redirect 229 Internal DNS 231 DNS Proxy 233 SNMP 236 IP MAC Mapping 237 Statistics 239 Traffic 239 Bandwidth 239 Persistent Routing 240 WAN Link Health Detection 241 Dynamic IP WAN Link 241 DHCP Lease Information 242 RIP & OSPF Status 242 Connection Limit 243 Virtual Server Status 243 FQDN 244 Tunnel Status 244 Tunnel Traffic 245 IPSec 245 Traffic Statistics for Tunnel Routing and IPSec 247 Log 250 View 250 Log format 250 Log Control 258 Notification 259 Enable Reports 262 Reports 263 Create a Report 264 Export and Email 265 Device Status 265 Dashboard 265 Bandwidth 268 CPU 269 Session 270 WAN Traffic 270 WAN Reliability 271 WAN Status 271 TR Reliability 271 TR Status 272 Bandwidth Usage 272 Inclass 273 Outclass 274 WAN 275 Services 276 Internal IP 277 Traffic Rate 278 Function Status 279 Connection Limit 279 Firewall 279 Virtual Server 280 Multihoming 280 Advanced Functions of Reports 281 Drill In 281 Custom Filter 285 Export 288 Report Email 288 Reports Database Tool 290 Reports Settings 297 Reports 298 IP Annotation 298 Dashboard Page Refresh Time 299 Email Server 299 Disk Space Control 299 Appendix A: Default Values 302 Introduction Enterprises are increasingly relying on the internet for delivery of critical components for everyday business operations. Any delays or interruptions in connectivity can easily result in reduced productivity, lost business opportunities and a damaged reputation. Maintaining a reliable and efficient internet connection to ensure the operation of critical applications is therefore key to the success of the enterprise. FortiWAN intelligently balances internet and intranet traffic across multiple WAN connections, providing additional low-cost incoming and outgoing bandwidth for the enterprise and substantially increased connection reliability. FortiWAN is supported by a user-friendly UI and a flexible policy-based performance management system. FortiWAN provides a unique solution that offers comprehensive multi-WAN management that keeps costs down as well as keeping customers and users connected. Product Benefits FortiWAN is the most robust, cost-effective way to: l Increase the performance of your: l Internet access l Public-to-Enterprise access l Site-to-site private intranet l Lower Operating Costs l Increase your network reliability l Enable Cloud / Web 2.0 Applications l Monitor Network Performance Increase Network Performance FortiWAN increases network performance in three key areas: l Access to Internet resources from the Enterprise l Access to Enterprise resources from the Internet l Creation of Enterprise Intranet connections between sites FortiWAN intelligently aggregates multiple broadband and/or leased access lines to significantly increase Internet access performance. FortiWAN makes reacting to network demands fast, flexible and inexpensive. FortiWAN transforms underperforming networks into responsive, cost-effective and easy-to-manage business assets. FortiWAN load balances Internet service requests from Enterprise users, optimally distributing traffic across all available access links. FortiWAN’s 7 different Load Balancing algorithms provide the flexibility to maximize productivity from any network scenario. FortiWAN gives you high-performance inter-site connectivity without the need to lease expensive links such as T1 and T3. FortiWAN aggregates multiple low-cost Internet access links to create site-to-site Virtual Private Line 8 FortiWAN Handbook Fortinet Technologies Inc. Product Benefits Introduction (VPL) Tunnels for LAN-like performance between company locations. By using multiple carriers and media, reliability of these VPL Tunnels can exceed that of traditional engineered carrier links. Substantially Lower Operating Costs Once bandwidth requirements exceed traditional asymmetrical Internet access services (like ADSL) there is a very high jump in bandwidth cost to engineered, dedicated access facilities like DS-1/DS-3. Even Metro Ethernet is a large cost increment where it is available. Adding shared Internet access links is substantially less expensive and delivery is substantially faster. Traditional point-to-point private lines for company intranets are still priced by distance and capacity. Replacing or augmenting dedicated point-to-point services with Virtual Private Line Tunnels reduces costs substantially while increasing available bandwidth and reliability. FortiWAN makes low-cost network access links behave and perform like specially-engineered carrier services at a fraction of the cost. l Deploy DSL services and get DS-3/STM-1-like speed and reliability while waiting for the carrier to pull fiber. l Add and remove bandwidth for seasonal requirements quickly and easily. l Increase bandwidth to web servers and use multiple ISPs without BGP4 management issues. Increase Network Reliability Businesses can no longer afford Internet downtime. FortiWAN provides fault tolerance for both inbound and outbound IP traffic to ensure a stable and dependable network. Even multiple link failures, while reducing available bandwidth, will not stop traffic. By using diverse media (fiber, copper, wireless) and multiple ISPs (Telco, Cableco, 4G), FortiWAN can deliver better than carrier-class “5-9’s” reliability. FortiWAN can be deployed in High Availability mode with fully redundant hardware for increased reliability. Larger FortiWAN models also feature redundant power supplies for further protection from hardware failures. Enable Cloud / Web 2.0 Applications Traditional WAN Optimization products expect that all users connect only to Headquarters servers and Internet gateways over dedicated, symmetric leased lines, but that is already “yesterday’s” architecture. Today users want to mix HQ connectivity with direct Cloud access to Web 2.0 applications like email, collaborative documentation, ERP, CRM and online backup. FortiWAN gives you the flexibility to customize your network, giving you complete control. Direct cloud-based applications to links optimized for them and reduce the bandwidth demand on expensive dedicated circuits. Combine access links and/or dedicated circuits into Virtual Private Line Tunnels that will support the fastest video streaming or video conferencing servers that Headquarters can offer. FortiWAN is designed for easy deployment and rapid integration into any existing network topology. Monitor Network Performance
Recommended publications
  • IT Acronyms.Docx
    List of computing and IT abbreviations /.—Slashdot 1GL—First-Generation Programming Language 1NF—First Normal Form 10B2—10BASE-2 10B5—10BASE-5 10B-F—10BASE-F 10B-FB—10BASE-FB 10B-FL—10BASE-FL 10B-FP—10BASE-FP 10B-T—10BASE-T 100B-FX—100BASE-FX 100B-T—100BASE-T 100B-TX—100BASE-TX 100BVG—100BASE-VG 286—Intel 80286 processor 2B1Q—2 Binary 1 Quaternary 2GL—Second-Generation Programming Language 2NF—Second Normal Form 3GL—Third-Generation Programming Language 3NF—Third Normal Form 386—Intel 80386 processor 1 486—Intel 80486 processor 4B5BLF—4 Byte 5 Byte Local Fiber 4GL—Fourth-Generation Programming Language 4NF—Fourth Normal Form 5GL—Fifth-Generation Programming Language 5NF—Fifth Normal Form 6NF—Sixth Normal Form 8B10BLF—8 Byte 10 Byte Local Fiber A AAT—Average Access Time AA—Anti-Aliasing AAA—Authentication Authorization, Accounting AABB—Axis Aligned Bounding Box AAC—Advanced Audio Coding AAL—ATM Adaptation Layer AALC—ATM Adaptation Layer Connection AARP—AppleTalk Address Resolution Protocol ABCL—Actor-Based Concurrent Language ABI—Application Binary Interface ABM—Asynchronous Balanced Mode ABR—Area Border Router ABR—Auto Baud-Rate detection ABR—Available Bitrate 2 ABR—Average Bitrate AC—Acoustic Coupler AC—Alternating Current ACD—Automatic Call Distributor ACE—Advanced Computing Environment ACF NCP—Advanced Communications Function—Network Control Program ACID—Atomicity Consistency Isolation Durability ACK—ACKnowledgement ACK—Amsterdam Compiler Kit ACL—Access Control List ACL—Active Current
    [Show full text]
  • Reference Information
    APPENDIX B Software Field Description Tables The window field description tables for the following are included in this section: • “Flow Record Match and Collect Field Descriptions” • “Configure Filter Window Fields” • “Configure Records Window Fields” • “Configure Collector Window Fields” • “Configure Exporter Window Fields” • “Configure Monitor Window Fields” • “Application ID Collect Field Information” Table B-1 lists the match and collect field descriptions for IPv4, IPv6, and Layer 2 flow records in the user interface, as well as the CLI. Table B-1 Flow Record Match and Collect Field Descriptions Match Fields (keys of the flow GUI and CLI record) IPv4 IPv6 Layer 2 CoS X X X Ethertype X X X Input SNMP Interface X X X IP Protocol X X IPv4 Destination Address X IPv4 Source Address X IPv4 TOS X IPv4 TTL X IPv6 Destination Address X IPv6 Hop Limit X IPv6 Source Address X IPv6 Traffic Class X Layer 4 Destination Port X X Layer 4 Source Port X X MAC Destination Address X X X Cisco NetFlow Generation Appliance User Guide B-1 Appendix B Software Field Description Tables Table B-1 Flow Record Match and Collect Field Descriptions (continued) Match Fields (keys of the flow GUI and CLI record) IPv4 IPv6 Layer 2 MAC Source Address X X X MPLS Label X X X Output SNMP Interface X X X VLAN ID X X X Collect Fields Application ID1 XXX Byte Count X X X First Timestamp X X X Flow Label X IPv4 ICMP Code X IPv4 ICMP Type X IPv6 ICMP Code X IPv6 ICMP Type X Last Timestamp X X X Network Encapsulation X X X Packet Count X X X TCP Header Flags X X X 1.
    [Show full text]
  • Troubleshooting TCP/IP
    4620-1 ch05.f.qc 10/28/99 12:00 PM Page 157 Chapter 5 Troubleshooting TCP/IP In This Chapter ᮣ Troubleshooting TCP/IP in Windows 2000 Server ᮣ TCP/IP troubleshooting steps ᮣ Defining which is the best TCP/IP troubleshooting tool to solve your problem ᮣ Mastering basic TCP/IP utilities roubleshooting is, it seems, an exercise in matrix mathematics. That is, Twe use a variety of approaches and influences to successfully solve our problems, almost in a mental columns-and-rows format. These approaches may include structured methodologies, inductive and deductive reasoning, common sense, experience, and luck. And this is what troubleshooting is made of. Troubleshooting TCP/IP problems is really no different from troubleshooting other Windows 2000 Server problems mentioned in this book, such as instal- lation failures described in Chapter 2. Needless to say, Windows 2000 Server offers several TCP/IP-related tools and utilities to assist us, but more on the specifics in a moment. TCP/IP Troubleshooting Basics The goal in TCP/IP troubleshooting is very simple: fix the problem. Too often, it is easy to become overly concerned about why something happened instead of just fixing the problem. And by fixing the problem, I mean cost effectively. 1. Be cost effective. Don’t forget that several hours’ worth of MCSE-level consulting could more than pay for the additional bandwidth that may easily solve your TCP/IP WAN-related problem. Don’t overlook such an easy fix when struggling to make a WAN connection between sites utilizing Windows 2000 Server. Too little bandwidth is typically the result of being penny wise and pound foolish.
    [Show full text]
  • 09-Mobile Networking
    Mobile Networking Programming for Engineers Winter 2015 Andreas Zeller, Saarland University Today’s Topics • Mobile Networking • HTTP • HTML • Webserver! The aim of a computer network is Murray Leinster to have computers communicate “A Logic Named Joe” (1946) with each other The computer ... manages the spreading of ninety-four percent of all TV programs, conveys all information about weather, air trafc, special deals… and records every business conversation, every contract… Computers have changed the world. Computers are the civilisation. If we turn them of, we will fall back to a kind of civilisation, of which we have forgotten how it even works. Murray Leinster, 1896–1975 Partial map of the Internet based on the January 15, 2005 data The Internet found on opte.org. Each line is drawn between two nodes, representing two IP addresses. The length of the lines are indicative of the delay between those two nodes. This graph represents less than 30% of the Class C networks reachable by the data collection program in early 2005. Wireless Internet • WLAN = Wireless Local Area Network • Allows “local” computers to communicate The Arduino ESP8266 shield allows the Arduino to connect to Wireless Modem networks, and also to set up its own network The modem is controlled by so- Controlling a Modem called AT commands Modems receive • data to be sent • commands to control them View from above – connectors are Programming for Engineers WS15/16 Prof. Dr. Andreas Zeller saarland Software Engineering Chair Resp. Tutor: Curd Becker university at the bottom ConnectingSaarland University theAssignment Modem Sheet 6 computer science The connectors for the ESP8266 wireless module are shown in more detail here.
    [Show full text]
  • Dos Amplification Attacks – Protocol-Agnostic Detection Of
    DoS Amplification Attacks – Protocol-Agnostic Detection of Service Abuse in Amplifier Networks B Timm B¨ottger1( ), Lothar Braun1 , Oliver Gasser1, Felix von Eye2, Helmut Reiser2, and Georg Carle1 1 Technische Universit¨at M¨unchen, Munich, Germany {boettget,braun,gasser,carle}@net.in.tum.de 2 Leibniz Supercomputing Centre, Munich, Germany {voneye,reiser}@lrz.de Abstract. For many years Distributed Denial-of-Service attacks have been known to be a threat to Internet services. Recently a configura- tionflawinNTPdaemonsledtoattackswithtrafficratesofseveral hundred Gbit/s. For those attacks a third party, the amplifier, is used to significantly increase the volume of traffic reflected to the victim. Recent research revealed more UDP-based protocols that are vulnerable to amplification attacks. Detecting such attacks from an abused ampli- fier network’s point of view has only rarely been investigated. In this work we identify novel properties which characterize ampli- fication attacks and allow to identify the illegitimate use of arbitrary services. Their suitability for amplification attack detection is evaluated in large high-speed research networks. We prove that our approach is fully capa- ble of detecting attacks that were already seen in the wild as well as capable of detecting attacks we conducted ourselves exploiting newly discovered vulnerabilities. 1 Introduction Denial-of-Service attacks aim at making services unavailable to their intended users. Attackers can use different methods to consume bandwidth or deplete other resources of the victim. One method to exhaust bandwidth is called Dis- tributed Reflection Denial-of-Service (DRDoS) attack: an attacker sends forged requests to several servers with the victim’s spoofed source address.
    [Show full text]
  • Vulnerability Report TLP: White
    Vulnerability Report TLP: White Contents 1 Introduction ..................................... 4 2 Overview of Scanning Projects ............... 5 2.1 SSL POODLE Scan ................................................ 6 2.2 HTTP Scan ........................................................ 7 2.3 FTP Scan .......................................................... 8 2.4 RDP ................................................................ 9 2.5 mDNS ............................................................ 10 2.6 SNMP ............................................................. 11 2.7 AFP ............................................................... 12 2.8 NTP .............................................................. 13 2.9 Telnet ........................................................... 14 2.10 SSL Freak ....................................................... 15 2.11 Port Mapper .................................................... 16 2.12 VNC .............................................................. 17 2.13 DNS............................................................... 18 2.14 Netbios .......................................................... 19 2.15 SSDP ............................................................. 20 2.16 ISAKMP .......................................................... 21 2.17 TFTP ............................................................. 22 2.18 RSYNC ........................................................... 23 2.19 SMB .............................................................. 24 2.20 CWMP
    [Show full text]
  • Amplification Hell: Revisiting Network Protocols for Ddos Abuse
    Amplification Hell: Revisiting Network Protocols for DDoS Abuse Christian Rossow VU University Amsterdam, The Netherlands Horst Gortz¨ Institute for IT-Security, Ruhr University Bochum, Germany firstname.lastname @rub.de { } Abstract—In distributed reflective denial-of-service (DRDoS) In distributed reflective denial-of-service (DRDoS) attacks, attacks, adversaries send requests to public servers (e.g., open an adversary aims to exhaust the victim’s bandwidth. He recursive DNS resolvers) and spoof the IP address of a victim. abuses the fact that public servers of UDP-based network These servers, in turn, flood the victim with valid responses protocols respond to requests without further validating the and – unknowingly – exhaust its bandwidth. Recently, attackers identity (i.e., the IP address) of the sender. DRDoS offers many launched DRDoS attacks with hundreds of Gb/s bandwidth of this desired attack features for an adversary: (i) He disguises his kind. While the attack technique is well-known for a few protocols such as DNS, it is unclear if further protocols are vulnerable to identity, as victims receive backscatter traffic from amplifiers, similar or worse attacks. i.e., systems that can be abused to send traffic to the victim on the attacker’s behalf; (ii) The simultaneous abuse of multiple In this paper, we revisit popular UDP-based protocols of amplifiers permits a highly-distributed DoS attack to be con- network services, online games, P2P filesharing networks and ducted from a single Internet uplink. (iii) The traffic reflected P2P botnets to assess their security against DRDoS abuse. We find that 14 protocols are susceptible to bandwidth amplification to the victim is significantly larger in bandwidth than the traffic and multiply the traffic up to a factor 4670.
    [Show full text]
  • Ddos Beasts and How to Fight Them
    DDoS Beasts and How to Fight Them Artyom Gavrichenkov <[email protected]> Timeline of ancient history • First attacks: 1999-2000 • 2005: STRIDE model by Microsoft • Spoofing Identity • Tampering with Data • Repudiation • Information Disclosure • Denial of Service • Elevation of Privileges [D?]DoS The difference between “a distributed attack” and an, err, not distributed one is vague. Traditional meaning: a distributed attack comes from multiple sources. • What is a source? Is it an IP address or a machine? • If it is a machine, does a virtual instance count? Or a few instances under the same physical hypervisor? What if they often migrate between physical machines? If I’m a victim, how do I tell a single-sourced from a multiple-sourced? • If it is an IP, then how do we treat spoofed traffic? [D?]DoS Hence, a different sort of thinking applies: • DoS (as implied in STRIDE): a vulnerability in a software (e.g. NULL pointer dereference, like Ping of Death) • DDoS: computational resource exhaustion Risk management The basic idea behind STRIDE and other approaches is risk assessment, modelling and management. Probability/Impact Matrix Trivial Minor Moderate Significant Severe Rare Unlikely Moderate Likely Very Likely Probability/Impact Matrix Trivial Minor Moderate Significant Severe DDoS attack, Rare 2018 Unlikely • Impact: Moderate Likely Severe Very Likely • Probability: ? Motivation of an attacker • Fun! • Blackmail • Self-promotion • Political statement • Revenge • Market competition • Diverting attention (e.g. in case of theft) • Preventing access to a compromising information Motivation of an attacker • Fun! • Blackmail Rather hard to evaluate and control • Self-promotion • Political statement • Revenge • Market competition • Diverting attention More or less predictable! (e.g.
    [Show full text]
  • Threat Landscape and Good Practice Guide for Internet Infrastructure
    Threat Landscape and Good Practice Guide for Internet Infrastructure January 2015 European Union Agency for Network and Information Security www.enisa.europa.eu Threat Landscape and Good Practice Guide for Internet Infrastructure January 2015 About ENISA The European Union Agency for Network and Information Security (ENISA) is a centre of network and information security expertise for the EU, its member states, the private sector and Europe’s citizens. ENISA works with these groups to develop advice and recommendations on good practice in information security. It assists EU member states in implementing relevant EU legislation and works to improve the resilience of Europe’s critical information infrastructure and networks. ENISA seeks to enhance existing expertise in EU member states by supporting the development of cross-border communities committed to improving network and information security throughout the EU. More information about ENISA and its work can be found at www.enisa.europa.eu. Authors Dr. Cédric Lévy-Bencheton (ENISA), Dr. Louis Marinos (ENISA), Rossella Mattioli (ENISA), Dr. Thomas King (DE-CIX Management GmbH), Christoph Dietzel (DE-CIX Management GmbH), Jan Stumpf (DE-CIX Management GmbH) Contact For contacting the authors please use [email protected] For media enquires about this paper, please use [email protected] Acknowledgements For the completion of this study, ENISA has worked closely with: • The “Internet infrastructure security and resilience” reference group. • Individual experts that reviewed the results and provided valuable feedback: Randy Bush (Internet Initiative Japan), Patrick Fältström (Netnod), Peter Koch (DENIC), Benno Overeinder (NLnetLabs), Andrei Robachevsky (Internet Society). We are grateful for their valuable input and comments.
    [Show full text]
  • Port Ranges Traffic Analysis
    Simon Owens Port Ranges • Ports 0 to 1023 are Well-Known Ports. • Ports 1024 to 49151 are Registered Ports (often registered by a software developer to designate a particular port for their application) • Ports 49152 to 65535 are Public Ports. Traffic Analysis - Wireshark Configure Name Resolution 1. Make a new profile 2. Make a “hosts” file with format “ip hostname” 3. Place that “hosts” file in the ~/.config/wireshark/configprofilename/ folder 4. open pcap file, select your configuration profile, and ensure “view>>name resolution>>resolve network/transport address names” is checked Configure Ports 1. Go to “Edit>>preferences>>columns” and add src and dst ports to the display Figuring out what multi-cast goes too 1. Fill out “hosts” and “services” file if you can 2. Click on various multi-cast products – generally the parameters will identify what the application is with a version or the company that made it. Query for Common Ports • tcp.dstport >= 0 and tcp.dstport <= 10000 || tftp || dns Saving off filters to make capture smaller 1. Apply a filter 2. Click “File>> Export Specified Packets” then save them to a file Search for Strings • Edit >> find packet Extracting files • file >> export objects Find Hashes • net-creds.py file.pcap Changing Parameters in the Packets Simon Owens • Port Scan Netdiscover -r <ip-range> make sure you know everything on network IP=insert mkdir $IP Masscan: • masscan -p0-65535 $IP --banners -oG $IP/masscan_$IP.grep Nmap: • Nmap -sV -T4 $IP -oN $IP/normalNmap.txt • nmap -v -sS -T4 -A --script=vuln --host-timeout 336h -p 0-65535 $IP -oA $IP/TCPscan_$IP • nmap -v -sU -T4 -A --script=vuln --host-timeout 336h -p 0-65535 $IP -oA $IP/UDPscan_$IP General Services: • 9/tcp - Discard o Discard Protocol - https://www.exploit-db.com/exploits/19555 The Discard Protocol is a service in the Internet Protocol Suite defined in RFC 863.
    [Show full text]
  • Draft SP 800-189, Secure Interdomain Traffic Exchange
    Withdrawn Draft Warning Notice The attached draft document has been withdrawn, and is provided solely for historical purposes. It has been superseded by the document identified below. Withdrawal Date October 17, 2019 Original Release Date December 17, 2018 Superseding Document Status 2nd Public Draft (2PD) Series/Number NIST Special Publication 800-189 Title Resilient Interdomain Traffic Exchange: BGP Security and DDoS Mitigation Publication Date October 2019 DOI https://doi.org/10.6028/NIST.SP.800-189-draft2 CSRC URL https://csrc.nist.gov/publications/detail/sp/800-189/draft Additional Information 1 Draft NIST Special Publication 800-189 2 3 Secure Interdomain Traffic Exchange 4 BGP Robustness and DDoS Mitigation 5 6 Kotikalapudi Sriram 7 Doug Montgomery 8 9 10 11 12 13 This publication is available free of charge from: 14 https://doi.org/10.6028/NIST.SP.800-189-draft 15 16 17 C O M P U T E R S E C U R I T Y 18 19 20 Draft NIST Special Publication 800-189 21 22 Secure Interdomain Traffic Exchange 23 BGP Robustness and DDoS Mitigation 24 25 Kotikalapudi Sriram 26 Doug Montgomery 27 Advanced Network Technology Division 28 Information Technology Laboratory 29 30 31 32 33 34 35 36 This publication is available free of charge from: 37 https://doi.org/10.6028/NIST.SP.800-189-draft 38 39 40 December 2018 41 42 43 44 45 U.S. Department of Commerce 46 Wilbur L. Ross, Jr., Secretary 47 48 National Institute of Standards and Technology 49 Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology 50 Authority 51 This publication has been developed by NIST in accordance with its statutory responsibilities under the 52 Federal Information Security Modernization Act (FISMA) of 2014, 44 U.S.C.
    [Show full text]
  • ELFIQ APP OPTIMIZER White Paper V1.03 - May 2015 CONTENTS Introduction
    ELFIQ APP OPTIMIZER White Paper V1.03 - May 2015 CONTENTS Introduction ...............................................................................................................................................................................3 Signature-Based Recognition vs. ACL’s ................................................................................................................3 Detection Engine ...................................................................................................................................................................3 Using Groups or Individual Applications .............................................................................................................3 Actions Once an Application is Detected ...........................................................................................................3 Appendix A: Application List ........................................................................................................................................ 4 martellotech.com elfiq.com 2 INTRODUCTION The Elfiq AppOptimizer is designed to give organizations full control over their existing and future bandwidth, guaranteeing key applications such as Citrix XenDesktop or Skype get priority treatment and undesirables such as peer-to-peer file transfers or games are limited or no longer permitted. It is an add-on-module that provides application-layer deep packet inspection (layer 7) classification and control, including Mobile, Social Networking, P2P, Instant Messaging,
    [Show full text]