Port Ranges Traffic Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
List of TCP and UDP Port Numbers - Wikipedia, the Free Encyclopedia 6/12/11 3:20 PM
List of TCP and UDP port numbers - Wikipedia, the free encyclopedia 6/12/11 3:20 PM List of TCP and UDP port numbers From Wikipedia, the free encyclopedia (Redirected from TCP and UDP port numbers) This is a list of Internet socket port numbers used by protocols of the Transport Layer of the Internet Protocol Suite for the establishment of host-to-host communications. Originally, these port numbers were used by the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP), but are used also for the Stream Control Transmission Protocol (SCTP), and the Datagram Congestion Control Protocol (DCCP). SCTP and DCCP services usually use a port number that matches the service of the corresponding TCP or UDP implementation if they exist. The Internet Assigned Numbers Authority (IANA) is responsible for maintaining the official assignments of port numbers for specific uses.[1] However, many unofficial uses of both well-known and registered port numbers occur in practice. Contents 1 Table legend 2 Well-known ports: 0–1023 3 Registered ports: 1024–49151 4 Dynamic, private or ephemeral ports: 49152–65535 5 See also 6 References 7 External links Table legend Color coding of table entries Official Port/application combination is registered with IANA Unofficial Port/application combination is not registered with IANA Conflict Port is in use for multiple applications (may be official or unofficial) Well-known ports: 0–1023 The port numbers in the range from 0 to 1023 are the well-known ports. They are used by system processes that provide widely-used types of network services. -
IT Acronyms.Docx
List of computing and IT abbreviations /.—Slashdot 1GL—First-Generation Programming Language 1NF—First Normal Form 10B2—10BASE-2 10B5—10BASE-5 10B-F—10BASE-F 10B-FB—10BASE-FB 10B-FL—10BASE-FL 10B-FP—10BASE-FP 10B-T—10BASE-T 100B-FX—100BASE-FX 100B-T—100BASE-T 100B-TX—100BASE-TX 100BVG—100BASE-VG 286—Intel 80286 processor 2B1Q—2 Binary 1 Quaternary 2GL—Second-Generation Programming Language 2NF—Second Normal Form 3GL—Third-Generation Programming Language 3NF—Third Normal Form 386—Intel 80386 processor 1 486—Intel 80486 processor 4B5BLF—4 Byte 5 Byte Local Fiber 4GL—Fourth-Generation Programming Language 4NF—Fourth Normal Form 5GL—Fifth-Generation Programming Language 5NF—Fifth Normal Form 6NF—Sixth Normal Form 8B10BLF—8 Byte 10 Byte Local Fiber A AAT—Average Access Time AA—Anti-Aliasing AAA—Authentication Authorization, Accounting AABB—Axis Aligned Bounding Box AAC—Advanced Audio Coding AAL—ATM Adaptation Layer AALC—ATM Adaptation Layer Connection AARP—AppleTalk Address Resolution Protocol ABCL—Actor-Based Concurrent Language ABI—Application Binary Interface ABM—Asynchronous Balanced Mode ABR—Area Border Router ABR—Auto Baud-Rate detection ABR—Available Bitrate 2 ABR—Average Bitrate AC—Acoustic Coupler AC—Alternating Current ACD—Automatic Call Distributor ACE—Advanced Computing Environment ACF NCP—Advanced Communications Function—Network Control Program ACID—Atomicity Consistency Isolation Durability ACK—ACKnowledgement ACK—Amsterdam Compiler Kit ACL—Access Control List ACL—Active Current -
Reference Information
APPENDIX B Software Field Description Tables The window field description tables for the following are included in this section: • “Flow Record Match and Collect Field Descriptions” • “Configure Filter Window Fields” • “Configure Records Window Fields” • “Configure Collector Window Fields” • “Configure Exporter Window Fields” • “Configure Monitor Window Fields” • “Application ID Collect Field Information” Table B-1 lists the match and collect field descriptions for IPv4, IPv6, and Layer 2 flow records in the user interface, as well as the CLI. Table B-1 Flow Record Match and Collect Field Descriptions Match Fields (keys of the flow GUI and CLI record) IPv4 IPv6 Layer 2 CoS X X X Ethertype X X X Input SNMP Interface X X X IP Protocol X X IPv4 Destination Address X IPv4 Source Address X IPv4 TOS X IPv4 TTL X IPv6 Destination Address X IPv6 Hop Limit X IPv6 Source Address X IPv6 Traffic Class X Layer 4 Destination Port X X Layer 4 Source Port X X MAC Destination Address X X X Cisco NetFlow Generation Appliance User Guide B-1 Appendix B Software Field Description Tables Table B-1 Flow Record Match and Collect Field Descriptions (continued) Match Fields (keys of the flow GUI and CLI record) IPv4 IPv6 Layer 2 MAC Source Address X X X MPLS Label X X X Output SNMP Interface X X X VLAN ID X X X Collect Fields Application ID1 XXX Byte Count X X X First Timestamp X X X Flow Label X IPv4 ICMP Code X IPv4 ICMP Type X IPv6 ICMP Code X IPv6 ICMP Type X Last Timestamp X X X Network Encapsulation X X X Packet Count X X X TCP Header Flags X X X 1. -
Automotive Ethernet: the Definitive Guide
Automotive Ethernet: The Definitive Guide Charles M. Kozierok Colt Correa Robert B. Boatright Jeffrey Quesnelle Illustrated by Charles M. Kozierok, Betsy Timmer, Matt Holden, Colt Correa & Kyle Irving Cover by Betsy Timmer Designed by Matt Holden Automotive Ethernet: The Definitive Guide. Copyright © 2014 Intrepid Control Systems. All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written permission of the copyright owner and publisher. Printed in the USA. ISBN-10: 0-9905388-0-X ISBN-13: 978-0-9905388-0-6 For information on distribution or bulk sales, contact Intrepid Control Systems at (586) 731-7950. You can purchase the paperback or electronic version of this book at www.intrepidcs.com or on Amazon. We’d love to hear your feedback about this book—email us at [email protected]. Product and company names mentioned in this book may be the trademarks of their respective owners. Rather than use a trademark symbol with every occurence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the preparation of this book, neither the authors nor Intrepid Control Systems shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in this book. -
Troubleshooting TCP/IP
4620-1 ch05.f.qc 10/28/99 12:00 PM Page 157 Chapter 5 Troubleshooting TCP/IP In This Chapter ᮣ Troubleshooting TCP/IP in Windows 2000 Server ᮣ TCP/IP troubleshooting steps ᮣ Defining which is the best TCP/IP troubleshooting tool to solve your problem ᮣ Mastering basic TCP/IP utilities roubleshooting is, it seems, an exercise in matrix mathematics. That is, Twe use a variety of approaches and influences to successfully solve our problems, almost in a mental columns-and-rows format. These approaches may include structured methodologies, inductive and deductive reasoning, common sense, experience, and luck. And this is what troubleshooting is made of. Troubleshooting TCP/IP problems is really no different from troubleshooting other Windows 2000 Server problems mentioned in this book, such as instal- lation failures described in Chapter 2. Needless to say, Windows 2000 Server offers several TCP/IP-related tools and utilities to assist us, but more on the specifics in a moment. TCP/IP Troubleshooting Basics The goal in TCP/IP troubleshooting is very simple: fix the problem. Too often, it is easy to become overly concerned about why something happened instead of just fixing the problem. And by fixing the problem, I mean cost effectively. 1. Be cost effective. Don’t forget that several hours’ worth of MCSE-level consulting could more than pay for the additional bandwidth that may easily solve your TCP/IP WAN-related problem. Don’t overlook such an easy fix when struggling to make a WAN connection between sites utilizing Windows 2000 Server. Too little bandwidth is typically the result of being penny wise and pound foolish. -
09-Mobile Networking
Mobile Networking Programming for Engineers Winter 2015 Andreas Zeller, Saarland University Today’s Topics • Mobile Networking • HTTP • HTML • Webserver! The aim of a computer network is Murray Leinster to have computers communicate “A Logic Named Joe” (1946) with each other The computer ... manages the spreading of ninety-four percent of all TV programs, conveys all information about weather, air trafc, special deals… and records every business conversation, every contract… Computers have changed the world. Computers are the civilisation. If we turn them of, we will fall back to a kind of civilisation, of which we have forgotten how it even works. Murray Leinster, 1896–1975 Partial map of the Internet based on the January 15, 2005 data The Internet found on opte.org. Each line is drawn between two nodes, representing two IP addresses. The length of the lines are indicative of the delay between those two nodes. This graph represents less than 30% of the Class C networks reachable by the data collection program in early 2005. Wireless Internet • WLAN = Wireless Local Area Network • Allows “local” computers to communicate The Arduino ESP8266 shield allows the Arduino to connect to Wireless Modem networks, and also to set up its own network The modem is controlled by so- Controlling a Modem called AT commands Modems receive • data to be sent • commands to control them View from above – connectors are Programming for Engineers WS15/16 Prof. Dr. Andreas Zeller saarland Software Engineering Chair Resp. Tutor: Curd Becker university at the bottom ConnectingSaarland University theAssignment Modem Sheet 6 computer science The connectors for the ESP8266 wireless module are shown in more detail here. -
Dos Amplification Attacks – Protocol-Agnostic Detection Of
DoS Amplification Attacks – Protocol-Agnostic Detection of Service Abuse in Amplifier Networks B Timm B¨ottger1( ), Lothar Braun1 , Oliver Gasser1, Felix von Eye2, Helmut Reiser2, and Georg Carle1 1 Technische Universit¨at M¨unchen, Munich, Germany {boettget,braun,gasser,carle}@net.in.tum.de 2 Leibniz Supercomputing Centre, Munich, Germany {voneye,reiser}@lrz.de Abstract. For many years Distributed Denial-of-Service attacks have been known to be a threat to Internet services. Recently a configura- tionflawinNTPdaemonsledtoattackswithtrafficratesofseveral hundred Gbit/s. For those attacks a third party, the amplifier, is used to significantly increase the volume of traffic reflected to the victim. Recent research revealed more UDP-based protocols that are vulnerable to amplification attacks. Detecting such attacks from an abused ampli- fier network’s point of view has only rarely been investigated. In this work we identify novel properties which characterize ampli- fication attacks and allow to identify the illegitimate use of arbitrary services. Their suitability for amplification attack detection is evaluated in large high-speed research networks. We prove that our approach is fully capa- ble of detecting attacks that were already seen in the wild as well as capable of detecting attacks we conducted ourselves exploiting newly discovered vulnerabilities. 1 Introduction Denial-of-Service attacks aim at making services unavailable to their intended users. Attackers can use different methods to consume bandwidth or deplete other resources of the victim. One method to exhaust bandwidth is called Dis- tributed Reflection Denial-of-Service (DRDoS) attack: an attacker sends forged requests to several servers with the victim’s spoofed source address. -
Vulnerability Report TLP: White
Vulnerability Report TLP: White Contents 1 Introduction ..................................... 4 2 Overview of Scanning Projects ............... 5 2.1 SSL POODLE Scan ................................................ 6 2.2 HTTP Scan ........................................................ 7 2.3 FTP Scan .......................................................... 8 2.4 RDP ................................................................ 9 2.5 mDNS ............................................................ 10 2.6 SNMP ............................................................. 11 2.7 AFP ............................................................... 12 2.8 NTP .............................................................. 13 2.9 Telnet ........................................................... 14 2.10 SSL Freak ....................................................... 15 2.11 Port Mapper .................................................... 16 2.12 VNC .............................................................. 17 2.13 DNS............................................................... 18 2.14 Netbios .......................................................... 19 2.15 SSDP ............................................................. 20 2.16 ISAKMP .......................................................... 21 2.17 TFTP ............................................................. 22 2.18 RSYNC ........................................................... 23 2.19 SMB .............................................................. 24 2.20 CWMP -
List of TCP and UDP Port Numbers from Wikipedia, the Free Encyclopedia
List of TCP and UDP port numbers From Wikipedia, the free encyclopedia This is a list of Internet socket port numbers used by protocols of the transport layer of the Internet Protocol Suite for the establishment of host-to-host connectivity. Originally, port numbers were used by the Network Control Program (NCP) in the ARPANET for which two ports were required for half- duplex transmission. Later, the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP) needed only one port for full- duplex, bidirectional traffic. The even-numbered ports were not used, and this resulted in some even numbers in the well-known port number /etc/services, a service name range being unassigned. The Stream Control Transmission Protocol database file on Unix-like operating (SCTP) and the Datagram Congestion Control Protocol (DCCP) also systems.[1][2][3][4] use port numbers. They usually use port numbers that match the services of the corresponding TCP or UDP implementation, if they exist. The Internet Assigned Numbers Authority (IANA) is responsible for maintaining the official assignments of port numbers for specific uses.[5] However, many unofficial uses of both well-known and registered port numbers occur in practice. Contents 1 Table legend 2 Well-known ports 3 Registered ports 4 Dynamic, private or ephemeral ports 5 See also 6 References 7 External links Table legend Official: Port is registered with IANA for the application.[5] Unofficial: Port is not registered with IANA for the application. Multiple use: Multiple applications are known to use this port. Well-known ports The port numbers in the range from 0 to 1023 are the well-known ports or system ports.[6] They are used by system processes that provide widely used types of network services. -
Amplification Hell: Revisiting Network Protocols for Ddos Abuse
Amplification Hell: Revisiting Network Protocols for DDoS Abuse Christian Rossow VU University Amsterdam, The Netherlands Horst Gortz¨ Institute for IT-Security, Ruhr University Bochum, Germany firstname.lastname @rub.de { } Abstract—In distributed reflective denial-of-service (DRDoS) In distributed reflective denial-of-service (DRDoS) attacks, attacks, adversaries send requests to public servers (e.g., open an adversary aims to exhaust the victim’s bandwidth. He recursive DNS resolvers) and spoof the IP address of a victim. abuses the fact that public servers of UDP-based network These servers, in turn, flood the victim with valid responses protocols respond to requests without further validating the and – unknowingly – exhaust its bandwidth. Recently, attackers identity (i.e., the IP address) of the sender. DRDoS offers many launched DRDoS attacks with hundreds of Gb/s bandwidth of this desired attack features for an adversary: (i) He disguises his kind. While the attack technique is well-known for a few protocols such as DNS, it is unclear if further protocols are vulnerable to identity, as victims receive backscatter traffic from amplifiers, similar or worse attacks. i.e., systems that can be abused to send traffic to the victim on the attacker’s behalf; (ii) The simultaneous abuse of multiple In this paper, we revisit popular UDP-based protocols of amplifiers permits a highly-distributed DoS attack to be con- network services, online games, P2P filesharing networks and ducted from a single Internet uplink. (iii) The traffic reflected P2P botnets to assess their security against DRDoS abuse. We find that 14 protocols are susceptible to bandwidth amplification to the victim is significantly larger in bandwidth than the traffic and multiply the traffic up to a factor 4670. -
Implementing TCP/IP
4620-1 ch03.f.qc 10/28/99 11:56 AM Page 59 Chapter 3 Implementing TCP/IP In This Chapter ᮣ Defining TCP/IP ᮣ Microsoft’s implementation of TCP/IP ᮣ A detailed analysis of TCP ᮣ A detailed analysis of IP ᮣ Windows Sockets: a definition and the application ᮣ Three parts of Internet addressing: the IP address, subnet mask, and default gateway ᮣ Windows 2000 Server basic routing ave you ever wondered what the payoff was from years of US military Hexpenditures? Was it $200 wrenches and other doodads publicly highlighted by former Senator William Proxmire and his “Golden Fleece” awards? No, two of the great payoffs from the huge military buildup that have spanned generations are Transmission Control Protocol/Internet Protocol (TCP/IP) and the Internet itself. Not only has TCP/IP become a de facto standard for internetworking, it is also the default protocol for Windows 2000 Server. As I prepared this chapter, I promised myself that I wouldn’t drone on about the history of the Internet, Request for Comments (RFCs), and other historical hooey that has been covered in far too many books. In fact, I make two assumptions: First, that you are not a newbie — you know the definition of TCP/IP and have other thicker and more technical resources dedicated specifically to TCP/IP. And second, that perhaps like me, you have trouble sitting still when the going gets boring; if the presentation of TCP/IP (which can be very dry) isn’t exciting, you will drift away and miss the finer points about TCP/IP that are important to catch. -
Network Time Protocol (Version 2) Specification and Implementation
Network Working Group David L. Mills Request for Comments: 1119 University of Delaware Obsoletes: RFC-1059, RFC-958 September 1989 Network Time Protocol (Version 2) Specification and Implementation Status of this Memo This document describes the Network Time Protocol (NTP), specifies its formal structure and summarizes information useful for its implementation. NTP provides the mechanisms to synchronize time and coordinate time distribution in a large, diverse internet operating at rates from mundane to lightwave. It uses a returnable-time design in which a distributed subnet of time servers operating in a self-organizing, hierarchical-master-slave configuration synchronizes local clocks within the subnet and to national time standards via wire or radio. The servers can also redistribute reference time via local routing algorithms and time daemons. This is an Internet Standard Recommended Protocol. Distribution of this memo is unlimited. Keywords: network clock synchronization, standard time distribution, fault-tolerant architecture, maximum-likelihood estimation, disciplined oscillator, internet protocol, formal specification. Mills Page i RFC-1119 Network Time Protocol September 1989 Table of Contents 1. Introduction . 1 1.1. Related Technology . 2 2. System Architecture . 3 2.1. Implementation Model . 4 2.2. Network Configurations . 5 2.3. The NTP Timescale . 7 2.4. The NTP Calendar . 8 2.5. Time and Frequency Dissemination . 10 3. Network Time Protocol . 11 3.1. Data Formats . 11 3.2. State Variables and Parameters . 12 3.2.1. Common Variables . 12 3.2.2. System Variables . 14 3.2.3. Peer Variables . 16 3.2.4. Packet Variables . 17 3.2.5. Clock Filter Variables . 17 3.2.6.