Transmission of Danger Information Past Physical Barriers by Ants

Total Page:16

File Type:pdf, Size:1020Kb

Transmission of Danger Information Past Physical Barriers by Ants Transmission of danger information past physical barriers by ants A.Reyes1, M.Curbelo2, F.Tejera3, A.Rivera4, G. Simon5, O.Ramos5, M.S.Turner7, and E.Altshuler1,* 1Group of Complex Systems and Statistical Physics, University of Havana, 10400 Habana, Cuba 2Biology Faculty, University of Havana, 10400 Havana, Cuba 3The Rockefeller University, New York, USA 4Zeolites Engineering Lab and Group of Complex Systems and Statistical Physics, Physics Faculty, University of Havana, 10400 Havana, Cuba 5Institut Lumiere` Matiere,` Universite´ Claude Bernard Lyon 1, France 7Physics Department & Centre for Complexity Science, University of Warwick, Coventry, CV4 7AL, UK *ealtshuler@fisica.uh.cu ABSTRACT Can insects transmit information about a threat through a physical barrier they cannot cross? While the emission and detection of alarm pheromones is the universally accepted mechanism of panic communication, there are still open questions about the specific pheromones and type of ant-to-ant contacts involved in specific scenarios, and how relevant is the role of non-chemical communication. Here we report experiments suggesting that “panicked” ants can transmit danger information through a physical barrier to nestmates located in a safe arena when danger is simulated by using insect repellent. As ants in the safe arena get danger information from nestmates trapped in an area contaminated with a chemical, they retreat from the barrier in average. Visual clues and pure mutual antennation seem to play a minor role as mechanisms of danger information transmission through the obstacle. A detailed quantification of the ant behavior reveals that examination of the legs of ants in the danger arena by nestmates in the safe one may be relevant for danger information transmission. Introduction One of the first attempts to demonstrate that ants are able to transmit danger information to other ants was reported in 1881 by Sir John Lubbock. To investigate the matter, he used state of the art technology of his day: the telephone. He “disturbed” a nest of Lasius niger having a telephone held close over the nest. A second telephone was placed at a nearby nest of the same species, assuming that, if any audible danger signal was transmitted through the telephone line, “the ants in the other nest ought to have been thrown in confusion”. Unfortunately, the author did not find any evidence of it1. More than 130 years later, the subject of how ants communicate danger is still not fully understood. Ants are known to use a wide variety of mechanisms for communication2–4 like acoustic signals5, tapping6, oral transfer of substances (trophalaxis)7 and even “simple" physical contact8. However, there is consensus that the emission and detection of specific chemicals called pheromones is their main communication mechanism9, 10. In fact, ants use different pheromones arXiv:1904.03236v1 [q-bio.PE] 5 Apr 2019 to transmit information related to scenarios spanning from foraging to danger. Communication mechanisms are further complicated by the fact that the effects of pheromones are caste, age, and context-dependent11, 12. In particular, the reaction to alarm pheromones may be either “Flight" or “Fight": in the first, the receivers escape from the source of danger, while in the second they are attracted to, and eventually attack, the threat13, 14. However, which of the two is triggered by the pheromone depends on many factors, such as the pheromone specific chemical composition and concentration, the spatial context where the emission and detection takes place, and the age of the participating ants2, 15, 16. The eventual touching between the antenna of two ants, known as mutual antennation, is believed to allow recognition of members of the same nest2 —a process involving both sensing and emission of chemical signals17, 18. Other uses of mutual antennation are the subject of debate, like the possibility of communicating nestmates the correct (and incorrect!) foraging paths4,8, 19 . One unanswered question, for example, is whether ants can transmit any danger information by mutual antennation. Our previous research on foraging ants submitted to a localized perturbation suggests that danger information is not transmitted by mutual antennation over large distances20: a short-range study is necessary. Here we investigate the transmission of information from a group of ants located into a first physical space were they are experiencing danger associated to an insect repellent, to ants located into a different physical space. Our experiments reveal that “panicked” ants of the species Atta insularis20–22 locked into an arena where the repellent is injected, are able to transmit danger information to ants in a safe arena, located on the opposite side of a separating barrier. Instead of being “thrown in confusion” (or trying to help their endangered nestmates) the ants in the safe area react by moving away from the barrier. Experiments performed with different types of barriers suggest that visual clues and mutual antennation are not the ways danger information is transmitted: “body search” seems to be needed –with emphasis in legs. Results A system consisting in two-cells separated by a barrier was designed to probe the possible transmission of danger information by ants in one cell to ants in the other cell through an obstacle –see Fig.1A. In a typical experiment, ants are deposited in both cells, which are filmed during 5 minutes. Then, an insect repellent is added at the center of the DANGER cell, and another 10 minutes of film is taken. In a CONTROL experiment, the same procedure is followed, except for the fact that no ants are introduced into the DANGER arena. We hypothesize that, if ants in the SAFE arena move away from the barrier after the addition of the repellent a significantly larger distance than they do during a CONTROL experiment, DANGER information has been transmitted by the “panicked" ants in the DANGER cell to the ants in the SAFE cell, beyond any “passive" diffusion of the repellent through the barrier. In an attempt to understand the details of the possible mechanisms of danger information transmission, we use different kinds of barriers (see section “Experimental details"). The GLASS barrier is a glass wall, the THICK barrier is made in such a way that ants from both sides of the barrier can touch their respective antennas, but cannot antennate the bodies of individuals in the opposite arena (Fig.1B), while the THIN barrier does allow it (Fig.1C, D). A SAFE SAFE DANGERDANGER D D B C Figure 1. Danger transmission experiments. (A) General view of the two cell arena for 2D experiments (less ants than in real experiments are sketched). (B) Top view of Atta insularis ants near a THICK barrier (C) Same, near a THIN barrier. (D) Lateral view of an ant in the SAFE cell near a THIN barrier. As a reference, the length of the ants bodies is around 1 cm. The experiments are performed in workers of the ant species Atta insularis, called bibijagua in Cuba. Collective behavior: response of the center of mass After converting the video images to binary format, we track the Center of Mass (CM) of the black pixels (assumed to be proportional to the presence of ants) in both cells for each protocol. As illustrated in Fig.2, A to C, for typical experiments in the 2D Arena, the motion of the CM at the DANGER cell is always near its geometrical center, independently from the 2/11 protocol used. A similar situation holds for the SAFE cell, with the conspicuous exception of THIN, where the CM of mass tends to move away from the barrier starting a few seconds after the repellent is added to the left cell. Fig.2, E to H shows the time evolution of the x-position of the CM at the SAFE cell, corresponding to the average between 10 repetitions of each type of experiment (the plotted data is tabulated in table TableA1 as Additional Information, where xi and x f are the initial and final potisions of the CM, respectively). DANGER SAFE A E 1 0 -1 B 1 F 0 Glass I 10 -1 Thick 10 C G 1 Thin 10 0 Control 10 -1 -0.4 0.0 0.4 0.8 1.2 D 1 H Net displacement of the CM (cm) 0 -1 x 0 2 4 6 8 10 12 14 Time (min) Figure 2. Collective behavior: motion of the ants “center of mass”. The upper left panel shows snapshots of experiments (A) GLASS (B) THICK (C) THIN and (D) CONTROL (see text for details). We indicate the motion of the ants center of mass by green, blue and red traces corresponding to consecutive 5-minutes time windows from the start of an experiment (the snapshots were taken at the end of each experiment). From (E) to (H) we indicate how the center of mass (averaged over 10 repetitions) evolves in time along the horizontal direction inside the right (SAFE) cell for each protocol (x = 0 is taken at the center of the cell). Light-colored shadows indicate the standard deviation from the mean. Notice that a repellent is added to the left (DANGER) cell at t = 5 minutes into the repellent reservoir seen as a white spot in (D). (I) Net horizontal motion of the ants “center of mass”, based on 10 repetitions of each type of experiment. The data was analyzed based on two k-sample t tests described in detail in the Statistical Analysis section. After each experiment is replicated 10 times, we quantify the motion of the CM in the SAFE cell by plotting its net displacement, calculated as the difference between its final and its initial positions averaged over the 5th and 15th minutes of the experiment, respectively (averaging over the first and the last 5 minutes yields qualitatively similar output).
Recommended publications
  • Review Article Specialized Fungal Parasites and Opportunistic Fungi in Gardens of Attine Ants
    Hindawi Publishing Corporation Psyche Volume 2012, Article ID 905109, 9 pages doi:10.1155/2012/905109 Review Article Specialized Fungal Parasites and Opportunistic Fungi in Gardens of Attine Ants Fernando C. Pagnocca,1 Virginia E. Masiulionis,1 and Andre Rodrigues1, 2 1 Centre for the Study of Social Insects, Sao˜ Paulo State University (UNESP), 13506-900 Rio Claro, SP, Brazil 2 Department of Biochemistry and Microbiology, Sao˜ Paulo State University (UNESP), 13506-900 Rio Claro, SP, Brazil Correspondence should be addressed to Andre Rodrigues, [email protected] Received 1 September 2011; Revised 2 November 2011; Accepted 5 November 2011 Academic Editor: Volker Witte Copyright © 2012 Fernando C. Pagnocca et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ants in the tribe Attini (Hymenoptera: Formicidae) comprise about 230 described species that share the same characteristic: all coevolved in an ancient mutualism with basidiomycetous fungi cultivated for food. In this paper we focused on fungi other than the mutualistic cultivar and their roles in the attine ant symbiosis. Specialized fungal parasites in the genus Escovopsis negatively impact the fungus gardens. Many fungal parasites may have small impacts on the ants’ fungal colony when the colony is balanced, but then may opportunistically shift to having large impacts if the ants’ colony becomes unbalanced. 1. Introduction family Pterulaceae (the “coral fungi” [10, 11]), (iii) a group of ants that cultivate Leucocoprini fungi in the yeast form (ants Restricted to the New World, the approximately 230 fungus- in the Cyphomyrmex rimosus group), (iv) the higher attine growing ant species in the tribe Attini cultivate basidiomyce- agriculture that encompass the derived genera Trachymyrmex tous fungi on freshly harvested plant substrate [1–3].
    [Show full text]
  • Redalyc.Local Distortion of the Earth's Magnetic Field As a Proposal For
    Ingeniería e Investigación ISSN: 0120-5609 [email protected] Universidad Nacional de Colombia Colombia Paz, H.; Vargas, M.A.; Forero, O.A.; Pabón, J.F.; Plaza, J.A. Local distortion of the earth's magnetic field as a proposal for handling the leafcutter ant species Atta spp. (Hymenoptera: Formicidae) Ingeniería e Investigación, vol. 32, núm. 2, mayo-agosto, 2012, pp. 28-33 Universidad Nacional de Colombia Bogotá, Colombia Available in: http://www.redalyc.org/articulo.oa?id=64323232006 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative INGENIERÍA E INVESTIGACIÓN VOL. 32 No. 2, AUGUST 2012 (28-33) Local distortion of the earth’s magnetic field as a proposal for handling the leafcutter ant species Atta spp. (Hymenoptera: Formicidae) Distorsión local de campo magnético terrestre como una propuesta de manejo de una especie de hormiga arriera Atta spp. (Hymenoptera: Formicidae) Paz H.1, Vargas M.A.2, Forero O.A.3, Pabón J.F.4, Plaza J.A.5 ABSTRACT Studies regarding the spatial orientation of social insects (bees, termites and ants) concerning their search for food, foraging and transporting it have received considerable attention during the last few years. Such studies have been aimed at learning so as to apply it to robotics (multiagents) and ecological pest control. However, little is known about the types of orientation mechanism and their integration in such insects. This article presents some geomagnetic field detection studies dealing with controlling them by magnetotaxis or orientation experiments in Sasaima (Cundinamarca) to formulate an ecological management proposal for ants from this species which greatly affect Colombian agriculture.
    [Show full text]
  • EU Project Number 613678
    EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 7 - REPORT on Oranges and Mandarins – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Grousset F, Wistermann A, Steffen K, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Oranges and Mandarins – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/112o3f5b0c014 DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on ORANGES AND MANDARINS – Fruit pathway and Alert List 1. Introduction ............................................................................................................................................... 2 1.1 Background on oranges and mandarins ..................................................................................................... 2 1.2 Data on production and trade of orange and mandarin fruit ........................................................................ 5 1.3 Characteristics of the pathway ‘orange and mandarin fruit’ .......................................................................
    [Show full text]
  • Review Article Specialized Fungal Parasites and Opportunistic Fungi in Gardens of Attine Ants
    Hindawi Publishing Corporation Psyche Volume 2012, Article ID 905109, 9 pages doi:10.1155/2012/905109 Review Article Specialized Fungal Parasites and Opportunistic Fungi in Gardens of Attine Ants Fernando C. Pagnocca,1 Virginia E. Masiulionis,1 and Andre Rodrigues1, 2 1 Centre for the Study of Social Insects, Sao˜ Paulo State University (UNESP), 13506-900 Rio Claro, SP, Brazil 2 Department of Biochemistry and Microbiology, Sao˜ Paulo State University (UNESP), 13506-900 Rio Claro, SP, Brazil Correspondence should be addressed to Andre Rodrigues, [email protected] Received 1 September 2011; Revised 2 November 2011; Accepted 5 November 2011 Academic Editor: Volker Witte Copyright © 2012 Fernando C. Pagnocca et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ants in the tribe Attini (Hymenoptera: Formicidae) comprise about 230 described species that share the same characteristic: all coevolved in an ancient mutualism with basidiomycetous fungi cultivated for food. In this paper we focused on fungi other than the mutualistic cultivar and their roles in the attine ant symbiosis. Specialized fungal parasites in the genus Escovopsis negatively impact the fungus gardens. Many fungal parasites may have small impacts on the ants’ fungal colony when the colony is balanced, but then may opportunistically shift to having large impacts if the ants’ colony becomes unbalanced. 1. Introduction family Pterulaceae (the “coral fungi” [10, 11]), (iii) a group of ants that cultivate Leucocoprini fungi in the yeast form (ants Restricted to the New World, the approximately 230 fungus- in the Cyphomyrmex rimosus group), (iv) the higher attine growing ant species in the tribe Attini cultivate basidiomyce- agriculture that encompass the derived genera Trachymyrmex tous fungi on freshly harvested plant substrate [1–3].
    [Show full text]
  • Part III. Pests of Selected Forest Tree Species
    PART III Pests of selected forest tree species PART III Pests of selected forest tree species 143 Abies grandis Order and Family: Pinales: Pinaceae Common names: grand fir; giant fir NATURAL DISTRIBUTION Abies grandis is a western North American (both Pacific and Cordilleran) species (Klinka et al., 1999). It grows in coastal (maritime) and interior (continental) regions from latitude 39 to 51 °N and at a longitude of 125 to 114 °W. In coastal regions, it grows in southern British Columbia (Canada), in the interior valleys and lowlands of western Washington and Oregon (United States), and in northwestern California (United States). Its range extends to eastern Washington, northern Idaho, western Montana, and northeastern Oregon (Foiles, 1965; Little, 1979). This species is not cultivated as an exotic to any significant extent. PESTS Arthropods in indigenous range The western spruce budworm (Choristoneura occidentalis) and Douglas-fir tussock moth (Orgyia pseudotsugata) have caused widespread defoliation, top kill and mortality to grand fir. Early-instar larvae of C. occidentalis mine and kill the buds, while late- instar larvae are voracious and wasteful feeders, often consuming only parts of needles, chewing them off at their bases. The western balsam bark beetle (Dryocoetes confusus) and the fir engraver (Scolytus ventralis) are the principal bark beetles. Fir cone moths (Barbara spp.), fir cone maggots (Earomyia spp.), and several seed chalcids destroy large numbers of grand fir cones and seeds. The balsam woolly adelgid (Adelges piceae) is a serious pest of A. grandis in western Oregon, Washington and southwestern British Columbia (Furniss and Carolin, 1977). Feeding by this aphid causes twigs to swell or ‘gout’ at the nodes and the cambium produces wide, irregular annual growth rings consisting of reddish, highly lignified, brittle wood (Harris, 1978).
    [Show full text]
  • 19 Insect Pests of Coffee and Their Management in Nature-Friendly Production Systems
    19 Insect Pests of Coffee and their Management in Nature-friendly Production Systems Juan F. Barrera* El Colegio de la Frontera Sur (ECOSUR), Tapachula, Mexico Introduction used in mixtures or to make soluble instant coffee. Today, coffee is one of the world’s It is speculated that at least 700 years ago, most important agricultural products. For coffee (Coffea arabica L.) came out of the Abys- many developing countries, coffee has been sinian Mountains (present-day Ethiopia) in the second most important product, only merchant and slave-trader caravans heading after oil, because of the value in foreign cur- for the Arabian Peninsula. There, in Yemen, rency it generates. Coffee is the main source the first coffee plantations flourished. How- of income for more than 125 million people ever, it was not until the end of the 17th and worldwide, many of whom belong to very beginning of the 18th century that the Dutch low-income farming families of indigenous and French began coffee cultivation in their ethnic groups (Osorio, 2002). These families colonies abroad, putting an end to the Ara- of small farmers produce 75% of the world’s bians’ monopoly, and C. arabica commenced coffee. C. arabica is cultivated at middle the adventure of colonizing the world. Much and high altitudes in most of the producer later, in the 19th century, another coffee countries, particularly in Latin America, species, robusta (Coffea canephora Pierre ex while C. canephora is mostly cultivated at A. Froehner), was discovered on the plains of low altitudes in Africa and Asia where the western Africa (Coste, 1964; Haarer, 1964; climate and coffee rust (Hemileia vastatrix Smith, 1985; Wrigley, 1988).
    [Show full text]
  • Supporting Information
    Supporting Information Mueller et al. 10.1073/pnas.1015806108 Study System and Field Methods The average number of frost-free days is 160 to 220 d for the Study System of Atta texana Leafcutter Ants. Atta texana is a soil- northernmost A. texana populations (average first freeze is in nesting leafcutter ant and the northernmost species of its genus. October, last freeze in March), but frosts are exceedingly rare for Its two closest relatives (1), Atta mexicana (from Mexico and the southern A. texana populations in the United States (22). adjoining Central American countries) and Atta insularis (from Extreme frost penetration is about 25-cm depth for northern A. Cuba), are also North American denizens, suggesting a likely texana populations, about 10 cm for midlatitudinal populations, North American origin of this clade. All three Atta species cul- and zero for southern A. texana populations (23) (www.ngs.noaa. tivate Attamyces fungi, a name given by Kreisel (2) to the ana- gov/PUBS_LIB/GeodeticBMs/). For the northernmost A. texana morphic fungus cultivated by Atta insularis. Hundreds of cultivar populations, soil temperatures at depths of shallow gardens (50– fungi genotyped so far from A. texana were all Attamyces (3). The 80 cm) rarely exceed 20 °C, even in summer; for the southern A. Attamyces of North American leafcutter species originally de- texana populations, soil temperatures at the same depths mea- rived from tropical Attamyces lineages cultivated by tropical sure 20 to 30 °C throughout the year (24) (www.wcc.nrcs.usda. leafcutter species (4–7). Because Attamyces fungi do not appear gov/nwcc/site?sitenum=2016&state=tx), which is comparable to to exist independently of leafcutter ants (ref.
    [Show full text]
  • Synonymic List of Neotropical Ants (Hymenoptera: Formicidae)
    BIOTA COLOMBIANA Special Issue: List of Neotropical Ants Número monográfico: Lista de las hormigas neotropicales Fernando Fernández Sebastián Sendoya Volumen 5 - Número 1 (monográfico), Junio de 2004 Instituto de Ciencias Naturales Biota Colombiana 5 (1) 3 -105, 2004 Synonymic list of Neotropical ants (Hymenoptera: Formicidae) Fernando Fernández1 and Sebastián Sendoya2 1Profesor Asociado, Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, AA 7495, Bogotá D.C, Colombia. [email protected] 2 Programa de Becas ABC, Sistema de Información en Biodiversidad y Proyecto Atlas de la Biodiversidad de Colombia, Instituto Alexander von Humboldt. [email protected] Key words: Formicidae, Ants, Taxa list, Neotropical Region, Synopsis Introduction Ant Phylogeny Ants are conspicuous and dominant all over the All ants belong to the family Formicidae, in the superfamily globe. Their diversity and abundance both peak in the tro- Vespoidea, within the order Hymenoptera. The most widely pical regions of the world and gradually decline towards accepted phylogentic schemes for the superfamily temperate latitudes. Nonetheless, certain species such as Vespoidea place the ants as a sister group to Vespidae + Formica can be locally abundant in some temperate Scoliidae (Brother & Carpenter 1993; Brothers 1999). countries. In the tropical and subtropical regions numerous Numerous studies have demonstrated the monophyletic species have been described, but many more remain to be nature of ants (Bolton 1994, 2003; Fernández 2003). Among discovered. Multiple studies have shown that ants represent the most widely accepted characters used to define ants as a high percentage of the biomass and individual count in a group are the presence of a metapleural gland in females canopy forests.
    [Show full text]
  • Plant Herbivore Interactions at the Forest Edge
    D 386 Ecosystem engineering in fragmented forests Edge-mediated hyper-abundance of leaf-cutting ants and resulting impacts on forest structure, microclimate and regeneration vom Fachbereich Biologie der Universität Kaiserslautern zur Verleihung des akademischen Grades „Doktor der Naturwissenschaften“ genehmigte Dissertation vorgelegt von Sebastian Tobias Meyer Betreuer der Dissertation: Prof. Dr. Burkhard Büdel / Dr. Rainer Wirth 2. Gutachter: Prof. Dr. Flavio Roces (Universität Würzburg) 3. Gutachter: Prof. Dr. Marcelo Tabarelli (Universität Recife, Brasilien) Vorsitz der Prüfungskommission: Prof. Dr. Dr. h.c. Helmut J. Schmidt Tag der Wissenschaftlichen Aussprache: 20. November 2008 I … answers to the key questions would come hard. Everything is complicated. Species respond to fragmentation in idiosyncratic and unexpected ways, some of the latter representing novel physical and biological phenomena. Every species, it turns out, really is connected to everything else, … Edward O. Wilson In his forword to “Lessons from Amazonia”, which synthesizes 20 years of experimental fragmentation research in the Brazilian Amazon. III Preface The book at hand is a cumulative doctoral thesis UFPE) and is coordinated by Marcelo Tabarelli. written at the University of Kaiserslautern, Ger- The objective of the project is to develop and many in the department of Plant Ecology and implement management regimes for natural Systematics (Prof. Dr. Burkhard Büdel). The resources that guarantee the protection of biodi- results presented are based mainly on research versity and the integrity of the Atlantic Forest conducted in the Brazilian Atlantic Forest be- within the holding of the Usina Serra Grande. tween 2005 and 2008 as part of an ongoing re- Thereby, the project aims to develop a regional search cooperation of Dr.
    [Show full text]
  • A Community of Ants, Fungi, and Bacteria
    28 Jul 2001 17:20 AR AR135-14.tex AR135-14.sgm ARv2(2001/05/10) P1: GPQ Annu. Rev. Microbiol. 2001. 55:357–80 Copyright c 2001 by Annual Reviews. All rights reserved ACOMMUNITY OF ANTS,FUNGI, AND BACTERIA: A Multilateral Approach to Studying Symbiosis Cameron R. Currie Department of Ecology and Evolutionary Biology, 2041 Haworth Hall, University of Kansas, Lawrence, Kansas 66045-7534; e-mail: [email protected] Key Words actinomycetes, antibiotics, coevolution, fungus-growing ants, mutualism ■ Abstract The ancient and highly evolved mutualism between fungus-growing ants and their fungi is a textbook example of symbiosis. The ants carefully tend the fungus, which serves as their main food source, and traditionally are believed to be so successful at fungal cultivation that they are able to maintain the fungus free of microbial pathogens. This assumption is surprising in light of theories on the evolution of parasitism, especially for those species of ants that have been clonally propagating their cultivars for millions of years. Recent work has established that, as theoretically predicted, the gardens of fungus-growing ants are host to a specialized, virulent, and highly evolved fungal pathogen in the genus Escovopsis. In addition, the ants have evolved a mutualistic association with filamentous bacteria (actinomycetes) that pro- duce antibiotics that suppress the growth of Escovopsis. Thus, the attine symbiosis appears to be a coevolutionary “arms race” between the garden parasite Escovopsis on the one hand and the ant-fungus-actinomycete tripartite mutualism on the other. These recent findings indicate that microbes may be key components in the regulation of other symbiotic associations between higher organisms.
    [Show full text]
  • Preliminary Quantification of Freely Exploring Atta Insularis A
    1 Preliminary quantification of freely exploring Atta insularis A. Reyes, G. Rodr´ıguezand E. Altshuler∗ Group of Complex Systems and Statistical Physics, Physics Faculty, University of Havana, Havana 10400, Cuba ∗ E-mail: [email protected] PACS: 87.23.-n, 05.45.-a, 05.65.+b Ants are social insects that typically use pheromone traces to self-organize long foraging lines without any centralized organization [1]. However, a very basic question arises: how a single ant explores new territories without any chemical or \topographical" clues? To the authors knowledge, the question is unanswered in the literature. In this paper, we offer a preliminary quantification of the free exploration of the Cuban leaf-cutter ant Atta insularis (known as bibijagua in Cuba) [5{9]. A typical experiment can be described as follows. A single individual of Atta insularis is collected from a foraging line in natural conditions, immediately taken to the laboratory, and released at the center of a 1-meter-diameter circular area made of white plastic. The trajectory of the ant is then followed by a digital camera located 1.8 meters above the center of the arena, until the ant reaches the edge of the circular platform. The illumination is provided by a 250-watt incandescent lamp located near the camera, equipped with a light diffusor, as sketched in the left panel of Fig.1. Then, the individual is released back in its natural foraging area. The experiment is replicated for several individuals collected in the same way, thoroughly cleaning the plastic arena with ethanol between repetitions. Images were averaged and the result was subtracted from each photogram, in order to distinctly visualize the moving object (i.e., the ant), on an immobile and homogeneous background.
    [Show full text]
  • Use of Alternatives to PFOS, Its Salts and PFOSF for the Control of Leaf-Cutting Ants Atta and Acromyrmex
    IJRES 3 (2016) 11-92 ISSN 2059-1977 Use of alternatives to PFOS, its salts and PFOSF for the control of leaf-cutting ants Atta and Acromyrmex Júlio Sérgio de Britto1, Luiz Carlos Forti2*, Marco Antonio de Oliveira3, Ronald Zanetti4, Carlos Frederico Wilcken2, José Cola Zanuncio3, Alci Enimar Loeck5, Nádia Caldato2, Nilson Satoru Nagamoto2, Pedro Guilherme Lemes3 and Roberto da Silva Camargo2 1Ministry of Agriculture, Livestock and Supply (MAPA), Esplanada dos Ministérios, Bloco D, Brasília/DF, 70043-900, Brazil. 2Departamento de Proteção Vegetal, Faculdade de Ciências Agronômicas/UNESP, 18603-970, Botucatu, São Paulo State, Brazil. 3Departamento de Entomologia, Universidade Federal de Viçosa, 36571-000, Viçosa, Minas Gerais State, Brazil. 4Departamento de Entomologia, Universidade Federal de Lavras, Campus Universitário, s/n, Campus Universitário, 37200-000,Lavras, Minas Gerais State, Brazil. 5Departamento de Fitossanidade, FAEM,Universidade Federal de Pelotas, 96010-900, Pelotas, Rio Grande do Sul State, Brazil. Article History ABSTRACT Received 07 March, 2016 Several biological, chemical, cultural and mechanical methods have been Received in revised form 23 studied for the control of leaf-cutting ants due to their economic importance in March, 2016 Accepted 28 March, 2016 forestry, agriculture and pastures. Applied biological methods such as manipulating predators, parasitoids and microorganisms; conservative control, Keywords: non-preferred plants (resistents), extracts of toxic plants or active ingredients of Acromyrmex, botanical origin and cultural methods; have been unsatisfactory with Atta, inconsistent results. With the development of synthetic insecticides, chemical Integrated Pest methods have been effectively used to control these ants. Currently, the use of Management, toxic bait with active ingredient with delayed action on a wide range of Toxic plants.
    [Show full text]