Fungal Adaptations to Mutualistic Life with Ants

Total Page:16

File Type:pdf, Size:1020Kb

Fungal Adaptations to Mutualistic Life with Ants faculty of science university of copenhagen centre for social evolution department of biology Fungal adaptations to mutualistic life with ants This thesis dissertation has been submitted in accordance with the requirements for the degree of PhD, at the PhD School of The Faculty of Science, University of Copenhagen, Denmark to be defended publicly before a panel of examiners. by Pepijn W. Kooij December 2013 Academic advisors Prof. Jacobus J. Boomsma Dr. Morten Schiøtt Cover Front: Atta sexdens workers carrying leaves down a tree. Picture: P. W. Kooij, Location: Santa Cruz, Gamboa, Panama Back: incipient colony of Atta colombica with queen on top. Picture: P. W. Kooij, Location: Gamboa, Panama PREFACE This thesis is the result of a three-year PhD project carried out at the Cen- tre for Social Evolution (CSE), Department of Biology, University of Copenhagen in Denmark under the supervision of Professor Jacobus J. Boomsma and Dr. Morten Schiøtt. During the project I spent five weeks at the Laboratory of Genetics, Wagenin- gen University and Research Center, The Netherlands, hosted by Dr. Duur K. Aanen. I additionally carried out a total of seven weeks of fieldwork at the Smithsonian Tropical Research Institute in Panama. I was funded by the Danish National Research Founda- tion and the Department of Biology. The thesis is comprised of a general introduction on the current understand- ing of life-time mutualistic interactions and how this can be applied to my model system where the fungal symbiont adapted to a life-time commitment with ants. I also present the objectives of the thesis research, and conclude with a summary of the main results in a broader conceptual framework. This is followed by five chapters of origi- nal emperical work, one of which is in press in a peer-reviewed journal, one has been submitted to a peer-reviewed journal and three that are in preparation for submission. Pepijn W. Kooij Copenhagen, December, 2013 CONTENTS Summaries.....................................................................................................................................................7 General introduction...................................................................................................................................13 Mutualism, commitment and co-adaptation.............................................................................................14 The fungus-growing ants as model system................................................................................................15 Open questions and objectives of this thesis.............................................................................................17 The influence of domestication on fungal genetics.......................................................................................17 Incompatibility between fungal crops of different ant genera.......................................................................18 Decomposition enzymes in the fungus-growing ant symbiosis....................................................................19 Special Acromyrmex echinatior fungal symbiont enzymes...........................................................................20 Summary and future perspectives.............................................................................................................21 References....................................................................................................................................................27 Chapter 1:....................................................................................................................................................33 Advanced farming ants rear polyploidy crop fungi Chapter 2:....................................................................................................................................................61 Somatic incompatibility of fungal crops in sympatric Atta and Acromyrmex leaf-cutting ants Chapter 3:....................................................................................................................................................85 Differences in forage-acquisition and fungal enzyme activity contribute to niche segregation in Panamanian leaf-cutting ants Chapter 4:...................................................................................................................................................109 Leucoagaricus gongylophorus uses leaf-cutting ants to vector proteolytic enzymes towards new plant sub- strate Chapter 5:...................................................................................................................................................133 Cellulose degradation patterns in Acromyrmex echinatior colonies Acknowledgements...................................................................................................................................153 6 ENGLISH, DANSK, ESPAÑOL, NEDERLANDS SUMMARIES 7 SUMMARY Fungus-growing ants (Attini) feed off a fungus they cultivate in a mutualistic symbiosis in under- ground chambers by providing it substrate they collect outside the colony. The tribe of Attine ants ranges from small colonies of the paleo- and basal Attine species with a few hundred workers that forage on crude substrates such as insect frass and dry plant material, to large colonies of the leaf-cutting ants with several thousands to several million workers that provide live plant material to their fungus gardens. Leaf-cutting ants are the dominant herbivores of the Neo-tropics, and have a major contribution to cycling of nitrogen and phosphorus in their direct environment and are, furthermore, considered pest species as they have a large impact on human agriculture. These factors make leaf-cutting ants an ideal study subject to better understand the mechanisms that make this mutualistic symbiosis so successful. To understand the evolutionary development of domestication of the fungus over the phylogeny of the Attine ants, I compared the average number of nuclei per cell for the fungal symbionts, for each of the different groups of fungus-growing ants. I found that the fungal symbionts of the paleo- and basal Attine ants, which have a relative low level of domestication, have two nuclei per cell, the standard for Basidiomy- cete fungi, but that the average number increased to 7-17 nuclei per cell in the highly domesticated fungi of the higher Attine ants and leaf-cutting ants. Furthermore, I was able to estimate that approximately half of these nuclei were represented by different genomes, giving the fungus a ploidy level of 5n-6n. In mutualistic symbioses it is important the partners stay true to each other. In fungus-growing ants, new founding queens bring a piece of fungus to build up their new colony. However, in rare occa- sions fungal symbionts might come into contact with symbionts from other colonies. I showed that in both leaf-cutting ant genera incompatibility reactions between fungal strains can avoid intermixing of different strains, and that these reactions strengthen when genetic distance is increased. This pattern, however, be- comes distorted when fungal symbionts are contested across ant genera. The most important mechanism in the succession of this mutualism of leaf-cutting ants is the con- trolled degradation of plant material. I show that in the area of Gamboa, Panama, the two leaf-cutting ant genera forage for rather different plant material, with Atta species specializing on tree-leaves and Acromyr- mex focusing more on flower material and herbal plant material. This difference is reflected in the overall enzyme activity patterns in the fungus gardens, with Atta specializing more on specific enzyme groups and Acromyrmex having an overall high enzyme activity. Finally, I show that the fungal symbiont of the leaf-cutting ant Acromyrmex echinatior produces large amounts of biodegrading enzymes in special structures called gongylidia. The ants eat these structures, but enzymes pass the ant gut without being digested, and are excreted by the ants in their fecal fluid which they mix with freshly foraged plant material placed on the top of the fungus garden. The enzymes are still active and have therefore an important role in the biodegradation of the plant material. With this I show that the fungus evolved some incredible adaptations to a mutualistic life with the ants. 8 RESUMÉ Svampedyrkende myrer lever af en svamp de dyrker i en mutualistisk symbiose i underjordiske kamre ved at forsyne den med substrat som de henter udefra. Underfamilien af svampedyrkende myrer (At- tini) spænder over paleo- og basale arter med få hundrede arbejdere der fouragerer på tørret plantemateriale og insekt ekskrementer, til store kolonier af bladskærermyrer med flere tusinde til millioner af arbejdere der indsamler friskt plantemateriale til deres svampehaver. Bladskærermyrer er den dominante herbivor i neotroperne hvor de bidrager væsentligt til nitrogen og fosfor kredsløbet i deres nærmiljø og bliver yder- mere betragtet som et skadedyr idet de har stor effekt på landbruget. Disse faktorer gør det ideelt at benytte bladskærermyrer til bedre at forstå mekanismerne der har gjort denne mutualistiske symbiose så succesfuld. For at forstå udviklingen af domesticeringen af svampen over hele den Attine fylogeni, sam- menlignede jeg det gennemsnitlige antal kerner per celle i svampesymbionten hos forskellige grupper af svampedyrkende myrer. Jeg fandt at svampesymbionten hos myrerne fra paleo- og basale arter, som har relativ lavt niveau
Recommended publications
  • Spatial Ecology of Leafcutter Ants, Isla Del Cielo Reserve, Barú, Costa Rica
    Research Reports of the Firestone Center for Restoration Ecology v. 1 2005 Spatial Ecology of Leafcutter Ants, Isla del Cielo Reserve, Barú, Costa Rica Christopher Wheeler Pitzer College Summer 2005 I. Introduction There are 38 different species of Leaf-cutting ants restricted to two genera Acromyrmex (24 species) and Atta (14 species). These two genera belong to the tribe of fungus-growing ants called, Attini. Attini are confined to the New World between the latitudes of ~33oN and ~44oS. Though considered a pest, these species of leaf-cutting ants cause damage only in the areas that they are indigenous to (except for a few exceptions) (Lofgren & Meer, 1986). Townsend (1923) reported that in the absence of their control, leaf-cutting ants are capable of affecting 1000 million U.S dollars of damage a year. The damage covers a wide array of industries, damaging pastureland and stock, agricultural and horticultural crops, plantation forests, dried foodstuffs, roads, and the foundations of buildings (Lofgren & Meer, 1986). Leaf-cutting ants express a striking degree of polyphagy. Even in species-rich tropical rain forests, 50% to 77% of the plant species are harvested by leaf-cutting ants (Lofgren & Meer, 1986). Leaf-cutting ants are the dominant herbivore in the neotropics, harvesting an estimated 12-17% of all leaf production in a forest (Perfecto & Vandermeer, 1993). These harvested leaf fragments are brought underground to the ants’ colony where they are used as a medium for fungus. This fungus is the main food source for the whole colony. The spent leaf fragments are then either brought to the surface and deposited onto large nutrient-rich refuse piles, or transported to another chamber underground where they are mixed with excavated earth.
    [Show full text]
  • The Genome of the Leaf-Cutting Ant Acromyrmex Echinatior Suggests Key Adaptations to Advanced Social Life and Fungus Farming
    Downloaded from genome.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Research The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming Sanne Nygaard,1,9,11 Guojie Zhang,2,9 Morten Schiøtt,1,9 Cai Li,2,9 Yannick Wurm,3,4 Haofu Hu,2 Jiajian Zhou,2 Lu Ji,2 Feng Qiu,2 Morten Rasmussen,5 Hailin Pan,2 Frank Hauser,6 Anders Krogh,5,7,8 Cornelis J.P. Grimmelikhuijzen,6 Jun Wang,2,7,10,11 and Jacobus J. Boomsma1,10 1Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; 2BGI-Shenzhen, Shenzhen 518083, China; 3Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; 4Vital-IT Group, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; 5Centre for GeoGenetics, Natural History Museum of Denmark, Øster Voldgade 5-7, 1350 Copenhagen, Denmark; 6Centre for Functional and Comparative Insect Genomics, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark; 7Department of Biology, University of Copenhagen, Copenhagen DK-2200, Denmark; 8Biotech Research and Innovation Center, University of Copenhagen, Copenhagen DK-2200, Denmark We present a high-quality (>100 3depth) Illumina genome sequence of the leaf-cutting ant Acromyrmex echinatior, a model species for symbiosis and reproductive conflict studies. We compare this genome with three previously sequenced genomes of ants from different subfamilies and focus our analyses on aspects of the genome likely to be associated with known evolutionary changes. The first is the specialized fungal diet of A.
    [Show full text]
  • Redalyc.In Vitro Isolation and Identification of Leucoagaricus
    Revista Mexicana de Micología ISSN: 0187-3180 [email protected] Sociedad Mexicana de Micología México Espinoza, César; Zavala Izquierdo, Inés; Couttolenc, Alan; Landa-Cadena, Gandhi; Valenzuela, Jorge; Trigos, Ángel In vitro isolation and identification of Leucoagaricus gongylophorus from Atta mexicana (Hymenoptera: Formicidae) fungal garden Revista Mexicana de Micología, vol. 46, julio-diciembre, 2017, pp. 3-8 Sociedad Mexicana de Micología Xalapa, México Available in: http://www.redalyc.org/articulo.oa?id=88355481002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Scientia Fungorum vol. 46: 3-8 2017 In vitro isolation and identification of Leucoagaricus gongylophorus from Atta mexicana (Hymenoptera: Formicidae) fungal garden Aislamiento in vitro e identificación de Leucoagaricus gongylophorus de un jardín de hongos de Atta mexicana (Hymenoptera:Formicidae) César Espinoza1, Inés Zavala Izquierdo1, Alan Couttolenc1, Gandhi Landa-Cadena1, Jorge Valenzuela2, Ángel Trigos1 1Laboratorio de Alta Tecnología de Xalapa, Universidad Veracruzana. Médicos 5, Unidad del Bosque, 91010, Xalapa, Veracruz, México., 2Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, El Haya, Xalapa, 91070, Veracruz, México. Ángel Trigos, e-mail: [email protected] ABSTRACT Background: The leaf-cutter ant species (Atta and Acromirmex) have a mutualistic relationship with the basidiomycete fungus Leucoa­ garicus gongylophorus (Agaricaceae). This relationship is crucial to the life cycles of both organisms. Objectives: Due to the lack of reports about isolation of the fungus cultivated by the ant Atta mexicana (Formicidae), the objectives of this work were in vitro isolation and identification of L.
    [Show full text]
  • Isolation of the Symbiotic Fungus of Acromyrmex Pubescens and Phylogeny of Leucoagaricus Gongylophorus from Leaf-Cutting Ants
    Saudi Journal of Biological Sciences (2016) xxx, xxx–xxx King Saud University Saudi Journal of Biological Sciences www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE Isolation of the symbiotic fungus of Acromyrmex pubescens and phylogeny of Leucoagaricus gongylophorus from leaf-cutting ants G.A. Bich a,b,*, M.L. Castrillo a,b, L.L. Villalba b, P.D. Zapata b a Microbiology and Immunology Laboratory, Misiones National University, 1375, Mariano Moreno Ave., 3300 Posadas, Misiones, Argentina b Biotechnology Institute of Misiones ‘‘Marı´a Ebe Reca”, 12 Road, km 7, 5, 3300 Misiones, Argentina Received 7 August 2015; revised 21 April 2016; accepted 10 May 2016 KEYWORDS Abstract Leaf-cutting ants live in an obligate symbiosis with a Leucoagaricus species, a basid- ITS; iomycete that serves as a food source to the larvae and queen. The aim of this work was to isolate, Leaf-cutting ants; identify and complete the phylogenetic study of Leucoagaricus gongylophorus species of Acromyr- Leucoagaricus; mex pubescens. Macroscopic and microscopic features were used to identify the fungal symbiont Phylogeny of the ants. The ITS1-5.8S-ITS2 region was used as molecular marker for the molecular identifica- tion and to evaluate the phylogeny within the Leucoagaricus genus. One fungal symbiont associated with A. pubescens was isolated and identified as L. gongylophorus. The phylogeny of Leucoagaricus obtained using the ITS molecular marker revealed three well established monophyletic groups. It was possible to recognize one clade of Leucoagaricus associated with phylogenetically derived leaf-cutting ants (Acromyrmex and Atta). A second clade of free living forms of Leucoagaricus (non-cultivated), and a third clade of Leucoagaricus associated with phylogenetically basal genera of ants were also recognized.
    [Show full text]
  • James K. Wetterer
    James K. Wetterer Wilkes Honors College, Florida Atlantic University 5353 Parkside Drive, Jupiter, FL 33458 Phone: (561) 799-8648; FAX: (561) 799-8602; e-mail: [email protected] EDUCATION UNIVERSITY OF WASHINGTON, Seattle, WA, 9/83 - 8/88 Ph.D., Zoology: Ecology and Evolution; Advisor: Gordon H. Orians. MICHIGAN STATE UNIVERSITY, East Lansing, MI, 9/81 - 9/83 M.S., Zoology: Ecology; Advisors: Earl E. Werner and Donald J. Hall. CORNELL UNIVERSITY, Ithaca, NY, 9/76 - 5/79 A.B., Biology: Ecology and Systematics. UNIVERSITÉ DE PARIS III, France, 1/78 - 5/78 Semester abroad: courses in theater, literature, and history of art. WORK EXPERIENCE FLORIDA ATLANTIC UNIVERSITY, Wilkes Honors College 8/04 - present: Professor 7/98 - 7/04: Associate Professor Teaching: Biodiversity, Principles of Ecology, Behavioral Ecology, Human Ecology, Environmental Studies, Tropical Ecology, Field Biology, Life Science, and Scientific Writing 9/03 - 1/04 & 5/04 - 8/04: Fulbright Scholar; Ants of Trinidad and Tobago COLUMBIA UNIVERSITY, Department of Earth and Environmental Science 7/96 - 6/98: Assistant Professor Teaching: Community Ecology, Behavioral Ecology, and Tropical Ecology WHEATON COLLEGE, Department of Biology 8/94 - 6/96: Visiting Assistant Professor Teaching: General Ecology and Introductory Biology HARVARD UNIVERSITY, Museum of Comparative Zoology 8/91- 6/94: Post-doctoral Fellow; Behavior, ecology, and evolution of fungus-growing ants Advisors: Edward O. Wilson, Naomi Pierce, and Richard Lewontin 9/95 - 1/96: Teaching: Ethology PRINCETON UNIVERSITY, Department of Ecology and Evolutionary Biology 7/89 - 7/91: Research Associate; Ecology and evolution of leaf-cutting ants Advisor: Stephen Hubbell 1/91 - 5/91: Teaching: Tropical Ecology, Introduction to the Scientific Method VANDERBILT UNIVERSITY, Department of Psychology 9/88 - 7/89: Post-doctoral Fellow; Visual psychophysics of fish and horseshoe crabs Advisor: Maureen K.
    [Show full text]
  • Symbiotic Adaptations in the Fungal Cultivar of Leaf-Cutting Ants
    ARTICLE Received 15 Apr 2014 | Accepted 24 Oct 2014 | Published 1 Dec 2014 DOI: 10.1038/ncomms6675 Symbiotic adaptations in the fungal cultivar of leaf-cutting ants Henrik H. De Fine Licht1,w, Jacobus J. Boomsma2 & Anders Tunlid1 Centuries of artificial selection have dramatically improved the yield of human agriculture; however, strong directional selection also occurs in natural symbiotic interactions. Fungus- growing attine ants cultivate basidiomycete fungi for food. One cultivar lineage has evolved inflated hyphal tips (gongylidia) that grow in bundles called staphylae, to specifically feed the ants. Here we show extensive regulation and molecular signals of adaptive evolution in gene trancripts associated with gongylidia biosynthesis, morphogenesis and enzymatic plant cell wall degradation in the leaf-cutting ant cultivar Leucoagaricus gongylophorus. Comparative analysis of staphylae growth morphology and transcriptome-wide expressional and nucleotide divergence indicate that gongylidia provide leaf-cutting ants with essential amino acids and plant-degrading enzymes, and that they may have done so for 20–25 million years without much evolutionary change. These molecular traits and signatures of selection imply that staphylae are highly advanced coevolutionary organs that play pivotal roles in the mutualism between leaf-cutting ants and their fungal cultivars. 1 Microbial Ecology Group, Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden. 2 Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark. w Present Address: Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark. Correspondence and requests for materials should be addressed to H.H.D.F.L.
    [Show full text]
  • Behavioral Strategies of Phorid Parasitoids and Responses of Their Hosts, the Leaf-Cutting Ants
    Journal of Insect Science: Vol. 12 | Article 135 Elizalde and Folgarait Behavioral strategies of phorid parasitoids and responses of their hosts, the leaf-cutting ants Luciana Elizalde1,2a*, Patricia Julia Folgarait1b 1Laboratorio de Hormigas, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina 2Laboratorio Ecotono, Centro Regional Universitario Bariloche, Universidad Nacional del Comahue, Bariloche, Argentina Downloaded from Abstract Host-searching and oviposition behaviors of parasitoids, and defensive responses of the hosts, are fundamental in shaping the ecology of host-parasitoid interactions. In order to uncover key behavioral features for the little known interactions between phorid parasitoids (Diptera: http://jinsectscience.oxfordjournals.org/ Phoridae) and their leaf-cutting ant hosts (Formicidae: Attini), host-related behavioral strategies (i.e., host searching and oviposition) for 13 phorid species, and host defensive responses (i.e., hitchhikers and particular body postures) for 11 ant species, were studied. Data was collected at 14 localities, one of them characterized by its high species richness for this host-parasitoid system. Phorid species showed both great variation and specificity in attacking behaviors. Some chose their hosts using either an ambush or an actively searching strategy, while some species attacked ants on different body parts, and specialized on ants performing different tasks, such as when ants were foraging, removing wastes to refuse piles, or repairing the nest. Combining all by guest on June 6, 2016 the behaviors recorded, most phorid species differed in performance in at least one, making it possible to recognize species in the field through their behavior. Phorid species that attacked hosts with greater activity levels showed overall higher attack rates, although there was no significant correlation between attack rates by most phorid species and ant activity outside the nest while parasitoids were attacking.
    [Show full text]
  • James K. Wetterer
    James K. Wetterer Wilkes Honors College, Florida Atlantic University 5353 Parkside Drive, Jupiter, FL 33458 Phone: (561) 799-8648; FAX: (561) 799-8602; e-mail: [email protected] EDUCATION UNIVERSITY OF WASHINGTON, Seattle, WA, 9/83 - 8/88 Ph.D., Zoology: Ecology and Evolution; Advisor: Gordon H. Orians. MICHIGAN STATE UNIVERSITY, East Lansing, MI, 9/81 - 9/83 M.S., Zoology: Ecology; Advisors: Earl E. Werner and Donald J. Hall. CORNELL UNIVERSITY, Ithaca, NY, 9/76 - 5/79 A.B., Biology: Ecology and Systematics. UNIVERSITÉ DE PARIS III, France, 1/78 - 5/78 Semester abroad: courses in theater, literature, and history of art. WORK EXPERIENCE FLORIDA ATLANTIC UNIVERSITY, Wilkes Honors College 8/04 - present: Professor 7/98 - 7/04: Associate Professor Teaching: Principles of Ecology, Behavioral Ecology, Human Ecology, Environmental Studies, Tropical Ecology, Biodiversity, Life Science, and Scientific Writing 9/03 - 1/04 & 5/04 - 8/04: Fulbright Scholar; Ants of Trinidad and Tobago COLUMBIA UNIVERSITY, Department of Earth and Environmental Science 7/96 - 6/98: Assistant Professor Teaching: Community Ecology, Behavioral Ecology, and Tropical Ecology WHEATON COLLEGE, Department of Biology 8/94 - 6/96: Visiting Assistant Professor Teaching: General Ecology and Introductory Biology HARVARD UNIVERSITY, Museum of Comparative Zoology 8/91- 6/94: Post-doctoral Fellow; Behavior, ecology, and evolution of fungus-growing ants Advisors: Edward O. Wilson, Naomi Pierce, and Richard Lewontin 9/95 - 1/96: Teaching: Ethology PRINCETON UNIVERSITY, Department of Ecology and Evolutionary Biology 7/89 - 7/91: Research Associate; Ecology and evolution of leaf-cutting ants Advisor: Stephen Hubbell 1/91 - 5/91: Teaching: Tropical Ecology, Introduction to the Scientific Method VANDERBILT UNIVERSITY, Department of Psychology 9/88 - 7/89: Post-doctoral Fellow; Visual psychophysics of fish and horseshoe crabs Advisor: Maureen K.
    [Show full text]
  • Population Genetic Signatures of Diffuse Co-Evolution Between Leaf-Cutting Ants and Their Cultivar Fungi
    Molecular Ecology (2006) doi:10.1111/j.l365-294X.2006.03134.x Population genetic signatures of diffuse co-evolution between leaf-cutting ants and their cultivar fungi A. S. MIKHEYEV,*U. G. MUELLER*andJ. J. BOOMSMAt *Section of Integrative Biology, 1 University Station C0930, University of Texas, Austin, TX 78712, USA, ^Institute of Biology, Department of Population Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark Abstract Switching of symbiotic partners pervades most mutualisms, despite mechanisms that appear to enforce partner fidelity. To investigate the interplay of forces binding and dissolving mutualistic pairings, we investigated partner fidelity at the population level in the attine ant-fungal cultivar mutualism. The ants and their cultivars exhibit both broad-scale co-evolution, as well as cultivar switching, with short-term symbiont fidelity maintained by vertical transmission of maternal garden inoculates via dispersing queens and by the elimination of alien cultivar strains. Using microsatellite markers, we genotyped cultivar fungi associated with five co-occurring Panamanian attine ant species, representing the two most derived genera, leaf-cutters Atta and Acromyrmex. Despite the presence of mech- anisms apparently ensuring the cotransmission of symbiont genotypes, different species and genera of ants sometimes shared identical fungus garden genotypes, indicating wide- spread cultivar exchange. The cultivar population was largely unstructured with respect to host ant species, with only 10% of the structure in genetic variance being attributable to partitioning among ant species and genera. Furthermore, despite significant genetic and ecological dissimilarity between Atta and Acromyrmex, generic difference accounted for little, if any, variance in cultivar population structure, suggesting that cultivar exchange dwarfs selective forces that may act to create co-adaptive ant-cultivar combinations.
    [Show full text]
  • Ant–Fungus Species Combinations Engineer Physiological Activity Of
    © 2014. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2014) 217, 2540-2547 doi:10.1242/jeb.098483 RESEARCH ARTICLE Ant–fungus species combinations engineer physiological activity of fungus gardens J. N. Seal1,2,*, M. Schiøtt3 and U. G. Mueller2 ABSTRACT such complexity, the fungus-gardening insects have evolved obligate Fungus-gardening insects are among the most complex organisms macro-symbioses with specific clades of fungi, and use fungal because of their extensive co-evolutionary histories with obligate symbionts essentially as an external digestive organ that allows the fungal symbionts and other microbes. Some fungus-gardening insect insect to thrive on otherwise non-digestible substrates, such as lineages share fungal symbionts with other members of their lineage structural carbohydrates of plants (e.g. cellulose) (Aanen et al., and thus exhibit diffuse co-evolutionary relationships, while others 2002; Aylward et al., 2012a; Aylward et al., 2012b; Bacci et al., exhibit little or no symbiont sharing, resulting in host–fungus fidelity. 1995; Farrell et al., 2001; De Fine Licht and Biedermann, 2012; The mechanisms that maintain this symbiont fidelity are currently Martin, 1987a; Mueller et al., 2005). One of the most striking unknown. Prior work suggested that derived leaf-cutting ants in the attributes of these symbioses is the degree of physiological genus Atta interact synergistically with leaf-cutter fungi (Attamyces) integration: the insect host functions as a distributor of fungal by exhibiting higher fungal growth rates and enzymatic activities than enzymes, which digest plant fibers external to the insect’s body when growing a fungus from the sister-clade to Attamyces (so-called (Aanen and Eggleton, 2005; Aylward et al., 2012b; De Fine Licht ‘Trachymyces’), grown primarily by the non-leaf cutting and Biedermann, 2012; De Fine Licht et al., 2013; Martin, 1987b; Trachymyrmex ants that form, correspondingly, the sister-clade to Schiøtt et al., 2010).
    [Show full text]
  • Generalized Antifungal Activity and 454-Screening of Pseudonocardia and Amycolatopsis Bacteria in Nests of Fungus-Growing Ants
    Generalized antifungal activity and 454-screening SEE COMMENTARY of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants Ruchira Sena,1, Heather D. Ishaka, Dora Estradaa, Scot E. Dowdb, Eunki Honga, and Ulrich G. Muellera,1 aSection of Integrative Biology, University of Texas, Austin, TX 78712; and bMedical Biofilm Research Institute, 4321 Marsha Sharp Freeway, Lubbock, TX 79407 Edited by Raghavendra Gadagkar, Indian Institute of Science, Bangalore, India, and approved August 14, 2009 (received for review May 1, 2009) In many host-microbe mutualisms, hosts use beneficial metabolites origin (12–14). Many of the ant-associated Pseudonocardia species supplied by microbial symbionts. Fungus-growing (attine) ants are show antibiotic activity in vitro against Escovopsis (13–15). A thought to form such a mutualism with Pseudonocardia bacteria to diversity of actinomycete bacteria including Pseudonocardia also derive antibiotics that specifically suppress the coevolving pathogen occur in the ant gardens, in the soil surrounding attine nests, and Escovopsis, which infects the ants’ fungal gardens and reduces possibly in the substrate used by the ants for fungiculture (16, 17). growth. Here we test 4 key assumptions of this Pseudonocardia- The prevailing view of attine actinomycete-Escovopsis antago- Escovopsis coevolution model. Culture-dependent and culture- nism is a coevolutionary arms race between antibiotic-producing independent (tag-encoded 454-pyrosequencing) surveys reveal that Pseudonocardia and Escovopsis parasites (5, 18–22). Attine ants are several Pseudonocardia species and occasionally Amycolatopsis (a thought to use their integumental actinomycetes to specifically close relative of Pseudonocardia) co-occur on workers from a single combat Escovopsis parasites, which fail to evolve effective resistance nest, contradicting the assumption of a single pseudonocardiaceous against Pseudonocardia because of some unknown disadvantage strain per nest.
    [Show full text]
  • Acromyrmex Ameliae Sp. N. (Hymenoptera: Formicidae): a New Social Parasite of Leaf-Cutting Ants in Brazil
    © 2007 The Authors Insect Science (2007) 14, 251-257 Acromyrmex ameliae new species 251 Journal compilation © Institute of Zoology, Chinese Academy of Sciences Acromyrmex ameliae sp. n. (Hymenoptera: Formicidae): A new social parasite of leaf-cutting ants in Brazil DANIVAL JOSÉ DE SOUZA1,3, ILKA MARIA FERNANDES SOARES2 and TEREZINHA MARIA CASTRO DELLA LUCIA2 1Institut de Recherche sur la Biologie de l’Insecte, Université François Rabelais, Tours, France, 2Departamento de Biologia Animal and 3Laboratório de Ecologia de Comunidades, Departamento de Biologia Geral, Universidade Federal de Viçosa, MG, 36570-000, Brazil Abstract The fungus-growing ants (Tribe Attini) are a New World group of > 200 species, all obligate symbionts with a fungus they use for food. Four attine taxa are known to be social parasites of other attines. Acromyrmex (Pseudoatta) argentina argentina and Acromyrmex (Pseudoatta) argentina platensis (parasites of Acromyrmex lundi), and Acromyrmex sp. (a parasite of Acromyrmex rugosus) produce no worker caste. In contrast, the recently discovered Acromyrmex insinuator (a parasite of Acromyrmex echinatior) does produce workers. Here, we describe a new species, Acromyrmex ameliae, a social parasite of Acromyrmex subterraneus subterraneus and Acromyrmex subterraneus brunneus in Minas Gerais, Brasil. Like A. insinuator, it produces workers and appears to be closely related to its hosts. Similar social parasites may be fairly common in the fungus-growing ants, but overlooked due to the close resemblance between parasite and host workers. Key words Acromyrmex, leaf-cutting ants, social evolution, social parasitism DOI 10.1111/j.1744-7917.2007.00151.x Introduction species can coexist as social parasites in attine colonies, consuming the fungus garden (Brandão, 1990; Adams The fungus-growing ants (Tribe Attini) are a New World et al., 2000).
    [Show full text]