Isolation and Characterization of a Metsulfuron-Methyl Degrading Bacterium Methylopila Sp

Total Page:16

File Type:pdf, Size:1020Kb

Isolation and Characterization of a Metsulfuron-Methyl Degrading Bacterium Methylopila Sp See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/223473143 Isolation and characterization of a metsulfuron-methyl degrading bacterium Methylopila sp. S113 Article in International Biodeterioration & Biodegradation · December 2007 DOI: 10.1016/j.ibiod.2007.02.005 CITATIONS READS 37 201 6 authors, including: Xing Huang Jian He Nanjing Agricultural University 236 PUBLICATIONS 3,700 CITATIONS 61 PUBLICATIONS 776 CITATIONS SEE PROFILE SEE PROFILE Ji-Quan Sun Inner Mongolia University 57 PUBLICATIONS 572 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Xenobiotic compound degradation View project Bacterial resource of alkaline-saline soil View project All content following this page was uploaded by Xing Huang on 04 March 2020. The user has requested enhancement of the downloaded file. ARTICLE IN PRESS International Biodeterioration & Biodegradation 60 (2007) 152–158 www.elsevier.com/locate/ibiod Isolation and characterization of a metsulfuron-methyl degrading bacterium Methylopila sp. S113 Xing Huang, Jian He, Jiquan Sun, Jijie Pan, Xiaofei Sun, Shunpeng Lià Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China Received 14 September 2006; received in revised form 29 January 2007; accepted 12 February 2007 Available online 12 April 2007 Abstract The bacterium S113, capable of degrading metsulfuron-methyl, was isolated from metsulfuron-methyl-treated soil. The isolate was identified as Methylopila sp. according to its phenotypic features and 16S rDNA phylogenetic analysis. This strain could utilize metsulfuron-methyl as the sole carbon or nitrogen source. More than 97% of the 50 mg lÀ1 initially added metsulfuron-methyl was depleted after 72 h when a culture was inoculated with 104 cells lÀ1 of strain S113. This strain could also degrade bensulfuron-methyl, thifensulfuron-methyl and ethametsulfuron-methyl. Cell-free extract of S113 was able to metabolize metsulfuron-methyl and other sulfonylurea herbicides. The metsulfuron-methyl degrading enzyme(s) was(ere) constitutively expressed and was(ere) not induced by metsulfuron-methyl. Inoculation of strain S113 into soil was found to promote the removal of metsulfuron-methyl in soil. r 2007 Elsevier Ltd. All rights reserved. Keywords: Sulfonylurea herbicides; Metsulfuron-methyl; Biodegradation; Methylopila sp. 1. Introduction processes in soil. The fact that sulfonylureas removal was faster and more effective in non-sterile soil compared with Sulfonylurea herbicides belong to a class of chemicals sterile soil suggested the involvement of bacterial degrading used for weed control. They are used on a wide range of activities in soil (Walker et al., 1989; Ismail and Lee, 1995; crops such as rice, wheat, barley, soybean, cotton, potato Li et al., 1999). Few reports on microbial degradation and corn (Brown, 1990). The target enzyme of sulfonylurea of sulfonylurea herbicides have been published so far. herbicides is acetolactate synthase (ALS), which catalyzes Zanardini et al. (2002) isolated Pseudomonas fluorescens the first common reaction in the biosynthesis of the strain B2 capable of co-metabolically degrading approxi- branched amino acids valine, leucine and isoleucine (Blair mately 21% of the initially added 100 mg lÀ1 metsulfuron- and Martin, 1988; Brown, 1990). Sulfonylurea herbicides methyl within 2 weeks. Boschin et al. (2003) reported that were introduced into China in 1989, and soon became 33% of metsulfuron-methyl (100 mg lÀ1) was degraded by a among the most frequently used herbicides because of their strain of Aspergillus niger within 28 days incubation under high herbicidal activity at low application rates. Some of laboratory conditions. Yu et al. (2005) obtained a fungal the sulfonylurea herbicides, such as metsulfuron-methyl, isolate, MD, capable of utilizing metsulfuron-methyl as the chlorsulfuron and ethametsulfuron-methyl, persist for a sole carbon and energy source. In this case, 79% of the long time in soil, and the residues in soil can significantly added metsulfuron-methyl at concentration of 10 mg lÀ1 damage rotation crops (Moyer et al., 1990; Kotoula et al., in mineral salts medium was degraded within 7 days. 1993; Flaburiari and Kristen, 1996; Nicholls and Evans, Brevibacterium sp. BH isolated by Zhu et al. (2005) can 1998). Chemical hydrolysis and microbial metabolism remove 80% of an initial 200 mg lÀ1 bensulfuronmethyl in represent the major sulfonylurea herbicides removal M9 medium. The objective of this study was to isolate new bacteria ÃCorresponding author. Tel./fax: 86 25 84396314. that can potentially degrade metsulfuron-methyl (methyl E-mail address: [email protected] (S. Li). 2-[[(4-methoxy-6-methyl-1,3,5-triazine-2-yl) aminocarbonyl] 0964-8305/$ - see front matter r 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.ibiod.2007.02.005 ARTICLE IN PRESS X. Huang et al. / International Biodeterioration & Biodegradation 60 (2007) 152–158 153 aminosulfonyl] benzoate). We described here the isolation www.ncbi.nlm.nih.gov/BLAST/). The neighbor-joining (NJ) (Saitou and and characteristics of Methylopila sp. S113, a new isolate Nei, 1987) method (implemented in MEGA2.0, Kumar et al., 2001) was used for phylogenetic analysis with the model of Kimura-2-Parameter. capable of utilizing metsulfuron-methyl as the sole carbon The robustness of the tree topology was assessed by bootstrap analysis, or nitrogen source. Experiments were also conducted to with 1000 resembling replicates. evaluate the potential of this strain to remove metsulfuron- methyl in soil. 2.4. Removal of metsulfuron-methyl and other sulfonylurea herbicide by S113 in mineral salts medium 2. Materials and methods Metsulfuron-methyl, thifensulfuron-methyl, bensulfuron-methyl, etha- metsulfuron-methyl, chlorsulfuron, and pyrazosulfuron-ethyl were se- 2.1. Chemicals and soil lected as substrates. Strain S113 grown in TY liquid medium À1 À1 (bactotryptone 5 g l , yeast extract 3 g l , CaCl2 0.6 mM, pH7.2) was Soil sample was collected from the surface layer (0–10 cm) from an centrifuged, washed, and suspended in MSM medium. After the optical agricultural field located in the city of Yangzhou, Jiangsu, China. The soil density at 600 nm (OD600) had been adjusted to 1.0, 1 ml bacterial had been exposed to sulfonylurea herbicides during 10 years. Metsulfuron- inoculum (corresponding to 10À6 cells) was inoculated into 100 ml MSM methyl (98.0% purity), thifensulfuron-methyl (96.0% purity), bensulfur- medium with the selected herbicide (50 mg lÀ1) as the sole carbon source. on-methyl (95.0% purity), ethametsulfuron-methyl (97.0% purity), All cultures were incubated at 30 1C and 150 rpm on a rotary shaker. chlorsulfuron (99.0% purity), and pyrazosulfuron-ethyl (97.0% purity) Samples were collected from the cultures at an interval of 12 h and the were purchased from Changzhou Agrochemical factory, Changzhou, concentration of the selected herbicide was determined by HPLC Jiangsu Province, China. Methanol was chromatographic pure grade. following the protocol described below. Each treatment was performed Other chemicals used were analytical grade. in three replicates, and the control experiment without microorganism was carried out under the same conditions. 2.2. Enrichment and isolation 2.5. Removal of metsulfuron-methyl and other sulfonylurea The mineral salt medium (MSM) had the following composition (per herbicide by cell-free extracts liter): NaCl, 1.0 g; NH4NO3, 1.0 g; K2HPO4, 1.5 g; KH2PO4, 0.5 g; MgSO4 Á 7H2O, 0.1 g; FeSO4, 0.025 g; trace element solution 10 ml (Ferrari Cells in TY liquid medium grown to the stationary phase were À1 et al.,1994); pH7.0. NH4NO3 was removed and glucose (1.0 g l ) was harvested by centrifugation (12,000g, 10 min) at 4 1C, washed twice with supplemented when metsulfuron-methyl was used as the sole nitrogen 10 mM sodium phosphate buffer (pH 7.2), and resuspended in the same source. About 1.0 g of the soil sample was added to an Erlenmeyer flask buffer at a concentration equivalent to an OD600 of 5.0. This cell (250 ml) containing 100 ml MSM with the addition of metsulfuron-methyl suspension was passed three times through a chilled French pressure cell (50 mg lÀ1) as the sole carbon source and incubated at 30 1C on a rotary (15,000 lb inÀ2). Cell debris and unbroken cells were removed by shaker at 150 rpm for about 7 days. About 5 ml of enrichment culture was centrifugation (30,000g, 45 min) at 4 1C. The supernatant was passed then subcultured five times into fresh MSM containing 50 mg lÀ1 through a cellulose acetate filter with a pore size of 0.2 mm and metsulfuron-methyl every 7 days. Metsulfuron-methyl removal was immediately stored at À70 1C. measured by HPLC in the culture from the fifth transfer. The enrichment The assay to quantify removal of metsulfuron and other herbicides by capable of degrading metsulfuron-methyl was serially diluted in MSM, cell-free extract was performed in 0.2 M sodium phosphate buffer. Each and transferred to fresh MSM containing 50 mg lÀ1 metsulfuron-methyl. reaction vial comprised 20 ml of the cell-free extract prepared as described The loss of metsulfuron-methyl was again measured over time. The above in 5 ml of 0.2 M sodium phosphate buffer (pH 7.2) containing highest dilution that still exhibited degradation capability for metsulfuron- 50 mg lÀ1 of the tested herbicide. The reaction medium was incubated at methyl was spread onto minimal salts agar plate containing 50 mg lÀ1 30 1C. At regular intervals, the reaction was stopped by the addition of metsulfuron-methyl. After incubation at 30 1C for 3 days, the colonies acetonitrile. The concentration of the herbicide remaining in the reaction were selected to verify their degrading capabilities. One strain, designated vial was measured by HPLC following the protocol described below. S113, was selected for further investigation. Control samples containing boiled extract were treated and analyzed in the same way.
Recommended publications
  • Supplementary Material 16S Rrna Clone Library
    Kip et al. Biogeosciences (bg-2011-334) Supplementary Material 16S rRNA clone library To investigate the total bacterial community a clone library based on the 16S rRNA gene was performed of the pool Sphagnum mosses from Andorra peat, next to S. magellanicum some S. falcatulum was present in this pool and both these species were analysed. Both 16S clone libraries showed the presence of Alphaproteobacteria (17%), Verrucomicrobia (13%) and Gammaproteobacteria (2%) and since the distribution of bacterial genera among the two species was comparable an average was made. In total a 180 clones were sequenced and analyzed for the phylogenetic trees see Fig. A1 and A2 The 16S clone libraries showed a very diverse set of bacteria to be present inside or on Sphagnum mosses. Compared to other studies the microbial community in Sphagnum peat soils (Dedysh et al., 2006; Kulichevskaya et al., 2007a; Opelt and Berg, 2004) is comparable to the microbial community found here, inside and attached on the Sphagnum mosses of the Patagonian peatlands. Most of the clones showed sequence similarity to isolates or environmental samples originating from peat ecosystems, of which most of them originate from Siberian acidic peat bogs. This indicated that similar bacterial communities can be found in peatlands in the Northern and Southern hemisphere implying there is no big geographical difference in microbial diversity in peat bogs. Four out of five classes of Proteobacteria were present in the 16S rRNA clone library; Alfa-, Beta-, Gamma and Deltaproteobacteria. 42 % of the clones belonging to the Alphaproteobacteria showed a 96-97% to Acidophaera rubrifaciens, a member of the Rhodospirullales an acidophilic bacteriochlorophyll-producing bacterium isolated from acidic hotsprings and mine drainage (Hiraishi et al., 2000).
    [Show full text]
  • Large Scale Biogeography and Environmental Regulation of 2 Methanotrophic Bacteria Across Boreal Inland Waters
    1 Large scale biogeography and environmental regulation of 2 methanotrophic bacteria across boreal inland waters 3 running title : Methanotrophs in boreal inland waters 4 Sophie Crevecoeura,†, Clara Ruiz-Gonzálezb, Yves T. Prairiea and Paul A. del Giorgioa 5 aGroupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), 6 Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada 7 bDepartment of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, 8 Catalunya, Spain 9 Correspondence: Sophie Crevecoeur, Canada Centre for Inland Waters, Water Science and Technology - 10 Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, 11 Burlington, Ontario, Canada, e-mail: [email protected] 12 † Current address: Canada Centre for Inland Waters, Water Science and Technology - Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Burlington, Ontario, Canada 1 13 Abstract 14 Aerobic methanotrophic bacteria (methanotrophs) use methane as a source of carbon and energy, thereby 15 mitigating net methane emissions from natural sources. Methanotrophs represent a widespread and 16 phylogenetically complex guild, yet the biogeography of this functional group and the factors that explain 17 the taxonomic structure of the methanotrophic assemblage are still poorly understood. Here we used high 18 throughput sequencing of the 16S rRNA gene of the bacterial community to study the methanotrophic 19 community composition and the environmental factors that influence their distribution and relative 20 abundance in a wide range of freshwater habitats, including lakes, streams and rivers across the boreal 21 landscape. Within one region, soil and soil water samples were additionally taken from the surrounding 22 watersheds in order to cover the full terrestrial-aquatic continuum.
    [Show full text]
  • The Methanol Dehydrogenase Gene, Mxaf, As a Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments
    The Methanol Dehydrogenase Gene, mxaF, as a Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lau, Evan, Meredith C. Fisher, Paul A. Steudler, and Colleen Marie Cavanaugh. 2013. The methanol dehydrogenase gene, mxaF, as a functional and phylogenetic marker for proteobacterial methanotrophs in natural environments. PLoS ONE 8(2): e56993. Published Version doi:10.1371/journal.pone.0056993 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11807572 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP The Methanol Dehydrogenase Gene, mxaF,asa Functional and Phylogenetic Marker for Proteobacterial Methanotrophs in Natural Environments Evan Lau1,2*, Meredith C. Fisher2, Paul A. Steudler3, Colleen M. Cavanaugh2 1 Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, West Virginia, United States of America, 2 Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America, 3 The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America Abstract The mxaF gene, coding for the large (a) subunit of methanol dehydrogenase, is highly conserved among distantly related methylotrophic species in the Alpha-, Beta- and Gammaproteobacteria. It is ubiquitous in methanotrophs, in contrast to other methanotroph-specific genes such as the pmoA and mmoX genes, which are absent in some methanotrophic proteobacterial genera.
    [Show full text]
  • Evolution of Methanotrophy in the Beijerinckiaceae&Mdash
    The ISME Journal (2014) 8, 369–382 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE The (d)evolution of methanotrophy in the Beijerinckiaceae—a comparative genomics analysis Ivica Tamas1, Angela V Smirnova1, Zhiguo He1,2 and Peter F Dunfield1 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada and 2Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China The alphaproteobacterial family Beijerinckiaceae contains generalists that grow on a wide range of substrates, and specialists that grow only on methane and methanol. We investigated the evolution of this family by comparing the genomes of the generalist organotroph Beijerinckia indica, the facultative methanotroph Methylocella silvestris and the obligate methanotroph Methylocapsa acidiphila. Highly resolved phylogenetic construction based on universally conserved genes demonstrated that the Beijerinckiaceae forms a monophyletic cluster with the Methylocystaceae, the only other family of alphaproteobacterial methanotrophs. Phylogenetic analyses also demonstrated a vertical inheritance pattern of methanotrophy and methylotrophy genes within these families. Conversely, many lateral gene transfer (LGT) events were detected for genes encoding carbohydrate transport and metabolism, energy production and conversion, and transcriptional regulation in the genome of B. indica, suggesting that it has recently acquired these genes. A key difference between the generalist B. indica and its specialist methanotrophic relatives was an abundance of transporter elements, particularly periplasmic-binding proteins and major facilitator transporters. The most parsimonious scenario for the evolution of methanotrophy in the Alphaproteobacteria is that it occurred only once, when a methylotroph acquired methane monooxygenases (MMOs) via LGT.
    [Show full text]
  • Methylobacterium Populi Sp. Nov., a Novel Aerobic, Pink-Pigmented, Facultatively Methylotrophic, Methane-Utilizing Bacterium
    International Journal of Systematic and Evolutionary Microbiology (2004), 54, 1191–1196 DOI 10.1099/ijs.0.02796-0 Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides6nigra DN34) Benoit Van Aken,1 Caroline M. Peres,23 Sharon Lafferty Doty,3 Jong Moon Yoon1 and Jerald L. Schnoor1 Correspondence 1Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Benoit Van Aken Center, Iowa City, IA 52242, USA bvanaken@engineering. 2Department of Microbiology, University of Iowa, 3-432 Bowen Science Building, Iowa City, uiowa.edu IA 52242, USA 3Department of Biochemistry, Box 357350, University of Washington, Seattle, WA 98195, USA A pink-pigmented, aerobic, facultatively methylotrophic bacterium, strain BJ001T, was isolated from internal poplar tissues (Populus deltoides6nigra DN34) and identified as a member of the genus Methylobacterium. Phylogenetic analyses showed that strain BJ001T is related to Methylobacterium thiocyanatum, Methylobacterium extorquens, Methylobacterium zatmanii and Methylobacterium rhodesianum. However, strain BJ001T differed from these species in its carbon-source utilization pattern, particularly its use of methane as the sole source of carbon and energy, an ability that is shared with only one other member of the genus, Methylobacterium organophilum. In addition, strain BJ001T is the only member of the genus Methylobacterium to be described as an endophyte of poplar trees. On the
    [Show full text]
  • Title Stimulation of Methanotrophic Growth in Cocultures by Cobalamin
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Stimulation of methanotrophic growth in cocultures by Title cobalamin excreted by rhizobia. Author(s) Iguchi, Hiroyuki; Yurimoto, Hiroya; Sakai, Yasuyoshi Applied and environmental microbiology (2011), 77(24): 8509- Citation 8515 Issue Date 2011-12 URL http://hdl.handle.net/2433/152321 Right © 2011, American Society for Microbiology. Type Journal Article Textversion author Kyoto University 1 Stimulation of methanotrophic growth in co-cultures by 2 cobalamin excreted by rhizobia 3 4 Hiroyuki Iguchi,1 Hiroya Yurimoto,1 and Yasuyoshi Sakai1,2* 5 6 Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto 7 University, Kyoto,1 and Research Unit for Physiological Chemistry, the 8 Center for the Promotion of Interdisciplinary Education and Research, 9 Kyoto,2 Japan 10 11 Corresponding author: Yasuyoshi Sakai, Ph.D. Professor 12 Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto 13 University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan. 14 Tel: +81 75 753 6385. Fax: +81 75 753 6454 15 E-mail: [email protected] 16 17 Running title: Cobalamin stimulates methanotrophic growth 18 19 1 20 ABSTRACT 21 Methanotrophs play a key role in the global carbon cycle, in which they 22 affect methane emissions and help to sustain diverse microbial communities 23 through the conversion of methane to organic compounds. To investigate the 24 microbial interactions that caused positive effects on the methanotroph, co-cultures 25 were constructed using Methylovulum miyakonense HT12 and each of nine 26 non-methanotrophic bacteria, which were isolated from a methane-utilizing 27 microbial consortium culture established from forest soil.
    [Show full text]
  • Microbial Life of the Deep Saline Biosphere
    I S S N 2 3 47-6893 Volume 9 Number4 Journal of Advances in Biology Microbial life of the deep saline biosphere Weronika Goraj The John Paul II Catholic University of Lublin, Institute of Biotechnology, Department of Biochemistry and Environmental Chemistry Str. Konstantynów 1I, 20-708 Lublin, Poland [email protected] Zofia Stępniewska The John Paul II Catholic University of Lublin, Institute of Biotechnology, Department of Biochemistry and Environmental Chemistry Str. Konstantynów 1I, 20-708 Lublin, Poland [email protected] ABSTRACT Transfer microbiological studies under the surface of the Earth to exploration of deep intraterrestrial microbial life is important to allows exceeding the current framework of science. Microbial life is determined by physical, geochemical, and biological factors such as the availability of liquid water, energy, nutrients, and trace elements. Additionally, conditions including ambient temperature, pH, salinity, and pressure interact with biological systems to define the space for life. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Characterizing the bacterial community composition and recognition of diversity of microorganisms may play an important role in biogeochemical carbon cycling and potential biotechnological application of these microorganisms. Indexing terms/Keywords salinity environment, microorganisms, halophile, methanotrophs DEEP SALINE BIOSPHERE Under the earth, there are many factors limiting microbial life such as low oxygen levels, water and nutrient availability. With an increase in depth, photosynthetically derived organic carbon becomes limited and hardly accessible [49]. Extreme conditions are also associated with pressure, temperature, pH, salinity. Despite this, the deep subsurface microbial communities are very diverse, spanning all domains of life [3, 9, 10, 41].
    [Show full text]
  • Общая Биология 79 Общая Биология Удк 579.841:577.21
    Общая биология ОБЩАЯ БИОЛОГИЯ УДК 579.841:577.21 БИОГЕОГРАФИЯ И МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЙ ПОЛИМОРФИЗМ БАКТЕРИЙ РОДА METHYLOPILA, ВЫДЕЛЕННЫХ ИЗ РАЗЛИЧНЫХ КЛИМАТИЧЕСКИХ ЗОН Н.В. Агафонова, Е.Н. Капаруллина, Н.В. Доронина Впервые обнаружены особенности биогеографического распространения ме- тилотрофных бактерий рода Methylopila. Региональная дифференциация выявлена у типовых представителей рода Methylopila: штаммы, выделенные из регионов со сход- ными климатическими условиями, объединены в отдельные филогруппы на основании сравнения нуклеотидных последовательностей гена 16S рРНК. Кроме того, образова- ние аналогичных кластеров в результате филогенетического и фингерпринт (RAPD- PCR) анализов свидетельствует о внутривидовом молекулярно-генетическом поли- морфизме штаммов, принадлежащих к виду M. oligotropha, выделенных из различных природно-климатических регионов. Ключевые слова: метилотрофные бактерии, Methylopila, Methylopila oli- gotropha, молекулярно-генетический полиморфизм, биогеография Род Methylopila, впервые описанный Дорониной с соавторами [1], принадлежит семейству Methylocystaceae [2] порядка Rhizobiales [3]. Представители этого рода являются строго аэробными, грамотрицательными, факультативными метилотрофными бактериями, способными использовать метанол и метиламин в качестве источников углерода и энергии, реализуют сериновый путь С1-метаболизма [1, 4, 5]. В настоящее время валидно описаны следующие виды рода Methylopila (http://www.bacterio.net/methylopila.html): M. capsulata IM1T [1], M. jiangsuensis JZL-4T [5], M. musalis MUSAT
    [Show full text]
  • B.CCH.1013 Final Report
    final report Project code: B.CCH.1013 Prepared by: Damien Finn, Diane Ouwerkerk, Athol Klieve The University of Queensland and Department of Employment, Economic Development and Innovation Date published: September 2012 PUBLISHED BY Meat & Livestock Australia Limited Locked Bag 991 NORTH SYDNEY NSW 2059 Methanotrophs from natural ecosystems as biocontrol agents for ruminant methane emissions Meat & Livestock Australia acknowledges the matching funds provided by the Australian Government to support the research and development detailed in this publication. This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA. B.CCH.1013 Final Report 1 Abstract In ruminant cattle, the anaerobic fermentation of ingested plant biomass results in the production of methane (CH4). This CH4 is subsequently eructated to the environment, where it acts as a potent greenhouse gas and is one of the leading sources of anthropogenic CH4 in Australia. Methane oxidising microorganisms are an important environmental sink for CH4; however the possibility that methanotrophs are native to the rumen has received little attention. This project aimed to characterise methanotrophs from a range of environments, and to subsequently determine the metabolic activity of these microorganisms under in vitro rumen-like conditions. This study is the first to characterise rumen methanotrophs using molecular methodology.
    [Show full text]
  • Application for Approval to Import Into Containment Any New Organism That
    ER-AN-02N 10/02 Application for approval to import into FORM 2N containment any new organism that is not genetically modified, under Section 40 of the Page 1 Hazardous Substances and New Organisms Act 1996 FORM NO2N Application for approval to IMPORT INTO CONTAINMENT ANY NEW ORGANISM THAT IS NOT GENETICALLY MODIFIED under section 40 of the Hazardous Substances and New Organisms Act 1996 Application Title: Importation of extremophilic microorganisms from geothermal sites for research purposes Applicant Organisation: Institute of Geological & Nuclear Sciences ERMA Office use only Application Code: Formally received:____/____/____ ERMA NZ Contact: Initial Fee Paid: $ Application Status: ER-AN-02N 10/02 Application for approval to import into FORM 2N containment any new organism that is not genetically modified, under Section 40 of the Page 2 Hazardous Substances and New Organisms Act 1996 IMPORTANT 1. An associated User Guide is available for this form. You should read the User Guide before completing this form. If you need further guidance in completing this form please contact ERMA New Zealand. 2. This application form covers importation into containment of any new organism that is not genetically modified, under section 40 of the Act. 3. If you are making an application to import into containment a genetically modified organism you should complete Form NO2G, instead of this form (Form NO2N). 4. This form, together with form NO2G, replaces all previous versions of Form 2. Older versions should not now be used. You should periodically check with ERMA New Zealand or on the ERMA New Zealand web site for new versions of this form.
    [Show full text]
  • Biological Conversion Process of Methane Into Methanol Using Mixed Culture Methanotrophic Bacteria Enriched from Activated Sludge System
    BIOLOGICAL CONVERSION PROCESS OF METHANE INTO METHANOL USING MIXED CULTURE METHANOTROPHIC BACTERIA ENRICHED FROM ACTIVATED SLUDGE SYSTEM Ahmed Mohamed AlSayed Mahmoud A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE GRADUATE PROGRAM IN CIVIL ENGINEERING YORK UNIVERSITY, TORONTO, ONTARIO AUGUST 2017 © Ahmed AlSayed, 2017 Abstract Wastewater treatment plants contribute to the global warming phenomena not only by GHG emissions, but also, by consuming enormous amount of fossil fuel based energy. Therefore, methane bio-hydroxylation has attracted the attention as methanol is an efficient substitute for methane (GHG) due to its transportability and higher energy yield. This work is destined to investigate and optimize the factors affecting the microbial activity within methane bio-hydroxylation system using type I methanotrophs enriched from activated sludge system. The optimization resulted in a notable enhancement of the growth kinetics. The -1 attained maximum specific growth rate (µmax) (0.358 hr ) and maximum specific methane -1 biodegradation rate (qmax) (0.605 g-CH4,Total/g-DCW/hr ) were the highest reported in mixed cultures. Furthermore, the maximum methanol productivity achieved is comparable with pure cultures and equal to 2115±81 mg/L/day. Whereas, methanol concentration of 485±21 mg/L was attained which is two times higher than the reported using mixed culture. ii Dedication " Bountiful is your life, full and complete. Or so you think, until someone comes along and makes you realize what you have been missing all this time. Like a mirror that reflects what is absent rather than present, he shows you the void in your soul—the void you have resisted seeing.
    [Show full text]
  • Reduced Methane Oxidizing Activity by Sediment Methanotrophs in Shallow Coastal Zones with High Methane Emissions
    Reduced methane oxidizing activity by sediment methanotrophs in shallow coastal zones with high methane emissions Elias Broman ( [email protected] ) Stockholm University https://orcid.org/0000-0001-9005-5168 Xiaole Sun Stockholm University Christian Stranne Stockholm University Marco G Salgado Stockholm University Stefano Bonaglia Stockholm University Marc Geibel Stockholm University Alf Norkko University of Helsinki Christoph Humborg Stockholm University Francisco J.A Nascimento Stockholm University Research Keywords: oceanic methane emissions, coastal zone, sediment methanotrophs Posted Date: February 13th, 2020 DOI: https://doi.org/10.21203/rs.2.17360/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on July 7th, 2020. See the published version at https://doi.org/10.3389/fmicb.2020.01536. Page 1/32 Abstract Background Coastal zones are transitional areas between land and sea where large amounts of organic and inorganic carbon compounds are recycled by microbes. Especially shallow zones near land have been shown to be the main source for oceanic methane (CH4) emissions. Water depth has been predicted as the best explanatory variable, which is related to CH4 ebullition, but exactly how sediment methanotrophic bacteria mediates these emissions along water depth is unknown. Here, we investigated the activity of methanotrophs in the sediment of shallow coastal zones with high CH4 emissions within a depth gradient from 10–45 m. Field sampling consisted of collecting sediment slices from eight stations along a coastal gradient (0–4 km from land) in the coastal Baltic Sea. We combined real-time measurements of surface water CH4 concentrations, acoustic detection of CH4 seeps in the bottom water, and sediment DNA plus RNA sequencing.
    [Show full text]