Biology 230W Euglena Protocol

Total Page:16

File Type:pdf, Size:1020Kb

Biology 230W Euglena Protocol JSM090711 ARE CHLOROPLASTS DERIVED FROM PROKARYOTES? THE EFFECT OF STREPTOMYOCIN ON BLEACHING THE CHLOROPLAST SYSTEM OF Euglena gracilis Jacqueline S. McLaughlin and Missy Coyle Department of Biology, Penn State Lehigh Valley Biology 230W, Fall 2011 September 7, 2011 Purpose: Euglena are unicellular organisms that belong to the Kingdom Protista. Euglena are autotrophic under some conditions and heterotrophic under other conditions. For example, when grown in light and viewed under a microscope Euglena is green as a result of chlorophyll in its chloroplasts, which is used for sugar production during photosynthesis. In the absence of light, Euglena loses its chlorophyll and vigorously consumes food such as bacteria from its habitat. There is substantial evidence from research to support endosymbiosis – the theory that mitochondria and plastids, including chloroplasts originated as prokaryotic cells engulfed by an ancestral eukaryotic cell. The engulfed cell and its host cell then evolved into a single organism. The discovery of specific chloroplast DNA (Brawermann & Eisenstadt, 1964; Edelman, Schiff & Epstein, 1965) and the presence in chloroplasts of 70S ribosomes which otherwise are found only in mitochondria and in prokaryotic microorganisms (Boardman, Francki & Wildman, 1965; Kuntzel & Noll, 1967) exemplify some of this evidence. Additionally, these 70S ribosomes have been found to be different from the 80S ribosomes which are found in the cytoplasm of Euglena and all other plants and animals not only in their sedimentation coefficient, but also in their composition of rRNA and protein (Taylor, Glasow & Storck, 1966) and submicroscopic architecture (Ris & Plaut, 1962). Classic experiments on Euglena to further support endosymbiosis as the explanation of the chloroplast is the finding that antibiotics “bleach” the chloroplast system of Euglena gracilis without significantly inhibiting cell division or viability of the cell. The work herein sets out to replicate the work of Ebinger et al. (1969) that found that streptomycin (SM) at concentrations of 10 ug/ml, 100 ug/ml, and 500 ug/ml successfully bleached colonies of E. gracilis after a five to six day period of cultivation. Materials: Euglena gracilis cultures (Carolina Biological, or similar); Euglena media (for stock culture); Pen-strep 10,000 units (mg)/mL (Hyclone SV30010); Syracuse dishes; Parafilm (with holes); microscope slides; coverslips; compound microscope Procedure: 1. E. gracilis stock culture: Prepare Euglena media by mixing and boiling 40 wheat grains, 35 rice grains and 5 mL of dry evaporated non-fat milk in 1L of distilled water. Boil for 5 minutes. Let the mixture stand overnight and then add Euglena. Keep in a well-lit area but out of direct sunlight. Overheating will kill Euglena. 2. Experimental and control cultures: Prepare two control cultures (10 mL each): Euglena with light and no SM; Euglena without light and no SM. Prepare three experimental cultures (10 mL each): Euglena with light and 10 ug/mL SM; Euglena with light and 100 ug/mL; and, Euglena with light and 500 ug/mL. 3. Light microscopy: After five to six days, make a wet mount of each of the five cultures and compare the control and experimental groups. Draw and label results in lab notebook. Take photomicrographs. Controlled variables: Indirect sunlight for all SM treated dishes, ambient temperature (~22°C), volume (10mL stock culture per Syracuse dish) Note: Euglena will be evenly distributed in 50mL culture dishes by gentle mixing, then aliquot into the 10mL Syracuse dishes. Data Interpretation: Observations will be recorded as microscopic labeled drawings and photomicrographs. Analysis of these materials will allow for the determination of the following: (1) which environment(s) altered the chloroplasts of E. gracilis after five to six days in culture; and, (2) which environment did not alter the chloroplasts of E. gracilis after five to six days in culture. This data will be compared to the original findings of Ebinger et al. (1969) and reasons for the results obtained will be suggested and articulated. References: Boardman, N.K., Franki, R.I.B. &Wildman, S.G. (1964) Protein synthesis by cell-free extracts from tobacco leaves. 2. Association of activity with chloroplast ribosomes. Biochemistry, 5: 872-878. Brawerman, G & Eisenstadt, J.M. (1964). Deoxyribonucleic acid from the chloroplasts of Euglena gracilis. Biochimica et biophysica acta, 91: 477-485. Endelman, M., Schiff, J.A. & Epstein, H.T. (1965) Studies of chloroplast development in Euglena. XII. Two types of satellite DNA. Journal of Molecular Biology, 11: 769-774. Epringer, L. (1972). Are plastids from prokaryotic micro-organisms? Action of antibiotics on chloroplasts of Euglena gracilis? Journal of General Microbiology, 71: 35-52. Kuntzel, H. & Noll, H. (1967) mitochondrial and cytoplasmic polysomes from Neurospora crassa. Nature, 215: 1340-1345..
Recommended publications
  • A Morphological Re-Description of Ploeotia Pseudanisonema, and Phylogenetic Analysis of the Genus Ploeotia
    A Morphological Re-Description of Ploeotia pseudanisonema, and Phylogenetic Analysis of the Genus Ploeotia by Andrew Buren Brooks (Under the direction of Mark A. Farmer) Abstract The genus Ploeotia represents a group of small, colorless, heterotrophic euglenids commonly found in shallow-water marine sediments. Species belonging to this genus have histori- cally been poorly described and studied. However, a Group I intron discovered within the small subunit ribosomal DNA gene of Ploeotia costata, makes P. costata the only euglena- zoan known to possess an actively splicing Group I intron. This intron contains conserved secondary structures that indicate monophyly with introns found in Stramenopiles and Ban- giales red algae. This project describes the internal and external morphology of a related species, Ploeotia pseudanisonema, using light and electron microscopy, and investigates the possibility of a Group I intron within P. pseudanisonema. Using recently obtained SSU rRNA sequences, we also examine the phylogeny of Ploeotia, and comment on the relationship of the genus Keelungia to Ploeotia. Index words: Ploeotia pseudanisonema, Ploeotia costata, Ploeotia vitrea, Keelungia pulex, Transmission electron microscopy, Scanning electron microscopy, Small subunit rRNA, Euglenozoan Phylogeny A Morphological Re-Description of Ploeotia pseudanisonema, and Phylogenetic Analysis of the Genus Ploeotia by Andrew Buren Brooks B.S., University of Alabama, 2009 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree Master of Science Athens, Georgia 2010 c 2014 Andrew Buren Brooks All Right Reserved A Morphological Re-Description of Ploeotia pseudanisonema, and Phylogenetic Analysis of the Genus Ploeotia by Andrew Buren Brooks Approved: Major Professor: Mark A.
    [Show full text]
  • Microorganisms – Protists: Euglena
    Microorganisms – Protists: Euglena Euglena are unicellular organisms classified into the Kingdom Protista, and the Phylum Euglenophyta. All euglena have chloroplasts and can make their own food by photosynthesis. They are not completely autotrophic though, euglena can also absorb food from their environment. Euglena usually live in quiet ponds or puddles. Euglena move by a flagellum (plural flagella), which is a long whip-like structure that acts like a little motor. The flagellum is located on the anterior (front) end, and twirls in such a way as to pull the cell through the water. It is attached at an inward pocket called the reservoir. Color and label the reservoir grey. Color and label the flagellum black. The Euglena is unique in that it is both heterotrophic (must consume food) and autotrophic (can make its own food). Chloroplasts within the euglena trap sunlight that is used for photosynthesis and can be seen as several rod-like structures throughout the cell. Color and label the chloroplasts green. Euglena also have an eyespot at the anterior end that detects light, it can be seen near the reservoir. This helps the euglena find bright areas to gather sunlight to make their food. Color and label the eyespot red. Euglena can also gain nutrients by absorbing them across their cell membrane, hence they become heterotrophic when light is not available, and they cannot photosynthesize. The euglena has a stiff pellicle outside the cell membrane that helps it keep its shape, though the pellicle is somewhat flexible, and some euglena can be observed scrunching up and moving in an inchworm type fashion.
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • CH28 PROTISTS.Pptx
    9/29/14 Biosc 41 Announcements 9/29 Review: History of Life v Quick review followed by lecture quiz (history & v How long ago is Earth thought to have formed? phylogeny) v What is thought to have been the first genetic material? v Lecture: Protists v Are we tetrapods? v Lab: Protozoa (animal-like protists) v Most atmospheric oxygen comes from photosynthesis v Lab exam 1 is Wed! (does not cover today’s lab) § Since many of the first organisms were photosynthetic (i.e. cyanobacteria), a LOT of excess oxygen accumulated (O2 revolution) § Some organisms adapted to use it (aerobic respiration) Review: History of Life Review: Phylogeny v Which organelles are thought to have originated as v Homology is similarity due to shared ancestry endosymbionts? v Analogy is similarity due to convergent evolution v During what event did fossils resembling modern taxa suddenly appear en masse? v A valid clade is monophyletic, meaning it consists of the ancestor taxon and all its descendants v How many mass extinctions seem to have occurred during v A paraphyletic grouping consists of an ancestral species and Earth’s history? Describe one? some, but not all, of the descendants v When is adaptive radiation likely to occur? v A polyphyletic grouping includes distantly related species but does not include their most recent common ancestor v Maximum parsimony assumes the tree requiring the fewest evolutionary events is most likely Quiz 3 (History and Phylogeny) BIOSC 041 1. How long ago is Earth thought to have formed? 2. Why might many organisms have evolved to use aerobic respiration? PROTISTS! Reference: Chapter 28 3.
    [Show full text]
  • 23.3 Groups of Protists
    Chapter 23 | Protists 639 cysts that are a protective, resting stage. Depending on habitat of the species, the cysts may be particularly resistant to temperature extremes, desiccation, or low pH. This strategy allows certain protists to “wait out” stressors until their environment becomes more favorable for survival or until they are carried (such as by wind, water, or transport on a larger organism) to a different environment, because cysts exhibit virtually no cellular metabolism. Protist life cycles range from simple to extremely elaborate. Certain parasitic protists have complicated life cycles and must infect different host species at different developmental stages to complete their life cycle. Some protists are unicellular in the haploid form and multicellular in the diploid form, a strategy employed by animals. Other protists have multicellular stages in both haploid and diploid forms, a strategy called alternation of generations, analogous to that used by plants. Habitats Nearly all protists exist in some type of aquatic environment, including freshwater and marine environments, damp soil, and even snow. Several protist species are parasites that infect animals or plants. A few protist species live on dead organisms or their wastes, and contribute to their decay. 23.3 | Groups of Protists By the end of this section, you will be able to do the following: • Describe representative protist organisms from each of the six presently recognized supergroups of eukaryotes • Identify the evolutionary relationships of plants, animals, and fungi within the six presently recognized supergroups of eukaryotes • Identify defining features of protists in each of the six supergroups of eukaryotes. In the span of several decades, the Kingdom Protista has been disassembled because sequence analyses have revealed new genetic (and therefore evolutionary) relationships among these eukaryotes.
    [Show full text]
  • Molecular Preservation of 1.88&Thinsp;Ga Gunflint Organic
    UCLA UCLA Previously Published Works Title Molecular preservation of 1.88 Ga Gunflint organic microfossils as a function of temperature and mineralogy. Permalink https://escholarship.org/uc/item/1028h5hd Journal Nature communications, 7(1) ISSN 2041-1723 Authors Alleon, Julien Bernard, Sylvain Le Guillou, Corentin et al. Publication Date 2016-06-17 DOI 10.1038/ncomms11977 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ARTICLE Received 14 Aug 2015 | Accepted 18 May 2016 | Published 17 Jun 2016 DOI: 10.1038/ncomms11977 OPEN Molecular preservation of 1.88 Ga Gunflint organic microfossils as a function of temperature and mineralogy Julien Alleon1, Sylvain Bernard1, Corentin Le Guillou1, Johanna Marin-Carbonne2, Sylvain Pont1, Olivier Beyssac1, Kevin D. McKeegan3 & Franc¸ois Robert1 The significant degradation that fossilized biomolecules may experience during burial makes it challenging to assess the biogenicity of organic microstructures in ancient rocks. Here we investigate the molecular signatures of 1.88 Ga Gunflint organic microfossils as a function of their diagenetic history. Synchrotron-based XANES data collected in situ on individual microfossils, at the submicrometre scale, are compared with data collected on modern microorganisms. Despite diagenetic temperatures of B150–170 °C deduced from Raman data, the molecular signatures of some Gunflint organic microfossils have been exceptionally well preserved. Remarkably, amide groups derived from protein compounds can still be detected. We also demonstrate that an additional increase of diagenetic temperature of only 50 °C and the nanoscale association with carbonate minerals have significantly altered the molecular signatures of Gunflint organic microfossils from other localities. Altogether, the present study provides key insights for eventually decoding the earliest fossil record.
    [Show full text]
  • A Small Portion of Plastid Transcripts Is Polyadenylated in the Flagellate
    FEBS Letters 588 (2014) 783–788 journal homepage: www.FEBSLetters.org A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis Kristína Záhonová a,b, Lucia Hadariová b, Rostislav Vacula b, Vyacheslav Yurchenko a, Marek Eliáš a, ⇑ Juraj Krajcˇovicˇ b, Matej Vesteg a,b, a Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic b Department of Genetics, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia article info abstract Article history: Euglena gracilis possesses secondary plastids of green algal origin. In this study, E. gracilis expressed Received 11 December 2013 sequence tags (ESTs) derived from polyA-selected mRNA were searched and several ESTs corre- Revised 8 January 2014 sponding to plastid genes were found. PCR experiments failed to detect SL sequence at the 50-end Accepted 9 January 2014 of any of these transcripts, suggesting plastid origin of these polyadenylated molecules. Quantitative Available online 1 February 2014 PCR experiments confirmed that polyadenylation of transcripts occurs in the Euglena plastids. Such Edited by Ulf-Ingo Flügge transcripts have been previously observed in primary plastids of plants and algae as low-abundance intermediates of transcript degradation. Our results suggest that a similar mechanism exists in sec- ondary plastids. Keywords: Plastid Ó 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. EST Euglenozoa Polyadenylation Quantitative PCR Trans-splicing 1. Introduction nuclear mRNA lacking the SL sequence in E. gracilis is that of the fibrillarin gene [9]. Since SL-trans-splicing does not occur in organ- Euglena gracilis is a fresh-water photosynthetic flagellate elles (mitochondria, plastids), the presence (or absence) of an SL belonging to the order Euglenida and to the protist phylum Eugle- sequence at the 50-end of a euglenozoan mRNA is diagnostic for nozoa [1,2].
    [Show full text]
  • Field Guide to Algae and Other “Scums” in Ponds, Lakes, Streams and Rivers
    The Boone and Kenton County Conservation Districts, Burlington, KY The Campbell County Conservation District, Alexandria, KY Field guide to algae and other “scums” in ponds, lakes, streams and rivers Miriam Steinitz Kannan and Nicole Lenca Northern Kentucky University Field Guide to algae and other “scums” TABLE OF CONTENTS Page Introduction Purpose of the guide—How to use the guide 3 Floating Macroscopic Plants Duckweeds (Lemna, Spirodella) 4 Watermeal (Wolffia) 4 Waterferns (Azolla) 4 Floating Cyanobacteria (Blue-Green Algae) Microcystis 5 Aphanizomenon 6 Anabaena 7 Floating or attached Cyanobacteria (Blue-Green Algae) Oscillatoria, Lyngbya, Phormidium, Plankthotrix 8 Attached Cyanobacteria (Blue-Green Algae) Nostoc 9 Euglena and other flagellated algae Euglena, Phacus, Dinobryon, Prymnesium and Dinoflagellates 10 Diatom Blooms 11 Filamentous Green Algae Spirogyra, Mougeotia and Zygnema 12 Cladophora and Hydrodictyon 13 Bacterial Scums Iron Bacteria -Sphaerotilus 14 Protozoan Scums 15 Zooplankton scums 16 Algae control methods 17 Recommended Web sites 18 Acknowledgements 19 2 Introduction Purpose of this Guide This guide is intended for individuals who work with farm ponds, for watershed groups, homeowners and anyone interested in quickly identifying an algal bloom or scum that appears in a freshwater system. Such blooms usually appear during the summer and fall in temperate regions. Most blooms are the result of nutrient enrichment of the waterway. Of significant concern are blue-green algal blooms (cyanobacteria). Some of these produce liver and/or brain toxins that can be lethal to most fish and livestock. Some of the toxins can also be carcinogenic. The macroscopic appearance of many different genera of algae can be similar and therefore field identification must be verified by using a compound microscope.
    [Show full text]
  • Inferring Ancestry
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1176 Inferring Ancestry Mitochondrial Origins and Other Deep Branches in the Eukaryote Tree of Life DING HE ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9031-7 UPPSALA urn:nbn:se:uu:diva-231670 2014 Dissertation presented at Uppsala University to be publicly examined in Fries salen, Evolutionsbiologiskt centrum, Norbyvägen 18, 752 36, Uppsala, Friday, 24 October 2014 at 10:30 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Andrew Roger (Dalhousie University). Abstract He, D. 2014. Inferring Ancestry. Mitochondrial Origins and Other Deep Branches in the Eukaryote Tree of Life. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1176. 48 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9031-7. There are ~12 supergroups of complex-celled organisms (eukaryotes), but relationships among them (including the root) remain elusive. For Paper I, I developed a dataset of 37 eukaryotic proteins of bacterial origin (euBac), representing the conservative protein core of the proto- mitochondrion. This gives a relatively short distance between ingroup (eukaryotes) and outgroup (mitochondrial progenitor), which is important for accurate rooting. The resulting phylogeny reconstructs three eukaryote megagroups and places one, Discoba (Excavata), as sister group to the other two (neozoa). This rejects the reigning “Unikont-Bikont” root and highlights the evolutionary importance of Excavata. For Paper II, I developed a 150-gene dataset to test relationships in supergroup SAR (Stramenopila, Alveolata, Rhizaria). Analyses of all 150-genes give different trees with different methods, but also reveal artifactual signal due to extremely long rhizarian branches and illegitimate sequences due to horizontal gene transfer (HGT) or contamination.
    [Show full text]
  • Marine Biological Laboratory) Data Are All from EST Analyses
    TABLE S1. Data characterized for this study. rDNA 3 - - Culture 3 - etK sp70cyt rc5 f1a f2 ps22a ps23a Lineage Taxon accession # Lab sec61 SSU 14 40S Actin Atub Btub E E G H Hsp90 M R R T SUM Cercomonadida Heteromita globosa 50780 Katz 1 1 Cercomonadida Bodomorpha minima 50339 Katz 1 1 Euglyphida Capsellina sp. 50039 Katz 1 1 1 1 4 Gymnophrea Gymnophrys sp. 50923 Katz 1 1 2 Cercomonadida Massisteria marina 50266 Katz 1 1 1 1 4 Foraminifera Ammonia sp. T7 Katz 1 1 2 Foraminifera Ovammina opaca Katz 1 1 1 1 4 Gromia Gromia sp. Antarctica Katz 1 1 Proleptomonas Proleptomonas faecicola 50735 Katz 1 1 1 1 4 Theratromyxa Theratromyxa weberi 50200 Katz 1 1 Ministeria Ministeria vibrans 50519 Katz 1 1 Fornicata Trepomonas agilis 50286 Katz 1 1 Soginia “Soginia anisocystis” 50646 Katz 1 1 1 1 1 5 Stephanopogon Stephanopogon apogon 50096 Katz 1 1 Carolina Tubulinea Arcella hemisphaerica 13-1310 Katz 1 1 2 Cercomonadida Heteromita sp. PRA-74 MBL 1 1 1 1 1 1 1 7 Rhizaria Corallomyxa tenera 50975 MBL 1 1 1 3 Euglenozoa Diplonema papillatum 50162 MBL 1 1 1 1 1 1 1 1 8 Euglenozoa Bodo saltans CCAP1907 MBL 1 1 1 1 1 5 Alveolates Chilodonella uncinata 50194 MBL 1 1 1 1 4 Amoebozoa Arachnula sp. 50593 MBL 1 1 2 Katz lab work based on genomic PCRs and MBL (Marine Biological Laboratory) data are all from EST analyses. Culture accession number is ATTC unless noted. GenBank accession numbers for new sequences (including paralogs) are GQ377645-GQ377715 and HM244866-HM244878.
    [Show full text]
  • BIOLOGICAL PROBLEMS N WATER POLLUT1 on April 23
    BIOLOGICAL PROBLEMS N WATER POLLUT1 ON Transactions of a Seminar on Biological Problems in Water Pollution held at the Robert A. Taft Sanitary Engineering Center Cincinnati, Ohio April 23 - 27, 1956 Compiled and Edited by CLARENCE M. TARZWELL U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE Public Health Service Bureau of State Services Division of Sanitary Engineering Services Robert A. Taft Sanitary Engineering Center 1957 PREFACE During the past few years a number of State Health Departments and Water Pollution Control Boards have initiated or expanded investigations in the field of sanitary biology. Universities and other research organizations are showing increased interest in biological problems connected with the detection and abatement of stream pollution. A few universities are now giving courses directed toward the training of sanitary biologists, and several are considering the establishment of curricula for the training of aquatic biologists for work in the water works, sewage treatment, and stream pollution fields. In recent years industries have added sanitary biologists to their staffs, and several aquatic biologists have undertaken consultant activities. Biologists engaged in pollution investigations and research often work alone and are somewhat isolated. For some time, therefore, there had been recognized a need for a conference of those engaged in the study of biological problems in water pollution control, to acquaint them with current developments and new methods of approach, and to enable them to become acquainted with other workers in the field. The first such gathering was held as a seminar at the Robert A. Taft Sanitary Engineering Center, April 23 - 27, 1956. The meeting was well attended, as ninety persons were registered at the Seminar.
    [Show full text]