Eukarya Is Now Divided Into 4 Supergroups, Excavata, SAR Clade, Archaeplastida and Unikonta

Total Page:16

File Type:pdf, Size:1020Kb

Eukarya Is Now Divided Into 4 Supergroups, Excavata, SAR Clade, Archaeplastida and Unikonta Eukarya is now divided into 4 supergroups, Excavata, SAR Clade, Archaeplastida and Unikonta. It replaces the earlier 5-kingdom classification of Monera – all prokaryotes, Protista – early eukaryotes and 3 multicellular kingdoms Plants, Fungi and Animals. Kingdom monera is replaced by 2 new domains Bacteria and Archaea. The classification of domain Eukarya is going on. Molecular data has broken the boundaries between protista and 3 multicellular kingdoms. Eukarya is likely to get more than 20 kingdoms but none of them is protista. Protists: of past are separated into 7 new groups that also have plants, fungi and animals. 1. Excavata 2. Stramenopiles 3. Alveolata 4. Rhizaria 5. Archaeplastida, also has plants 6. Ameobozoans 7. Opisthokonts, also has fungi and animals Protists were first eukaryotes to evolve. Protists include unicellular eukaryotes and their simple multicellular relatives. The latter are filamentous or colonial. Mitosis, Meiosis and sexual reproduction arose for the first time in this kingdom. All the organelles of plants, fungi and animals arose in this kingdom. Protists also possess many unique organelles not found anywhere else in the 3 domains. Like the 3 higher kingdoms the Protists are photosynthetic (like plants) or heterotrophic absorptive (like fungi) or heterotrophic Ingestive (like animals). Excavata: is a clade, some have excavated groove on side of body, reduced or modified mitochondria and unique flagella. Taxons include Diplomonads, Parabasalids and Eugleonozoans (kinetoplastids and euglenoids). a) Diplomonads: reduced mitochondria, called mitosomes which cannot use oxygen, therefore, diplomonads are anaerobic. Giardia intestinalis lives in intestines of mammals. It has 2 similar nuclei and several flagella. It causes abdominal cramps and diarrhea in humans. b) Parabaslids have reduced mitochondria called hydrogenosomes and produce some ATP anaerobically and generate hydrogen. Trichomonas vaginalis causes sexually transmitted infections of vagina and urethra in males. c) Euglenozoans are a diverse clade having heterotrophs, autotrophs and parasites. All have a spiral or crystal rod of unknown function in flagella. a. Kinetoplastids have a single mitochondrion with organized DNA mass called kinetoplast. Trypanosoma species cause sleeping sickness, fatal if untreated. Tsetse fly bites and spreads the sleeping sickness in Africa. Trypanosoma has undulating membrane to locomote in thicker plasma. b. Euglenoids has a pocket at one end and 1or 2 flagella emerge from it. Flagella have a crystalline rod besides 9+2 microtubules found in all eukaryotic flagella. Euglena has eyespot to shield photodetector present on long flagellum. It enables Euglena to swim towards source of light. Pellicle covers the body. It has proteins strips below cell membrane. Besides swimming, Euglena can glide by changing its shape. Mixotrophic Nutrition: Euglena has several plastids covered with 3 membranes but can be heterotrophic and absorb organic nutrients from surroundings. Euglena divides by longitudinal fission and lacks sexual reproduction. Stramenopiles have diatoms, golden algae, brown algae and oomycetes. Most have one long hairy and one short smooth flagellum. d) Diatoms (100,000 species) are most abundant unicellular forms in oceans. The body is covered with an intricately designed 2-half silica shell. Adults are Diploid and lack cilia or flagella. Main reproduction is by binary fission. Sexual reproduction is by flagellated gametes. The remains of shells produce Diatomaceous earth mined for filtering and abrasive materials. It acts as Biological Carbon Pump to move CO2 from air to sea floor. Diatoms are most important producers in biosphere. e) Golden Algae have yellow and brown carotenoids and all cells have 2 flagella at one end. Most golden algae are autotrophs but some are mixotrophic. Most golden algae are planktons in marine or fresh water. Dinobryon is a a colonial golden alga of fresh water. f) Brown Algae - are usually the large sea weeds called Kelps. In addition to Chl a, these have fucoxanthin a brown pigment. Coastal areas have Laminaria and Sea palm (Postelsia) lives off west coast of Canada and Unites States. Body has root like holdfast, stem like stipe and leaf like blades. Blades bear sporangia. Cells in sporangia undergo meiosis and form zoospores with 2 flagella. Zoospores germinate to form multicellular male and female gametophytes. Male gametophytes produce sperms also with 2 flagella. Female gametophytes develop eggs. Fertilization of egg and sperm forms zygote which divides to form the sporophyte. Alternation of generations involves a dominant diploid sporophyte generation and multicellular haploid gametophyte generation. Algin a gelatinous material added to ice creams and cream cheese is extracted from brown algae. g) Oomyces include water molds, white rusts and the downy mildews. These have cell walls of cellulose. These have fungus like septate hyphae. Asexual reproduction by flagellated zoospores and sexual reproduction involves flagellated sperms. Phytophthora infestans causes potato late blight and was responsible for Irish Famine in 19th century killing a million people. h) Alveoates: have membrane bound sacs below cell membrane. i) Dinoflagellates – Pyrrophyta are unicellular covered with cellulose plates. They have 2 flagella placed at right angle to each other. These are important phytoplanktons in oceans. They are also responsible for causing Red Tides, example Gonyaulax. The red tide is caused due to sudden growth due to availability of Nitrogen or Phosphorus brought by rivers. Apicomplexans are unicellular parasites of animals and include malaria causing Plasmodium species. No flagella present. All have apical complex at one end of cell to penetrate host cells. It is transmitted by females of mosquito, Anopheles species. Malarial parasite completes sexual phase in Anopheles and asexual reproduction in human liver and red blood cells. Sporozoites, asexual stages of malarial parasite attack liver cells and later erythrocytes and brain cells. Malaria kills 2 million deaths per year out of 300 million affected each year. j) Ciliates have cilia and covered with pellicle. Common example is Paramecium species. It has a Meganucleus and a Micronucleus. They have 2 contractile vacuoles surrounded by feeding canals to expel excess water entered due to endosmosis. Oral groove guides food like bacteria and form a food vacuole. Food vacuoles stream in a circular path inside the body. Lysosomes join food vacuole and help to digest food. These reproduce asexually by transverse cell division. Sexual rep is by Conjugation for which 2 paramecia join temporarily and exchange nuclei and separate. 2 nuclei from different paramecia fuse to result in fertilization. k) Rhizarians include a diverse group of unicellular organisms with thread like pseudopodia. l) Forams: are foraminifera having body covered with calcareous porous shells called tests with many chambers outside cell membrane. Forams are unicellular heterotrophs and some may grow to several centimeters. Forams form sediments and have been discovered from fossils. Globigerina. m) Radiolarians are unicellular and have internal delicate skeleton form of silica. Pseudopodia radiate from the central body. Archaeplastida are autotrophs and include red algae, green algae and land plants. Plastids in red and green algae arose by primary endosymbiosis by engulfing a cyanobacterium. n) Red Algae - These are mainly filamentous or leafy. Besides Chlorophyll a, these have red and blue pigments to give various colors. Red algae are delicate sea weeds. Red algae are important sources of gelling agents Agar and Carageenan. Porphyra is edible red alga used as a sushi-wrap. Green Algae include Chlorophytes and Charophytes. These are most common in fresh water. These have Chlorophyll a and b, store food as starch and have cellulose in cell walls. All characteristics are common with plants. Asexual reproduction can be by flagellated spores called zoospores or spores without flagella. Sexual reproduction is by flagellated gametes. Many algae, like plants, form a non-flagellated egg and a flagellated sperm. This sexual reproduction is called Oogamy. Algae lack multicellular sex organs.They have various forms: unicellular-Chlamydomonas; filamentous-Spirogyra; leafy - Ulva or colonial - Volvox with daughter colonies inside. Land plants originated from charophytes. o) Slime Molds are naked protists which feed by phagocytosis. Plasmodial Slime Molds have multinucleate protoplasmic masses called plasmodium. These reproduce asexually by spores formed in walled sporangia in a cluster called fruiting body. Spores develop into amoeboid or flagellated gametes. Common example is Physarum species. Cellular Slime Molds live as solitary amoeboid cells. Under unfavorable conditions these can form aggregations called pseudoplasmodium. When favorable conditions return sporangia in a fruiting body produce spores. The spores give rise to single cells to complete the cycle. p) Tubulinids form tube like pseudopodia and are covered with cell membrane. They change, all the time, their body-shape. They feed by phagocytosis. Freshwater forms have contractile vacuoles to expel excess water. Common example is Amoeba proteus. q) Entamoebas include 6 species living in humans and E. histolytica causes amoebic dysentery-blood in stools. Opisthokonts have posterior flagella. These include Nucleariids, fungi, choanoflagellates and animals r) Nucleariids are closest to fungi. s) Choanoflagellates are simple multicellular protists and closest line to animals. t) Animals arose from an ancestor close to choanoflagellates. .
Recommended publications
  • Unfolding the Secrets of Coral–Algal Symbiosis
    The ISME Journal (2015) 9, 844–856 & 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE Unfolding the secrets of coral–algal symbiosis Nedeljka Rosic1, Edmund Yew Siang Ling2, Chon-Kit Kenneth Chan3, Hong Ching Lee4, Paulina Kaniewska1,5,DavidEdwards3,6,7,SophieDove1,8 and Ove Hoegh-Guldberg1,8,9 1School of Biological Sciences, The University of Queensland, St Lucia, Queensland, Australia; 2University of Queensland Centre for Clinical Research, The University of Queensland, Herston, Queensland, Australia; 3School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, Australia; 4The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia; 5Australian Institute of Marine Science, Townsville, Queensland, Australia; 6School of Plant Biology, University of Western Australia, Perth, Western Australia, Australia; 7Australian Centre for Plant Functional Genomics, The University of Queensland, St Lucia, Queensland, Australia; 8ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia and 9Global Change Institute and ARC Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia, Queensland, Australia Dinoflagellates from the genus Symbiodinium form a mutualistic symbiotic relationship with reef- building corals. Here we applied massively parallel Illumina sequencing to assess genetic similarity and diversity among four phylogenetically diverse dinoflagellate clades (A, B, C and D) that are commonly associated with corals. We obtained more than 30 000 predicted genes for each Symbiodinium clade, with a majority of the aligned transcripts corresponding to sequence data sets of symbiotic dinoflagellates and o2% of sequences having bacterial or other foreign origin.
    [Show full text]
  • General Botany Lab Review Fungi, Algae, Bryophytes, Ferns & Fern Allies
    General Botany Lab Review Fungi, Algae, Bryophytes, Ferns & Fern Allies You have looked at a lot of stuff – both live and via prepared slides. You’ve also labeled at least one Life Cycle Diagram for each of the groups. Know what your benchmarks are for a general life cycle diagram and be able to label them. I will not ask you to identify anything to species or genus; be able to identify things to “group” (i.e., ascomycete, bryophyta, etc.) Be able to identify growth form (e.g., unicell, filamentous, etc.). Recognize the differences between sexual and asexual reroductive structures. All questions will be multiple choice. Material looked at: UNIT 1: FUNGI EXERCISE 1: CHYTRIDS/ CHYTRIDOMYCOTA: Allmyces arbusculus – life and prepared slides EXERCISE 2: ZYGOMYCETES/ ZYGOMYCOTA: Rhizopus stolonifer – live and prepared slides EXERCISE 2: MYCORRHIZA and the GLOMEROMYCETES/ GLOMEROMYCOTA – prepared slides only EXERCISE 3: ASCOMYCETES/ ASCOMYCOTA Aspergillus sp., Penicillium sp., Saccharomyces cerevisiae, Peziza sp., Sordaria fimicola, and Morchella sp. – a mixture of live and prepared materials EXERCISE 4: BASIDIOMYCETES/BASIDIOMYCETES Agaricus, Coprinus, Cronartium (a rust), Ustilago (a smut) – slides, fresh, and dried EXERCISE 5: SLIME MOLDS – live and prepared Physarum EXERCISE 6: LICHENS – live and prepared slides be able to identify the various growth forms UNIT 2: ALGAE EXERCISE 1: CYANOBACTERIA Anabaena sp., Nostoc, and Oscillaroria – live and prepared material EXERCISE 2: SUPERGROUP EXCAVATA (Phylum Euglenophyta) – live and prepared material
    [Show full text]
  • 28-Protistsf20r.Ppt [Compatibility Mode]
    9/3/20 Ch 28: The Protists (a.k.a. Protoctists) (meet these in more detail in your book and lab) 1 Protists invent: eukaryotic cells size complexity Remember: 1°(primary) endosymbiosis? -> mitochondrion -> chloroplast genome unicellular -> multicellular 2 1 9/3/20 For chloroplasts 2° (secondary) happened (more complicated) {3°(tertiary) happened too} 3 4 Eukaryotic “supergroups” (SG; between K and P) 4 2 9/3/20 Protists invent sex: meiosis and fertilization -> 3 Life Cycles/Histories (Fig 13.6) Spores and some protists (Humans do this one) 5 “Algae” Group PS Pigments Euglenoids chl a & b (& carotenoids) Dinoflagellates chl a & c (usually) (& carotenoids) Diatoms chl a & c (& carotenoids) Xanthophytes chl a & c (& carotenoids) Chrysophytes chl a & c (& carotenoids) Coccolithophorids chl a & c (& carotenoids) Browns chl a & c (& carotenoids) Reds chl a, phycobilins (& carotenoids) Greens chl a & b (& carotenoids) (more groups exist) 6 3 9/3/20 Name word roots (indicate nutrition) “algae” (-phyt-) protozoa (no consistent word ending) “fungal-like” (-myc-) Ecological terms plankton phytoplankton zooplankton 7 SG: Excavata/Excavates “excavated” feeding groove some have reduced mitochondria (e.g.: mitosomes, hydrogenosomes) 8 4 9/3/20 SG: Excavata O: Diplomonads: †Giardia Cl: Parabasalids: Trichonympha (bk only) †Trichomonas P: Euglenophyta/zoa C: Kinetoplastids = trypanosomes/hemoflagellates: †Trypanosoma C: Euglenids: Euglena 9 SG: “SAR” clade: Clade Alveolates cell membrane 10 5 9/3/20 SG: “SAR” clade: Clade Alveolates P: Dinoflagellata/Pyrrophyta:
    [Show full text]
  • Ptolemeba N. Gen., a Novel Genus of Hartmannellid Amoebae (Tubulinea, Amoebozoa); with an Emphasis on the Taxonomy of Saccamoeba
    The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists Journal of Eukaryotic Microbiology ISSN 1066-5234 ORIGINAL ARTICLE Ptolemeba n. gen., a Novel Genus of Hartmannellid Amoebae (Tubulinea, Amoebozoa); with an Emphasis on the Taxonomy of Saccamoeba Pamela M. Watsona, Stephanie C. Sorrella & Matthew W. Browna,b a Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, 39762 b Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, Mississippi, 39762 Keywords ABSTRACT 18S rRNA; amoeba; amoeboid; Cashia; cristae; freshwater amoebae; Hartmannella; Hartmannellid amoebae are an unnatural assemblage of amoeboid organisms mitochondrial morphology; SSU rDNA; SSU that are morphologically difficult to discern from one another. In molecular phy- rRNA; terrestrial amoebae; tubulinid. logenetic trees of the nuclear-encoded small subunit rDNA, they occupy at least five lineages within Tubulinea, a well-supported clade in Amoebozoa. The Correspondence polyphyletic nature of the hartmannellids has led to many taxonomic problems, M.W. Brown, Department of Biological in particular paraphyletic genera. Recent taxonomic revisions have alleviated Sciences, Mississippi State University, some of the problems. However, the genus Saccamoeba is paraphyletic and is Mississippi State, MS 39762, USA still in need of revision as it currently occupies two distinct lineages. Here, we Telephone number: +1 662-325-2406; report a new clade on the tree of Tubulinea, which we infer represents a novel FAX number: +1 662-325-7939; genus that we name Ptolemeba n. gen. This genus subsumes a clade of hart- e-mail: [email protected] mannellid amoebae that were previously considered in the genus Saccamoeba, but whose mitochondrial morphology is distinct from Saccamoeba.
    [Show full text]
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • A Morphological Re-Description of Ploeotia Pseudanisonema, and Phylogenetic Analysis of the Genus Ploeotia
    A Morphological Re-Description of Ploeotia pseudanisonema, and Phylogenetic Analysis of the Genus Ploeotia by Andrew Buren Brooks (Under the direction of Mark A. Farmer) Abstract The genus Ploeotia represents a group of small, colorless, heterotrophic euglenids commonly found in shallow-water marine sediments. Species belonging to this genus have histori- cally been poorly described and studied. However, a Group I intron discovered within the small subunit ribosomal DNA gene of Ploeotia costata, makes P. costata the only euglena- zoan known to possess an actively splicing Group I intron. This intron contains conserved secondary structures that indicate monophyly with introns found in Stramenopiles and Ban- giales red algae. This project describes the internal and external morphology of a related species, Ploeotia pseudanisonema, using light and electron microscopy, and investigates the possibility of a Group I intron within P. pseudanisonema. Using recently obtained SSU rRNA sequences, we also examine the phylogeny of Ploeotia, and comment on the relationship of the genus Keelungia to Ploeotia. Index words: Ploeotia pseudanisonema, Ploeotia costata, Ploeotia vitrea, Keelungia pulex, Transmission electron microscopy, Scanning electron microscopy, Small subunit rRNA, Euglenozoan Phylogeny A Morphological Re-Description of Ploeotia pseudanisonema, and Phylogenetic Analysis of the Genus Ploeotia by Andrew Buren Brooks B.S., University of Alabama, 2009 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree Master of Science Athens, Georgia 2010 c 2014 Andrew Buren Brooks All Right Reserved A Morphological Re-Description of Ploeotia pseudanisonema, and Phylogenetic Analysis of the Genus Ploeotia by Andrew Buren Brooks Approved: Major Professor: Mark A.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • 33. Cretaceous and Paleogene Planktonic Foraminifera, Leg 27 of the Deep Sea Drilling Project V
    33. CRETACEOUS AND PALEOGENE PLANKTONIC FORAMINIFERA, LEG 27 OF THE DEEP SEA DRILLING PROJECT V. A. Krasheninnikov, Geological Institute of the Academy of Sciences, Moscow, USSR ABSTRACT Cretaceous and Cenozoic sediments, penetrated by Sites 259, 260, 261, and 263 in the eastern part of the Indian Ocean, are mainly brown zeolite clays and turbidites. Small quantities of calcareous clays and nanno ooze with planktonic foraminifera are intercalated with the clays and have Albian, upper Paleocene, and lower Eocene ages. The Albian sediments at Site 259 are characterized only by Hedbergella species (infracretacea, globigerinellinoides, planispira, amabilis, aff. delrioensis, aff. infracretacea). At Site 260 planktonic foraminifera are more diverse; in addition to the above-mentioned species there are other species of Hedbergella (trocoidea brittonensis) and representatives of Globigerinelloides (eaglefordensis, bentonensis, ultramicra, gyroidinaeformis, aff. maridalensis). Assemblages of planktonic foraminifera of the upper Paleocene (the Globorotalia velascoensis Zone) at Site 259 consist of comparatively rare species of Acarinina (acarinata, mckannai, primitival and Glpbigerina (chascanona, nana) combined with sporadic Globorotalia (imitata, aff. acuta). Sediments of the lower part of the lower Eocene at Site 259 are characterized by rare Acarinina (pseudotopilensis, soldadoensis, acarinata, aff. triplex) and casts of Globorotalia from the group of Globorotalia aequa— G. subbotinae—G. marginodentata. Turbidites contain rather frequently redeposited Cretaceous, Paleogene, and Neogene planktonic foraminifera. LOWER CRETACEOUS (ALBIAN) Lower Cretaceous sediments, Albian, with planktonic _____^^ ""W••l•i i•i•r;•i•: foraminifera have been identified in two regions of the Indian Ocean—the Perth Abyssal Plain in the south (Site 259) and the Gascoyne Abyssal Plain in the north (Site 260).
    [Show full text]
  • Microorganisms – Protists: Euglena
    Microorganisms – Protists: Euglena Euglena are unicellular organisms classified into the Kingdom Protista, and the Phylum Euglenophyta. All euglena have chloroplasts and can make their own food by photosynthesis. They are not completely autotrophic though, euglena can also absorb food from their environment. Euglena usually live in quiet ponds or puddles. Euglena move by a flagellum (plural flagella), which is a long whip-like structure that acts like a little motor. The flagellum is located on the anterior (front) end, and twirls in such a way as to pull the cell through the water. It is attached at an inward pocket called the reservoir. Color and label the reservoir grey. Color and label the flagellum black. The Euglena is unique in that it is both heterotrophic (must consume food) and autotrophic (can make its own food). Chloroplasts within the euglena trap sunlight that is used for photosynthesis and can be seen as several rod-like structures throughout the cell. Color and label the chloroplasts green. Euglena also have an eyespot at the anterior end that detects light, it can be seen near the reservoir. This helps the euglena find bright areas to gather sunlight to make their food. Color and label the eyespot red. Euglena can also gain nutrients by absorbing them across their cell membrane, hence they become heterotrophic when light is not available, and they cannot photosynthesize. The euglena has a stiff pellicle outside the cell membrane that helps it keep its shape, though the pellicle is somewhat flexible, and some euglena can be observed scrunching up and moving in an inchworm type fashion.
    [Show full text]
  • Biology and Systematics of Heterokont and Haptophyte Algae1
    American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed.
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • The Intestinal Protozoa
    The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately.
    [Show full text]