Inferring Pairwise Interactions from Biological Data Using Maximum- Entropy Probability Models

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Inferring Pairwise Interactions from Biological Data Using Maximum- Entropy Probability Models The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Stein, Richard R., Debora S. Marks, and Chris Sander. 2015. “Inferring Pairwise Interactions from Biological Data Using Maximum-Entropy Probability Models.” PLoS Computational Biology 11 (7): e1004182. doi:10.1371/journal.pcbi.1004182. http:// dx.doi.org/10.1371/journal.pcbi.1004182. Published Version doi:10.1371/journal.pcbi.1004182 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:21462137 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA REVIEW Inferring Pairwise Interactions from Biological Data Using Maximum-Entropy Probability Models Richard R. Stein1*, Debora S. Marks2, Chris Sander1* 1 Computational Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America, 2 Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America * [email protected] (RRS); [email protected] (CS) Abstract Maximum entropy-based inference methods have been successfully used to infer direct interactions from biological datasets such as gene expression data or sequence ensem- bles. Here, we review undirected pairwise maximum-entropy probability models in two cate- gories of data types, those with continuous and categorical random variables. As a concrete example, we present recently developed inference methods from the field of protein contact prediction and show that a basic set of assumptions leads to similar solution strategies for inferring the model parameters in both variable types. These parameters reflect interactive couplings between observables, which can be used to predict global properties of the bio- logical system. Such methods are applicable to the important problems of protein 3-D struc- – OPEN ACCESS ture prediction and association of gene gene networks, and they enable potential applications to the analysis of gene alteration patterns and to protein design. Citation: Stein RR, Marks DS, Sander C (2015) Inferring Pairwise Interactions from Biological Data Using Maximum-Entropy Probability Models. PLoS Introduction Comput Biol 11(7): e1004182. doi:10.1371/journal. pcbi.1004182 Modern high-throughput techniques allow for the quantitative analysis of various components Editor: Shi-Jie Chen, University of Missouri, UNITED of the cell. This ability opens the door to analyzing and understanding complex interaction pat- STATES terns of cellular regulation, organization, and evolution. In the last few years, undirected pair- wise maximum-entropy probability models have been introduced to analyze biological data Published: July 30, 2015 and have performed well, disentangling direct interactions from artifacts introduced by inter- Copyright: © 2015 Stein et al. This is an open mediates or spurious coupling effects. Their performance has been studied for diverse prob- access article distributed under the terms of the lems, such as gene network inference [1,2], analysis of neural populations [3,4], protein contact Creative Commons Attribution License, which permits – unrestricted use, distribution, and reproduction in any prediction [5 8], analysis of a text corpus [9], modeling of animal flocks [10], and prediction of medium, provided the original author and source are multidrug effects [11]. Statistical inference methods using partial correlations in the context of credited. graphical Gaussian models (GGMs) have led to similar results and provide a more intuitive Funding: This work was supported by NIH awards understanding of direct versus indirect interactions by employing the concept of conditional R01 GM106303 (DSM, CS, and RRS) and P41 independence [12,13]. GM103504 (CS). The funders had no role in the Our goal here is to derive a unified framework for pairwise maximum-entropy probability preparation of the manuscript. models for continuous and categorical variables and to discuss some of the recent inference Competing Interests: The authors have declared approaches presented in the field of protein contact prediction. The structure of the manuscript that no competing interests exist. is as follows: (1) introduction and statement of the problem, (2) deriving the probabilistic PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004182 July 30, 2015 1 / 22 model, (3) inference of interactions, (4) scoring functions for the pairwise interaction strengths, and (5) discussion of results, improvements and applications. Better knowledge of these methods, along with links to existing implementations in terms of software packages, may be helpful to improve the quality of biological data analysis compared to standard correlation-based methods and increase our ability to make predictions of interac- tions that define the properties of a biological system. In the following, we highlight the power of inference methods based on the maximum-entropy assumption using two examples of bio- logical problems: inferring networks from gene expression data and residue contacts in pro- teins from multiple sequence alignments. We compare solutions obtained using (1) correlation-based inference and (2) inference based on pairwise maximum-entropy probability models (or their incarnation in the continuous case, the multivariate Gaussian distribution). Gene association networks Pairwise associations between genes and proteins can be determined by a variety of data types, such as gene expression or protein abundance. Association between entities in these data types are commonly estimated by the sample Pearson correlation coefficient computed for each ... pair of variables xi and xj from the set of random variables x1, , xL. In particular, for M given x1 1; ...; 1 T; ...; xM M; ...; M T RL samples in L measured variables, ¼ðx1 xLÞ ¼ðx1 xL Þ 2 ,itis defined as, C^ r :¼ qffiffiffiffiffiffiffiffiffiffiffiij ; ij ^ ^ CiiC jj X M where C^ :¼ 1 ðxm À x Þðxm À x Þ denotes the (i, j)-element of the empirical covariance ij M m¼1 i i j j matrix C^ ¼ðC^ Þ . The sample mean operator provides the empirical mean from the ij i;j¼1;...;L X Á M measured data and is defined as x :¼ 1 xm. A simple way to characterize dependencies i M m¼1 i in data is to classify two variables as being dependent if the absolute value of their correlation coefficient is above a certain threshold (and independent otherwise) and then use those pairs to draw a so-called relevance network [14]. However, the Pearson correlation is a misleading mea- sure for direct dependence as it only reflects the association between two variables while ignor- ing the influence of the remaining ones. Therefore, the relevance network approach is not suitable to deduce direct interactions from a dataset [15–18]. The partial correlation between two variables removes the variational effect due to the influence of the remaining variables (Cramér [19], p. 306). To illustrate this, let’s take a simplified example with three random vari- ables x , x , x . Without loss of generality, we can scale each of these variables to zero-mean A B C qffiffiffiffiffiffi ^ fi fi and unit-standard deviation by xi7!ðxi À xi Þ C ii, which simpli es the correlation coef - fi cient to rij xixj . The sample partial correlation coef cient of a three-variable system between fi xA and xB given xC is then de ned as [19,20] À ð^ À1Þ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffirAB rpBC ffiffiffiffiffiffiffiffiffiffiffiffiffiffirAC qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiC AB : rABÁC ¼ 2 2 À 1 1 1 1 À rAC À rBC ^ À ^ À ðC ÞAAðC ÞBB The latter equivalence by Cramer’s rule holds if the empirical covariance matrix, ^ ^ C ¼ðC ijÞi;j2fA;B;Cg, is invertible. Krumsiek et al. [21] studied the Pearson correlations and partial correlations in data generated by an in silico reaction system consisting of three components A, B, C with reactions between A and B, and B and C (Fig 1A). A graphical comparison of PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004182 July 30, 2015 2 / 22 Fig 1. Reaction system reconstruction and protein contact prediction. Association results of correlation- based and maximum-entropy methods on biological data from an in silico reaction system (A) and protein contacts (B). (A) Analysis by Pearson’s correlation yields interactions associating all three compounds A, B, and C, in contrast to the partial correlation approach which omits the “false” link between A and C. (Fig 1A based on [21].) (B) Protein contact prediction for the human RAS protein using the correlation-based mutual information, MI, and the maximum-entropy based direct information, DI, (blue and red, respectively). The 150 highest scoring contacts from both methods are plotted on the protein contacts from experimentally determined structure in gray. (Fig 1B based on [6].) doi:10.1371/journal.pcbi.1004182.g001 ’ Pearson s correlations, rAB, rAC rBC, versus the corresponding partial correlations, rABÁC, rACÁB, ’ rBCÁA, shows that variables A and C appear to be correlated when using Pearson s correlation as a dependency measure since both are highly correlated with variable B, which results in a false inferred reaction rAC. The strength of the incorrectly inferred interaction can be numerically large and therefore particularly misleading if there are multiple intermediate variables B [22]. The partial correlation analysis
Recommended publications
  • Ontology-Based Methods for Analyzing Life Science Data

    Ontology-Based Methods for Analyzing Life Science Data

    Habilitation a` Diriger des Recherches pr´esent´ee par Olivier Dameron Ontology-based methods for analyzing life science data Soutenue publiquement le 11 janvier 2016 devant le jury compos´ede Anita Burgun Professeur, Universit´eRen´eDescartes Paris Examinatrice Marie-Dominique Devignes Charg´eede recherches CNRS, LORIA Nancy Examinatrice Michel Dumontier Associate professor, Stanford University USA Rapporteur Christine Froidevaux Professeur, Universit´eParis Sud Rapporteure Fabien Gandon Directeur de recherches, Inria Sophia-Antipolis Rapporteur Anne Siegel Directrice de recherches CNRS, IRISA Rennes Examinatrice Alexandre Termier Professeur, Universit´ede Rennes 1 Examinateur 2 Contents 1 Introduction 9 1.1 Context ......................................... 10 1.2 Challenges . 11 1.3 Summary of the contributions . 14 1.4 Organization of the manuscript . 18 2 Reasoning based on hierarchies 21 2.1 Principle......................................... 21 2.1.1 RDF for describing data . 21 2.1.2 RDFS for describing types . 24 2.1.3 RDFS entailments . 26 2.1.4 Typical uses of RDFS entailments in life science . 26 2.1.5 Synthesis . 30 2.2 Case study: integrating diseases and pathways . 31 2.2.1 Context . 31 2.2.2 Objective . 32 2.2.3 Linking pathways and diseases using GO, KO and SNOMED-CT . 32 2.2.4 Querying associated diseases and pathways . 33 2.3 Methodology: Web services composition . 39 2.3.1 Context . 39 2.3.2 Objective . 40 2.3.3 Semantic compatibility of services parameters . 40 2.3.4 Algorithm for pairing services parameters . 40 2.4 Application: ontology-based query expansion with GO2PUB . 43 2.4.1 Context . 43 2.4.2 Objective .
  • Ploidetect Enables Pan-Cancer Analysis of the Causes and Impacts of Chromosomal Instability

    Ploidetect Enables Pan-Cancer Analysis of the Causes and Impacts of Chromosomal Instability

    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.06.455329; this version posted August 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Ploidetect enables pan-cancer analysis of the causes and impacts of chromosomal instability Luka Culibrk1,2, Jasleen K. Grewal1,2, Erin D. Pleasance1, Laura Williamson1, Karen Mungall1, Janessa Laskin3, Marco A. Marra1,4, and Steven J.M. Jones1,4, 1Canada’s Michael Smith Genome Sciences Center at BC Cancer, Vancouver, British Columbia, Canada 2Bioinformatics training program, University of British Columbia, Vancouver, British Columbia, Canada 3Department of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada 4Department of Medical Genetics, Faculty of Medicine, Vancouver, British Columbia, Canada Cancers routinely exhibit chromosomal instability, resulting in tumors mutate, these variants are considerably more difficult the accumulation of changes in the abundance of genomic ma- to detect accurately compared to other types of mutations terial, known as copy number variants (CNVs). Unfortunately, and consequently they may represent an under-explored the detection of these variants in cancer genomes is difficult. We facet of tumor biology. 20 developed Ploidetect, a software package that effectively iden- While small mutations can be determined through base tifies CNVs within whole-genome sequenced tumors. Ploidetect changes embedded within aligned sequence reads, CNVs was more sensitive to CNVs in cancer related genes within ad- are variations in DNA quantity and are typically determined vanced, pre-treated metastatic cancers than other tools, while also segmenting the most contiguously.
  • BIOINFORMATICS APPLICATIONS NOTE Pages 380-381

    BIOINFORMATICS APPLICATIONS NOTE Pages 380-381

    Vol. 14 no. 4 1998 BIOINFORMATICS APPLICATIONS NOTE Pages 380-381 MView: a web-compatible database search or multiple alignment viewer NigelP. Brown, ChristopheLeroy and Chris Sander European Bioinformatics Institute (EMBLĆEBI), Wellcome Genome Campus, CambridgeCB10 1SD, UK Received on December 10, 1997; revised and accepted on January 15, 1998 Abstract may be hyperlinked to the SRS system (Etzold et al., 1996), a text field, a field of scoring information from searches, and Summary: MView is a tool for converting the results of a a field reporting the per cent identity of each sequence with sequence database search into the form of a coloured multiple respect to a preferred sequence in the alignment, usually the alignment of hits stacked against the query. Alternatively, an query in the case of a search. existing multiple alignment can be processed. In either case, Multiple alignments require minimal parsing and are the output is simply HTML, so the result is platform independent and does not require a separate application or subjected only to formatting stages. Search hits are first applet to be loaded. stacked against the ungapped query sequence and require Availability: Free from http://www.sander.ebi.ac.uk/mview/ special processing. Ungapped search (e.g. BLAST) hit subject to copyright restrictions. fragments are assembled into a single string by overlaying Contact: [email protected] them preferentially by score onto a template string, while gapped search (e.g. FASTA) hits have columns corresponding Often when running FASTA (Pearson, 1990) or BLAST to query gaps excised. Consequently, the stacked alignment is (Altschul et al., 1990), it is desired to visualize the database a patchwork of reconstituted sequences that nevertheless is hits stacked against the query sequence.
  • Are You an Invited Speaker? a Bibliometric Analysis of Elite Groups for Scholarly Events in Bioinformatics

    Are You an Invited Speaker? a Bibliometric Analysis of Elite Groups for Scholarly Events in Bioinformatics

    Are You an Invited Speaker? A Bibliometric Analysis of Elite Groups for Scholarly Events in Bioinformatics Senator Jeong, Sungin Lee, and Hong-Gee Kim Biomedical Knowledge Engineering Laboratory, Seoul National University, 28–22 YeonGeon Dong, Jongno Gu, Seoul 110–749, Korea. E-mail: {senator, sunginlee, hgkim}@snu.ac.kr Participating in scholarly events (e.g., conferences, work- evaluation, but it would be hard to claim that they have pro- shops, etc.) as an elite-group member such as an orga- vided comprehensive lists of evaluation measurements. This nizing committee chair or member, program committee article aims not to provide such lists but to add to the current chair or member, session chair, invited speaker, or award winner is beneficial to a researcher’s career develop- practices an alternative metric that complements existing per- ment.The objective of this study is to investigate whether formance measures to give a more comprehensive picture of elite-group membership for scholarly events is represen- scholars’ performance. tative of scholars’ prominence, and which elite group is By one definition (Jeong, 2008), a scholarly event is the most prestigious. We collected data about 15 global “a sequentially and spatially organized collection of schol- (excluding regional) bioinformatics scholarly events held in 2007. We sampled (via stratified random sampling) ars’ interactions with the intention of delivering and shar- participants from elite groups in each event. Then, bib- ing knowledge, exchanging research ideas, and performing liometric indicators (total citations and h index) of seven related activities.” As such, scholarly events are communica- elite groups and a non-elite group, consisting of authors tion channels from which our new evaluation tool can draw who submitted at least one paper to an event but were its supporting evidence.
  • Full List of PCAWG Consortium Working Groups and Writing

    Full List of PCAWG Consortium Working Groups and Writing

    Supplementary information to: Genomics: data sharing needs an international code of conduct To accompany a Comment published in Nature 578, 31–33 (2020) https://www.nature.com/articles/d41586-020-00082-9 By Mark Phillips, Fruzsina Molnár-Gábor, Jan O. Korbel, Adrian Thorogood, Yann Joly, Don Chalmers, David Townend & Bartha M. Knoppers for the PCAWG Consortium. SUPPLEMENTARY INFORMATION | NATURE | 1 The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium Working Groups PCAWG Steering committee 1,2 3,4,5,6 7,8 9,10 Peter J Campbell# ,​ Gad Getz# ,​ Jan O Korbel# ,​ Lincoln D Stein# ​ and Joshua M ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Stuart#11,12 ​ ​ PCAWG Head of project management Jennifer L Jennings13 ​ PCAWG Executive committee 14 15 16 17 18 Sultan T Al-Sedairy ,​ Axel Aretz ,​ Cindy Bell ,​ Miguel Betancourt ,​ Christiane Buchholz ,​ 19 ​ ​ 20 ​ 21 ​ 22 23 ​ Fabien Calvo ,​ Christine Chomienne ,​ Michael Dunn ,​ Stuart Edmonds ,​ Eric Green ,​ Shailja 24 ​ 23 ​ 25 ​ 13 ​ 26 ​ Gupta ,​ Carolyn M Hutter ,​ Karine Jegalian ,​ Jennifer L Jennings ,​ Nic Jones ,​ Hyung-Lae 27 ​ 28,29,30 ​ 31​ 32 ​ ​ 32 26 Kim ,​ Youyong Lu ,​ Hitoshi Nakagama ,​ Gerd Nettekoven ,​ Laura Planko ,​ David Scott ,​ ​ 3​ 3,34 35 ​ 9,10 ​ 1 ​ ​ 35 Tatsuhiro Shibata ,​ Kiyo Shimizu ,​ Lincoln D Stein# ,​ Michael R Stratton ,​ Takashi Yugawa ,​ ​ 36,37 ​ ​ 24 ​ ​ 38 ​ 39 ​ Giampaolo Tortora ,​ K VijayRaghavan ,​ Huanming Yang ​ and Jean C Zenklusen ​ ​ ​ ​ PCAWG Ethics and Legal Working Group 40 41 41 42 41 Don Chalmers# ,​ Yann Joly ,​ Bartha M Knoppers# ,​ Fruzsina
  • Biological Pathways Exchange Language Level 3, Release Version 1 Documentation

    Biological Pathways Exchange Language Level 3, Release Version 1 Documentation

    BioPAX – Biological Pathways Exchange Language Level 3, Release Version 1 Documentation BioPAX Release, July 2010. The BioPAX data exchange format is the joint work of the BioPAX workgroup and Level 3 builds on the work of Level 2 and Level 1. BioPAX Level 3 input from: Mirit Aladjem, Ozgun Babur, Gary D. Bader, Michael Blinov, Burk Braun, Michelle Carrillo, Michael P. Cary, Kei-Hoi Cheung, Julio Collado-Vides, Dan Corwin, Emek Demir, Peter D'Eustachio, Ken Fukuda, Marc Gillespie, Li Gong, Gopal Gopinathrao, Nan Guo, Peter Hornbeck, Michael Hucka, Olivier Hubaut, Geeta Joshi- Tope, Peter Karp, Shiva Krupa, Christian Lemer, Joanne Luciano, Irma Martinez-Flores, Zheng Li, David Merberg, Huaiyu Mi, Ion Moraru, Nicolas Le Novere, Elgar Pichler, Suzanne Paley, Monica Penaloza- Spinola, Victoria Petri, Elgar Pichler, Alex Pico, Harsha Rajasimha, Ranjani Ramakrishnan, Dean Ravenscroft, Jonathan Rees, Liya Ren, Oliver Ruebenacker, Alan Ruttenberg, Matthias Samwald, Chris Sander, Frank Schacherer, Carl Schaefer, James Schaff, Nigam Shah, Andrea Splendiani, Paul Thomas, Imre Vastrik, Ryan Whaley, Edgar Wingender, Guanming Wu, Jeremy Zucker BioPAX Level 2 input from: Mirit Aladjem, Gary D. Bader, Ewan Birney, Michael P. Cary, Dan Corwin, Kam Dahlquist, Emek Demir, Peter D'Eustachio, Ken Fukuda, Frank Gibbons, Marc Gillespie, Michael Hucka, Geeta Joshi-Tope, David Kane, Peter Karp, Christian Lemer, Joanne Luciano, Elgar Pichler, Eric Neumann, Suzanne Paley, Harsha Rajasimha, Jonathan Rees, Alan Ruttenberg, Andrey Rzhetsky, Chris Sander, Frank Schacherer,
  • Systems Biology Graphical Notation: Process Description Language Level 1

    Systems Biology Graphical Notation: Process Description Language Level 1

    Erschienen in: Journal of integrative bioinformatics ; 16 (2019), 2. - 20190022 https://dx.doi.org/10.1515/jib-2019-0022 DE GRUYTER Journal of Integrative Bioinformatics. 2019; 20190022 Adrien Rougny1,2 / Vasundra Touré3 / Stuart Moodie4 / Irina Balaur5 / Tobias Czauderna 6 / Hanna Borlinghaus7 / Ugur Dogrusoz8,9 / Alexander Mazein5,10,11 / Andreas Dräger12,13,14 / Michael L. Blinov15 / Alice Villéger16 / Robin Haw17 / Emek Demir18,19 / Huaiyu Mi20 / Anatoly Sorokin11 / Falk Schreiber6,7 / Augustin Luna21,22 Systems Biology Graphical Notation: Process Description language Level 1 Version 2.0 1 Biotechnology Research Institute for Drug Discovery, AIST, Tokyo135-0064, Japan, E-mail: [email protected]. https://orcid.org/0000-0002-2118-035X. 2 Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo 169-8555, Japan, E-mail: [email protected]. https://orcid.org/0000-0002-2118-035X. 3 Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway. https://orcid.org/0000-0003-4639-4431. 4 Eight Pillars Ltd, 19 Redford Walk, Edinburgh EH13 0AG, UK 5 European Institute for Systems Biology and Medicine, CIRI UMR5308, CNRS-ENS-UCBL-INSERM, Université de Lyon, 50 Av- enue Tony Garnier, 69007 Lyon, France. https://orcid.org/0000-0002-3671-895X, https://orcid.org/0000-0001-7137-4171. 6 Faculty of Information Technology, Monash University, Melbourne, Australia. https://orcid.org/0000-0002-1788-9593. 7 Department of Computer and Information Science, University of Konstanz, Konstanz, Germany. https://orcid.org/0000-0002-5410-6877. 8 Computer Engineering Department, Bilkent University, Ankara 06800, Turkey. https://orcid.org/0000-0002-7153-0784. 9 i-Vis Research Lab, Bilkent University, Ankara 06800, Turkey.
  • I S C B N E W S L E T T

    I S C B N E W S L E T T

    ISCB NEWSLETTER FOCUS ISSUE {contents} President’s Letter 2 Member Involvement Encouraged Register for ISMB 2002 3 Registration and Tutorial Update Host ISMB 2004 or 2005 3 David Baker 4 2002 Overton Prize Recipient Overton Endowment 4 ISMB 2002 Committees 4 ISMB 2002 Opportunities 5 Sponsor and Exhibitor Benefits Best Paper Award by SGI 5 ISMB 2002 SIGs 6 New Program for 2002 ISMB Goes Down Under 7 Planning Underway for 2003 Hot Jobs! Top Companies! 8 ISMB 2002 Job Fair ISCB Board Nominations 8 Bioinformatics Pioneers 9 ISMB 2002 Keynote Speakers Invited Editorial 10 Anna Tramontano: Bioinformatics in Europe Software Recommendations11 ISCB Software Statement volume 5. issue 2. summer 2002 Community Development 12 ISCB’s Regional Affiliates Program ISCB Staff Introduction 12 Fellowship Recipients 13 Awardees at RECOMB 2002 Events and Opportunities 14 Bioinformatics events world wide INTERNATIONAL SOCIETY FOR COMPUTATIONAL BIOLOGY A NOTE FROM ISCB PRESIDENT This newsletter is packed with information on development and dissemination of bioinfor- the ISMB2002 conference. With over 200 matics. Issues arise from recommendations paper submissions and over 500 poster submis- made by the Society’s committees, Board of sions, the conference promises to be a scientific Directors, and membership at large. Important feast. On behalf of the ISCB’s Directors, staff, issues are defined as motions and are discussed EXECUTIVE COMMITTEE and membership, I would like to thank the by the Board of Directors on a bi-monthly Philip E. Bourne, Ph.D., President organizing committee, local organizing com- teleconference. Motions that pass are enacted Michael Gribskov, Ph.D., mittee, and program committee for their hard by the Executive Committee which also serves Vice President work preparing for the conference.
  • Mapping the Protein Universe

    Mapping the Protein Universe

    SCIENCE Online -- Holm and Sander 273 (5275):595 http://www.sciencemag.org/cgi/content/fu...endit:Search!author1:holm!author2:sander [Go to SCIENCE Online with fewer graphics] MARK GERSTEIN || Change Password || View/Manage User Information || Subscription HELP || Sign Out Other Articles which have Cited this Article PubMed Citation || Related Articles in PubMed || Download to Citation Manager Mapping the Protein Universe Liisa Holm and Chris Sander The comparison of the three-dimensional shapes of protein molecules poses a complex algorithmic problem. Its solution provides biologists with computational tools to organize the rapidly growing set of thousands of known protein shapes, to identify new types of protein architecture, and to discover unexpected evolutionary relations, reaching back billions of years, between protein molecules. Protein shape comparison also improves tools for identifying gene functions in genome databases by defining the essential sequence-structure features of a protein family. Finally, an exhaustive all-on-all shape comparison provides a map of physical attractor regions in the abstract shape space of proteins, with implications for the processes of protein folding and evolution. The authors are in the European Bioinformatics Institute, European Molecular Biology Laboratory, Hinxton Hall, Cambridge CB10 1SD, UK. If a living cell is viewed as a biochemical factory, then its main workers are protein molecules, acting as catalysts, transporters, and messengers, among other roles. A human genome encodes about 100,000 of these biological macromolecules. Their functional diversity is made possible by the diversity of three-dimensional (3D) protein shapes, also called "structures," which are capable of highly specific molecular recognition. Understanding or simulating the molecular processes involved in the formation of protein structures and in their biological function is a major challenge of molecular biology.
  • A General Mathematical Framework for Understanding the Behavior of Heterogeneous Stem Cell Regeneration Arxiv:1903.11448V1 [Q-B

    A General Mathematical Framework for Understanding the Behavior of Heterogeneous Stem Cell Regeneration Arxiv:1903.11448V1 [Q-B

    A general mathematical framework for understanding the behavior of heterogeneous stem cell regeneration Jinzhi Lei Zhou Pei-Yuan Center for Applied Mathematics, MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing 100084, China. Abstract Stem cell heterogeneity is essential for the homeostasis in tissue development. This paper established a general formulation for understanding the dynamics of stem cell regeneration with cell heterogeneity and random transitions of epigenetic states. The model generalizes the classical G0 cell cycle model, and incorporates the epigenetic states of stem cells that are represented by a contin- uous multidimensional variable and the kinetic rates of cell behaviors, including proliferation, differentiation, and apoptosis, that are dependent on their epigenetic states. Moreover, the random transition of epigenetic states is represented by an inheritance probability that can be described as a conditional beta distribution. This model can be extended to investigate gene mutation-induced tumor develop- ment. The proposed formula is a generalized formula that helps us to understand various dynamic processes of stem cell regeneration, including tissue development, degeneration, and abnormal growth. Keywords: Heterogeneity, stem cell, cell cycle, epigenetic state, development, computational model 1 Introduction Stem cell regeneration is an essential biological process in most self-renewing tis- arXiv:1903.11448v1 [q-bio.PE] 27 Mar 2019 sues during development and the maintenance of tissue homeostasis. Stem cells multiply by cell division, during which DNA is replicated and assigned to the two daughter cells along with the inheritance of epigenetic information and the parti- tion of molecules. Unlike the accumulated process of DNA replication, inherited epigenetic information is often subjected to random perturbations; for example, the 1 reconstruction of histone modifications and DNA methylation are intrinsically ran- dom processes of writing and erasing the modified markers [71, 91].
  • Bioinformatics 2 -- Lecture 3

    Bioinformatics 2 -- Lecture 3

    Bioinformatics 2 -- lecture 3 Rotation and translation Superposition, structure comparison Structure classification Rotation is angular addition y atom starts at (x=|r|cosα, y=|r|sinα) axis of (x’,y’) rotation = Cartesian β (x,y) origin r α x ..rotates to... (x'=|r|cos(α+β), y'=|r|sin(α+β)) Convention: angles are measured counter-clockwise. 1 Sum of angles formula cos (α+β) = cos α cos β − sin α sin β sin (α+β) = sin α cos β + sin β cos α A rotation matrix y α x = |r|cos (x’,y’) y = |r|sin α β (x,y) r α x x' = |r| cos (α+β) y' = |r| sin (α+β) = |r|(cos α cos β − sin α sin β) = |r|(sin α cos β + sin β cos α) = (|r| cos α) cos β − (|r| sin α)sin β = (|r| sin α) cos β + (|r| cos α) sin β = x cos β − y sin β = y cos β + x sin β x' cosββ− sin r cosα cosββ− sin x = = y' sinββ cos rsinα sinββ cos y rotation matrix is the same for any r, any α. 2 A rotation around a principle axis The Z coordinate stays the same. X and Y change. cosββ− sin 0 R = sinββ cos 0 z 001 The Y coordinate stays the same. X and Z change. cosγγ0 sin R = 010 y −sinγγ0 cos The X coordinate stays the same. Y and Z change. 10 0 0 cosαα− sin Rx = 0 sinαα cos A 3D rotation matrix Is the product of 2D rotation matrices.
  • Generating Functional Protein Variants with Variational Autoencoders

    Generating Functional Protein Variants with Variational Autoencoders

    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.07.029264; this version posted April 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Generating functional protein variants with variational 2 autoencoders 1 1 1 3 Alex Hawkins-Hooker , Florence Depardieu , Sebastien Baur , Guillaume 1 1 1 4 Couairon , Arthur Chen , and David Bikard 1 5 Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France 6 Abstract 7 The design of novel proteins with specified function and controllable biochemical properties 8 is a longstanding goal in bio-engineering with potential applications across medicine and nan- 9 otechnology. The vast expansion of protein sequence databases over the last decades provides 10 an opportunity for new approaches which seek to learn the sequence-function relationship 11 directly from natural sequence variation. Advances in deep generative models have led to 12 the successful modelling of diverse kinds of high-dimensional data, from images to molecules, 13 allowing the generation of novel, realistic samples. While deep models trained on protein 14 sequence data have been shown to learn biologically meaningful representations helpful for 15 a variety of downstream tasks, their potential for direct use in protein engineering remains 16 largely unexplored. Here we show that variational autoencoders trained on a dataset of almost 17 70000 luciferase-like oxidoreductases can be used to generate novel, functional variants of the 18 luxA bacterial luciferase.