On the Multivariate Extended Skew-Normal, Normal-Exponential and Normal- Gamma Distributions

Total Page:16

File Type:pdf, Size:1020Kb

On the Multivariate Extended Skew-Normal, Normal-Exponential and Normal- Gamma Distributions On the Multivariate Extended Skew-Normal, Normal-exponential and Normal- gamma Distributions by CJ Adcock(1) and K Shutes(2) (1) The University of Sheffield (2) Coventry University Business School Abstract This paper presents expressions for the multivariate normal-exponential and normal- gamma distributions. It then presents properties of these distributions. These include conditional distributions and a new extension to Stein’s lemma. It is also shown that the multivariate normal-gamma and normal-exponential distribution are not in general closed under conditioning, although they are closed under linear transformations. The paper also demonstrates that there are relationships between the extended skew-normal distribution and the normal-gamma and normal-exponential distributions. Specifically, it is shown that certain limiting cases of the extended skew-normal distribution are normal-gamma and normal-exponential. One interpretation of these results is that the normal-exponential distribution may considered to be an alternative model to the extended skew-normal in some situations. An alternative point of view, however, is that the normal-exponential distribution is redundant since it may be replicated by a suitable extended skew-normal distribution. The theoretical results are supported by an empirical study of stock returns, which includes use of the multivariate distributions for portfolio selection. Keywords: exponential distribution, gamma distribution, moment generating function, multivariate extended skew-normal distribution, portfolio selection, Stein’s lemma. Correspondence Address: C J Adcock The Management School The University of Sheffield Mappin Street Sheffield, S1 4DT UK Email: [email protected] Tel: +44 (0)114 222 3402 1. Introduction The skew-normal distribution which was introduced by Adelchi Azzalini, Azzalini (1985, 1986), is now almost certainly the best-known example of a general method of generating a skewed distribution. The method has various stochastic representations, there being a summary in Azzalini (2005). One method of generating the skew- normal distribution is to take the bivariate normal distribution of (X,Y) and then to consider the conditional distribution of Xgiven that Y>0 . This representation is, with a change of notation, equivalent to considering the distribution of U +λV , where U has an arbitrary normal distribution and V , which is independent U , has the normal distribution N(0,1 )truncated from below at zero. A generalization in which V has the normal distribution N(t,1 ) truncated from below at zero is generally known as the extended skew-normal. The methods introduced by Azzalini and developed by him and many other authors have led to a wide range of distributions which possess rich theoretical properties. A different method of generating skewed distributions is to consider U +λV , where U has a symmetric distribution, but the non-negative variable V has a specified skewed distribution ab initio rather than being truncated. An example of this is the normal-exponential distribution, which was introduced by Aigner, Lovell and Schmidt (1977). As the name suggests, this specifies that U is normal and that V has an exponential distribution. An extension of this is the normal-gamma distribution which was introduced by Greene (1990) and which includes the normal-exponential as a special case. Although the theoretical foundations of skew-normal and related distributions are now both deep and mature, some authors express the view that applications are less well developed. The book by Genton (2004) rebuts this to some extent. Another exception to this is financial economics in which there has been a number of papers in recent years. This is particularly the case in portfolio theory where the multivariate skew- normal distribution has been used both for empirical studies and for the development of new theoretical results. Examples of the former may be found in Harvey et al (2010) and Adcock (2005). Examples of the latter are in Corns and Satchell (2007) and Adcock (2007), who presents an extension of Stein’s lemma (Stein, 1981) for the skew-normal distribution. A related but separate stream of work may be found in Simaan (1993). He proposes that the n-vector of returns on financial assets should be represented as X=U+λV . The n-vector U has a multivariate elliptically symmetric distribution and is independent of the non-negative scalar variable V , which has an unspecified skewed distribution. The n-vector λ , whose elements may take any real value, induces skewness in the return of individual assets. Multivariate versions of the normal-exponential and normal-gamma distributions are specific cases of the model proposed by Simaan, even though they do not appear explicitly in the literature. The aim of this paper is as follows. First, it is to present expressions for the multivariate normal-exponential and multivariate normal-gamma distributions. Secondly, it is present some properties of these distributions, specifically those which are of use in portfolio theory. These include conditional distributions, which are of relevance for asset pricing, and a new extension to Stein’s lemma which is relevant for portfolio selection. It is also shown that the multivariate normal-gamma and hence 1 multivariate normal-exponential distribution are not in general closed under conditioning, although they are closed under linear transformations. The paper also demonstrates that there are relationships between the extended skew- normal distribution and the normal-gamma and normal-exponential distributions. Specifically, it is shown that certain limiting cases of the extended skew-normal distribution are normal-gamma and normal-exponential. One interpretation of these results is that the normal-exponential distribution may considered to be an alternative model to the extended skew-normal in some situations. An alternative point of view, however, is that the normal-exponential distribution is redundant since it may be replicated by a suitable extended skew-normal distribution. The paper has five sections. Following a short summary of the multivariate extended skew-normal, henceforth MESN, distribution, the multivariate normal-exponential and normal-gamma distributions, henceforth MNE and MNG respectively, are derived in Section 2. Section 3 contains the main theoretical results of the paper. These describe conditions under which the normal-exponential distribution arises as a limiting case of the extended skew-normal distribution and some further properties of interest. Section 4 present background material for an empirical study of portfolio selection. This section contains the extension to Stein’s lemma for the MNG distribution. Section 5 reports an empirical study of the MESN and MNE distributions. Section 6 concludes. A short appendix contains the proofs of Lemmas reported in Sections 3 and 4. 2. Multivariate extended skew-normal normal-exponential and normal-gamma distributions The multivariate skew-normal distribution was introduced by Azzalini and Dalla Valle (1996). The multivariate extended skew-normal, MESN henceforth, distribution, which was first described in Adcock and Shutes (2001), may be obtained by considering the distribution of an n-vector X=U+λV . The vector U has a full rank multivariate normal distribution with mean vector μ and covariance matrix Σ. The elements of the vector λ may take any real values. The scalar variable V , which is distributed independently of U , has a normal distribution with mean τ and variance 1 truncated from below at zero. The distribution of X is denoted MESN n (μ, Σ, λ, τ) and the probability density function of the distribution is T -1 T ìτ+λΣ (x -μ)ü f()x =φn()x; μ +λτ, Σ +λλ Φí ýΦ()τ, î 1+λTΣ -1 λ þ where Φ(x) is the standard normal distribution function evaluated at x. The notation φn(x;μ,Σ) denotes the probability density function, evaluated at x, of a multivariate normal distribution with mean vector μ and covariance matrix Σ. The moment generating function (MGF) of the distribution, which is required below, is T T T T M X (t) = exp{t (μ + λτ)+ t (Σ + λλ )t 2}Φ(λ t + τ)Φ(τ). The vector of expected values and covariance matrix of X are, respectively 2 T E(X)= μ + λ{τ + ξ1(t )}= δ, var(X)= Σ + λλ {1 + ξ2 ( τ)}= Θ, k k where x k (x) = ¶ lnF(x)¶x , k = 1,2,.. The general notations δ and Θ are used throughout the paper to denote the vector of expected returns and covariance matrix, respectively. Omitting the subscript i, standardised values of skewness and kurtosis of a typical element of X, which are required in Section 5, are 3 2 3 2 4 2 2 sk' = ξ3 (τ)ψ [1 + {}1 + ξ 2 ()τ ψ ], ku' = ξ4 (τ)ψ[1+ {}1+ ξ2 ()τψ],ψ= λσ. A random vector X is said to have a multivariate normal-exponential, henceforth MNE, distribution if it is defined as above except that the variable V has an exponential distribution with scale equal, without loss of generality, to unity. The notation MNEn(μ,Σ,λ) is used. The moment generating function (MGF) of the distribution, which is also required below, is T T T T M X ( t ) = exp(μ t + t Σt/2)(1 - λ t),. λ t < 1. The vector of expected values and covariance matrix of X under the MNE distribution are, respectively E(X)= δ = μ + λ, var(X)= Θ = Σ + λλT. Under the multivariate normal-gamma distribution, henceforth MNG, the variable V has a gamma distribution with scale equal to one and υdegrees of freedom. That is, the probability density function of V is f (v)= v υ-1e -v Γ(υ), υ > 0,v³ 0. The MGF of this distribution is T T T υ T M X ( t ) = exp(μ t + t Σt/2)(1 - λ t), λ t < 1. The vector of expected values and covariance matrix of X under the MNE distribution are, respectively E(X)= δ = μ + λυ, var(X)= Θ = Σ + λλTυ.
Recommended publications
  • A Random Variable X with Pdf G(X) = Λα Γ(Α) X ≥ 0 Has Gamma
    DISTRIBUTIONS DERIVED FROM THE NORMAL DISTRIBUTION Definition: A random variable X with pdf λα g(x) = xα−1e−λx x ≥ 0 Γ(α) has gamma distribution with parameters α > 0 and λ > 0. The gamma function Γ(x), is defined as Z ∞ Γ(x) = ux−1e−udu. 0 Properties of the Gamma Function: (i) Γ(x + 1) = xΓ(x) (ii) Γ(n + 1) = n! √ (iii) Γ(1/2) = π. Remarks: 1. Notice that an exponential rv with parameter 1/θ = λ is a special case of a gamma rv. with parameters α = 1 and λ. 2. The sum of n independent identically distributed (iid) exponential rv, with parameter λ has a gamma distribution, with parameters n and λ. 3. The sum of n iid gamma rv with parameters α and λ has gamma distribution with parameters nα and λ. Definition: If Z is a standard normal rv, the distribution of U = Z2 called the chi-square distribution with 1 degree of freedom. 2 The density function of U ∼ χ1 is −1/2 x −x/2 fU (x) = √ e , x > 0. 2π 2 Remark: A χ1 random variable has the same density as a random variable with gamma distribution, with parameters α = 1/2 and λ = 1/2. Definition: If U1,U2,...,Uk are independent chi-square rv-s with 1 degree of freedom, the distribution of V = U1 + U2 + ... + Uk is called the chi-square distribution with k degrees of freedom. 2 Using Remark 3. and the above remark, a χk rv. follows gamma distribution with parameters 2 α = k/2 and λ = 1/2.
    [Show full text]
  • Use of Proc Iml to Calculate L-Moments for the Univariate Distributional Shape Parameters Skewness and Kurtosis
    Statistics 573 USE OF PROC IML TO CALCULATE L-MOMENTS FOR THE UNIVARIATE DISTRIBUTIONAL SHAPE PARAMETERS SKEWNESS AND KURTOSIS Michael A. Walega Berlex Laboratories, Wayne, New Jersey Introduction Exploratory data analysis statistics, such as those Gaussian. Bickel (1988) and Van Oer Laan and generated by the sp,ge procedure PROC Verdooren (1987) discuss the concept of robustness UNIVARIATE (1990), are useful tools to characterize and how it pertains to the assumption of normality. the underlying distribution of data prior to more rigorous statistical analyses. Assessment of the As discussed by Glass et al. (1972), incorrect distributional shape of data is usually accomplished conclusions may be reached when the normality by careful examination of the values of the third and assumption is not valid, especially when one-tail tests fourth central moments, skewness and kurtosis. are employed or the sample size or significance level However, when the sample size is small or the are very small. Hopkins and Weeks (1990) also underlying distribution is non-normal, the information discuss the effects of highly non-normal data on obtained from the sample skewness and kurtosis can hypothesis testing of variances. Thus, it is apparent be misleading. that examination of the skewness (departure from symmetry) and kurtosis (deviation from a normal One alternative to the central moment shape statistics curve) is an important component of exploratory data is the use of linear combinations of order statistics (L­ analyses. moments) to examine the distributional shape characteristics of data. L-moments have several Various methods to estimate skewness and kurtosis theoretical advantages over the central moment have been proposed (MacGillivray and Salanela, shape statistics: Characterization of a wider range of 1988).
    [Show full text]
  • Concentration and Consistency Results for Canonical and Curved Exponential-Family Models of Random Graphs
    CONCENTRATION AND CONSISTENCY RESULTS FOR CANONICAL AND CURVED EXPONENTIAL-FAMILY MODELS OF RANDOM GRAPHS BY MICHAEL SCHWEINBERGER AND JONATHAN STEWART Rice University Statistical inference for exponential-family models of random graphs with dependent edges is challenging. We stress the importance of additional structure and show that additional structure facilitates statistical inference. A simple example of a random graph with additional structure is a random graph with neighborhoods and local dependence within neighborhoods. We develop the first concentration and consistency results for maximum likeli- hood and M-estimators of a wide range of canonical and curved exponential- family models of random graphs with local dependence. All results are non- asymptotic and applicable to random graphs with finite populations of nodes, although asymptotic consistency results can be obtained as well. In addition, we show that additional structure can facilitate subgraph-to-graph estimation, and present concentration results for subgraph-to-graph estimators. As an ap- plication, we consider popular curved exponential-family models of random graphs, with local dependence induced by transitivity and parameter vectors whose dimensions depend on the number of nodes. 1. Introduction. Models of network data have witnessed a surge of interest in statistics and related areas [e.g., 31]. Such data arise in the study of, e.g., social networks, epidemics, insurgencies, and terrorist networks. Since the work of Holland and Leinhardt in the 1970s [e.g., 21], it is known that network data exhibit a wide range of dependencies induced by transitivity and other interesting network phenomena [e.g., 39]. Transitivity is a form of triadic closure in the sense that, when a node k is connected to two distinct nodes i and j, then i and j are likely to be connected as well, which suggests that edges are dependent [e.g., 39].
    [Show full text]
  • Use of Statistical Tables
    TUTORIAL | SCOPE USE OF STATISTICAL TABLES Lucy Radford, Jenny V Freeman and Stephen J Walters introduce three important statistical distributions: the standard Normal, t and Chi-squared distributions PREVIOUS TUTORIALS HAVE LOOKED at hypothesis testing1 and basic statistical tests.2–4 As part of the process of statistical hypothesis testing, a test statistic is calculated and compared to a hypothesised critical value and this is used to obtain a P- value. This P-value is then used to decide whether the study results are statistically significant or not. It will explain how statistical tables are used to link test statistics to P-values. This tutorial introduces tables for three important statistical distributions (the TABLE 1. Extract from two-tailed standard Normal, t and Chi-squared standard Normal table. Values distributions) and explains how to use tabulated are P-values corresponding them with the help of some simple to particular cut-offs and are for z examples. values calculated to two decimal places. STANDARD NORMAL DISTRIBUTION TABLE 1 The Normal distribution is widely used in statistics and has been discussed in z 0.00 0.01 0.02 0.03 0.050.04 0.05 0.06 0.07 0.08 0.09 detail previously.5 As the mean of a Normally distributed variable can take 0.00 1.0000 0.9920 0.9840 0.9761 0.9681 0.9601 0.9522 0.9442 0.9362 0.9283 any value (−∞ to ∞) and the standard 0.10 0.9203 0.9124 0.9045 0.8966 0.8887 0.8808 0.8729 0.8650 0.8572 0.8493 deviation any positive value (0 to ∞), 0.20 0.8415 0.8337 0.8259 0.8181 0.8103 0.8206 0.7949 0.7872 0.7795 0.7718 there are an infinite number of possible 0.30 0.7642 0.7566 0.7490 0.7414 0.7339 0.7263 0.7188 0.7114 0.7039 0.6965 Normal distributions.
    [Show full text]
  • Stat 5101 Notes: Brand Name Distributions
    Stat 5101 Notes: Brand Name Distributions Charles J. Geyer February 14, 2003 1 Discrete Uniform Distribution Symbol DiscreteUniform(n). Type Discrete. Rationale Equally likely outcomes. Sample Space The interval 1, 2, ..., n of the integers. Probability Function 1 f(x) = , x = 1, 2, . , n n Moments n + 1 E(X) = 2 n2 − 1 var(X) = 12 2 Uniform Distribution Symbol Uniform(a, b). Type Continuous. Rationale Continuous analog of the discrete uniform distribution. Parameters Real numbers a and b with a < b. Sample Space The interval (a, b) of the real numbers. 1 Probability Density Function 1 f(x) = , a < x < b b − a Moments a + b E(X) = 2 (b − a)2 var(X) = 12 Relation to Other Distributions Beta(1, 1) = Uniform(0, 1). 3 Bernoulli Distribution Symbol Bernoulli(p). Type Discrete. Rationale Any zero-or-one-valued random variable. Parameter Real number 0 ≤ p ≤ 1. Sample Space The two-element set {0, 1}. Probability Function ( p, x = 1 f(x) = 1 − p, x = 0 Moments E(X) = p var(X) = p(1 − p) Addition Rule If X1, ..., Xk are i. i. d. Bernoulli(p) random variables, then X1 + ··· + Xk is a Binomial(k, p) random variable. Relation to Other Distributions Bernoulli(p) = Binomial(1, p). 4 Binomial Distribution Symbol Binomial(n, p). 2 Type Discrete. Rationale Sum of i. i. d. Bernoulli random variables. Parameters Real number 0 ≤ p ≤ 1. Integer n ≥ 1. Sample Space The interval 0, 1, ..., n of the integers. Probability Function n f(x) = px(1 − p)n−x, x = 0, 1, . , n x Moments E(X) = np var(X) = np(1 − p) Addition Rule If X1, ..., Xk are independent random variables, Xi being Binomial(ni, p) distributed, then X1 + ··· + Xk is a Binomial(n1 + ··· + nk, p) random variable.
    [Show full text]
  • Chapter 6 Continuous Random Variables and Probability
    EF 507 QUANTITATIVE METHODS FOR ECONOMICS AND FINANCE FALL 2019 Chapter 6 Continuous Random Variables and Probability Distributions Chap 6-1 Probability Distributions Probability Distributions Ch. 5 Discrete Continuous Ch. 6 Probability Probability Distributions Distributions Binomial Uniform Hypergeometric Normal Poisson Exponential Chap 6-2/62 Continuous Probability Distributions § A continuous random variable is a variable that can assume any value in an interval § thickness of an item § time required to complete a task § temperature of a solution § height in inches § These can potentially take on any value, depending only on the ability to measure accurately. Chap 6-3/62 Cumulative Distribution Function § The cumulative distribution function, F(x), for a continuous random variable X expresses the probability that X does not exceed the value of x F(x) = P(X £ x) § Let a and b be two possible values of X, with a < b. The probability that X lies between a and b is P(a < X < b) = F(b) -F(a) Chap 6-4/62 Probability Density Function The probability density function, f(x), of random variable X has the following properties: 1. f(x) > 0 for all values of x 2. The area under the probability density function f(x) over all values of the random variable X is equal to 1.0 3. The probability that X lies between two values is the area under the density function graph between the two values 4. The cumulative density function F(x0) is the area under the probability density function f(x) from the minimum x value up to x0 x0 f(x ) = f(x)dx 0 ò xm where
    [Show full text]
  • A Skew Extension of the T-Distribution, with Applications
    J. R. Statist. Soc. B (2003) 65, Part 1, pp. 159–174 A skew extension of the t-distribution, with applications M. C. Jones The Open University, Milton Keynes, UK and M. J. Faddy University of Birmingham, UK [Received March 2000. Final revision July 2002] Summary. A tractable skew t-distribution on the real line is proposed.This includes as a special case the symmetric t-distribution, and otherwise provides skew extensions thereof.The distribu- tion is potentially useful both for modelling data and in robustness studies. Properties of the new distribution are presented. Likelihood inference for the parameters of this skew t-distribution is developed. Application is made to two data modelling examples. Keywords: Beta distribution; Likelihood inference; Robustness; Skewness; Student’s t-distribution 1. Introduction Student’s t-distribution occurs frequently in statistics. Its usual derivation and use is as the sam- pling distribution of certain test statistics under normality, but increasingly the t-distribution is being used in both frequentist and Bayesian statistics as a heavy-tailed alternative to the nor- mal distribution when robustness to possible outliers is a concern. See Lange et al. (1989) and Gelman et al. (1995) and references therein. It will often be useful to consider a further alternative to the normal or t-distribution which is both heavy tailed and skew. To this end, we propose a family of distributions which includes the symmetric t-distributions as special cases, and also includes extensions of the t-distribution, still taking values on the whole real line, with non-zero skewness. Let a>0 and b>0be parameters.
    [Show full text]
  • 1. How Different Is the T Distribution from the Normal?
    Statistics 101–106 Lecture 7 (20 October 98) c David Pollard Page 1 Read M&M §7.1 and §7.2, ignoring starred parts. Reread M&M §3.2. The eects of estimated variances on normal approximations. t-distributions. Comparison of two means: pooling of estimates of variances, or paired observations. In Lecture 6, when discussing comparison of two Binomial proportions, I was content to estimate unknown variances when calculating statistics that were to be treated as approximately normally distributed. You might have worried about the effect of variability of the estimate. W. S. Gosset (“Student”) considered a similar problem in a very famous 1908 paper, where the role of Student’s t-distribution was first recognized. Gosset discovered that the effect of estimated variances could be described exactly in a simplified problem where n independent observations X1,...,Xn are taken from (, ) = ( + ...+ )/ a normal√ distribution, N . The sample mean, X X1 Xn n has a N(, / n) distribution. The random variable X Z = √ / n 2 2 Phas a standard normal distribution. If we estimate by the sample variance, s = ( )2/( ) i Xi X n 1 , then the resulting statistic, X T = √ s/ n no longer has a normal distribution. It has a t-distribution on n 1 degrees of freedom. Remark. I have written T , instead of the t used by M&M page 505. I find it causes confusion that t refers to both the name of the statistic and the name of its distribution. As you will soon see, the estimation of the variance has the effect of spreading out the distribution a little beyond what it would be if were used.
    [Show full text]
  • Skewed Double Exponential Distribution and Its Stochastic Rep- Resentation
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 2, No. 1, 2009, (1-20) ISSN 1307-5543 – www.ejpam.com Skewed Double Exponential Distribution and Its Stochastic Rep- resentation 12 2 2 Keshav Jagannathan , Arjun K. Gupta ∗, and Truc T. Nguyen 1 Coastal Carolina University Conway, South Carolina, U.S.A 2 Bowling Green State University Bowling Green, Ohio, U.S.A Abstract. Definitions of the skewed double exponential (SDE) distribution in terms of a mixture of double exponential distributions as well as in terms of a scaled product of a c.d.f. and a p.d.f. of double exponential random variable are proposed. Its basic properties are studied. Multi-parameter versions of the skewed double exponential distribution are also given. Characterization of the SDE family of distributions and stochastic representation of the SDE distribution are derived. AMS subject classifications: Primary 62E10, Secondary 62E15. Key words: Symmetric distributions, Skew distributions, Stochastic representation, Linear combina- tion of random variables, Characterizations, Skew Normal distribution. 1. Introduction The double exponential distribution was first published as Laplace’s first law of error in the year 1774 and stated that the frequency of an error could be expressed as an exponential function of the numerical magnitude of the error, disregarding sign. This distribution comes up as a model in many statistical problems. It is also considered in robustness studies, which suggests that it provides a model with different characteristics ∗Corresponding author. Email address: (A. Gupta) http://www.ejpam.com 1 c 2009 EJPAM All rights reserved. K. Jagannathan, A. Gupta, and T. Nguyen / Eur.
    [Show full text]
  • On a Problem Connected with Beta and Gamma Distributions by R
    ON A PROBLEM CONNECTED WITH BETA AND GAMMA DISTRIBUTIONS BY R. G. LAHA(i) 1. Introduction. The random variable X is said to have a Gamma distribution G(x;0,a)if du for x > 0, (1.1) P(X = x) = G(x;0,a) = JoT(a)" 0 for x ^ 0, where 0 > 0, a > 0. Let X and Y be two independently and identically distributed random variables each having a Gamma distribution of the form (1.1). Then it is well known [1, pp. 243-244], that the random variable W = X¡iX + Y) has a Beta distribution Biw ; a, a) given by 0 for w = 0, (1.2) PiW^w) = Biw;x,x)=\ ) u"-1il-u)'-1du for0<w<l, Ío T(a)r(a) 1 for w > 1. Now we can state the converse problem as follows : Let X and Y be two independently and identically distributed random variables having a common distribution function Fix). Suppose that W = Xj{X + Y) has a Beta distribution of the form (1.2). Then the question is whether £(x) is necessarily a Gamma distribution of the form (1.1). This problem was posed by Mauldon in [9]. He also showed that the converse problem is not true in general and constructed an example of a non-Gamma distribution with this property using the solution of an integral equation which was studied by Goodspeed in [2]. In the present paper we carry out a systematic investigation of this problem. In §2, we derive some general properties possessed by this class of distribution laws Fix).
    [Show full text]
  • A Study of Non-Central Skew T Distributions and Their Applications in Data Analysis and Change Point Detection
    A STUDY OF NON-CENTRAL SKEW T DISTRIBUTIONS AND THEIR APPLICATIONS IN DATA ANALYSIS AND CHANGE POINT DETECTION Abeer M. Hasan A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2013 Committee: Arjun K. Gupta, Co-advisor Wei Ning, Advisor Mark Earley, Graduate Faculty Representative Junfeng Shang. Copyright c August 2013 Abeer M. Hasan All rights reserved iii ABSTRACT Arjun K. Gupta, Co-advisor Wei Ning, Advisor Over the past three decades there has been a growing interest in searching for distribution families that are suitable to analyze skewed data with excess kurtosis. The search started by numerous papers on the skew normal distribution. Multivariate t distributions started to catch attention shortly after the development of the multivariate skew normal distribution. Many researchers proposed alternative methods to generalize the univariate t distribution to the multivariate case. Recently, skew t distribution started to become popular in research. Skew t distributions provide more flexibility and better ability to accommodate long-tailed data than skew normal distributions. In this dissertation, a new non-central skew t distribution is studied and its theoretical properties are explored. Applications of the proposed non-central skew t distribution in data analysis and model comparisons are studied. An extension of our distribution to the multivariate case is presented and properties of the multivariate non-central skew t distri- bution are discussed. We also discuss the distribution of quadratic forms of the non-central skew t distribution. In the last chapter, the change point problem of the non-central skew t distribution is discussed under different settings.
    [Show full text]
  • 1 One Parameter Exponential Families
    1 One parameter exponential families The world of exponential families bridges the gap between the Gaussian family and general dis- tributions. Many properties of Gaussians carry through to exponential families in a fairly precise sense. • In the Gaussian world, there exact small sample distributional results (i.e. t, F , χ2). • In the exponential family world, there are approximate distributional results (i.e. deviance tests). • In the general setting, we can only appeal to asymptotics. A one-parameter exponential family, F is a one-parameter family of distributions of the form Pη(dx) = exp (η · t(x) − Λ(η)) P0(dx) for some probability measure P0. The parameter η is called the natural or canonical parameter and the function Λ is called the cumulant generating function, and is simply the normalization needed to make dPη fη(x) = (x) = exp (η · t(x) − Λ(η)) dP0 a proper probability density. The random variable t(X) is the sufficient statistic of the exponential family. Note that P0 does not have to be a distribution on R, but these are of course the simplest examples. 1.0.1 A first example: Gaussian with linear sufficient statistic Consider the standard normal distribution Z e−z2=2 P0(A) = p dz A 2π and let t(x) = x. Then, the exponential family is eη·x−x2=2 Pη(dx) / p 2π and we see that Λ(η) = η2=2: eta= np.linspace(-2,2,101) CGF= eta**2/2. plt.plot(eta, CGF) A= plt.gca() A.set_xlabel(r'$\eta$', size=20) A.set_ylabel(r'$\Lambda(\eta)$', size=20) f= plt.gcf() 1 Thus, the exponential family in this setting is the collection F = fN(η; 1) : η 2 Rg : d 1.0.2 Normal with quadratic sufficient statistic on R d As a second example, take P0 = N(0;Id×d), i.e.
    [Show full text]